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Abstract. We investigate a stochastic model for complex networks,
based on a spatial embedding of the nodes, called the Spatial Preferred
Attachment (SPA) model. In the SPA model, nodes have spheres of in-
fluence of varying size, and new nodes may only link to a node if they
fall within its influence region. The spatial embedding of the nodes mod-
els the background knowledge or identity of the node, which influences
its link environment. In this paper, we focus on the (directed) diameter,
small separators, and the (weak) giant component of the model.

1. Introduction

Discrete random graph processes exhibiting power law properties have been stud-
ied by many authors and in many contexts. The study of such processes dates
back at least, to Yule [30] in 1924. Recent interest in preferential attachment
models follows from the work of Barabási and Albert [5] who observed a power
law degree sequence for a subgraph of the World Wide Web, and of Faloutsos,
Faloutsos and Faloutsos [16] who observed power law behaviour for the inter-
net graph. Many models of such process exist. For details see, for example, the
surveys [7, 29] and the monographs [9, 13].

In networked information spaces, vertices are not only defined by their link
environment, but also by the information entity they represent. More recently,
attempts have been made to model this alternative view of the vertices through
spatial models. In a spatial model, vertices are embedded in a metric space, and
link formation is influenced by the metric distance between vertices. The metric
space is meant to be like a feature space, so that the coordinates of a vertex in
this space represent the information associated with the vertex. For example, in
text mining, documents are commonly represented as vectors in a word space.
The metric is chosen so that metric distance represents similarity, i.e. vertices
whose information entities are closely related will be at a short distance from
each other in the metric space. A number of spatial models have been proposed
up to date [10, 11, 17–19, 26]. We direct the reader to the recent survey for more
details [20].



We focus on the Spatial Preferred Attachment (SPA) model, proposed in [3,
4]. The SPA model generates directed graphs according to the following princi-
ple. Vertices are points in a given metric space. Each vertex v has a sphere of
influence. The volume of the sphere of influence of a vertex is a function of its
in-degree. A new vertex u can only link to an existing vertex v if u falls inside the
sphere of influence of v. In the latter case, u links to v with probability p. The
SPA model incorporates the principle of preferential attachment, since vertices
with a higher in-degree will have a larger sphere of influence. The SPA model
gives a power law in-degree distribution, with exponent in [2,∞) depending on
the parameters, and with concentration for a wide range of in-degree values [3,
4]. In [22, 21] it was shown, through theoretical analysis and simulation, that
for graphs formed according to the SPA model it is possible to infer the metric
distance between vertices from the link structure of the graph.

In this paper, we investigate the (directed) diameter, small separators, and
the (weak) giant component of the model. This is an extended version of the
paper presented at the 9th Workshop on Algorithms and Models for the Web
Graph (WAW 2012) [14].

2. The SPA model

We start by giving a precise description of the SPA model, presenting some
known properties, and deriving some facts about the model, which we will need
to prove our results. In [3] (see also [4] for a preceding version of this paper), the
model is defined for a variety of metric spaces S. In this paper, we let S be the
unit hypercube in Rm, equipped with the torus metric derived from any of the
Lp norms. This means that for any two points x and y in S,

d(x, y) = min
{
||x− y + u||p : u ∈ {−1, 0, 1}m

}
.

The torus metric thus “wraps around” the boundaries of the unit square; this
metric was chosen to eliminate boundary effects. Let cm be the constant of pro-
portionality of volume used with the m-th power of the radius in m dimensions,
so the volume of a ball of radius r in m-dimensional space with the given metric
equals cmr

m. For example, for the Euclidean metric, c2 = π, and for the product
metric derived from L∞, cm = 2m.

The parameters of the model consist of the link probability p ∈ [0, 1], and
two positive constants A1 and A2, which, in order to avoid the resulting graph
becoming too dense, must be chosen so that pA1 < 1. The original model as
presented in [3] has a third parameter, A3, which is assumed to be zero here.
This causes no loss of generality, since all asymptotic results presented here are
unaffected by A3.

The SPA model generates stochastic sequences of directed graphs (Gt : t ≥
0), where Gt = (Vt, Et), and Vt ⊆ S. Let deg−(v, t) be the in-degree of vertex v
in Gt, and deg+(v, t) its out-degree. We define the sphere of influence S(v, t) of
vertex v at time t ≥ 1 to be the ball centered at v with volume |S(v, t)| defined



as follows:

|S(v, t)| = A1deg−(v, t) +A2

t
, (2.1)

or S(v, t) = S and |S(v, t)| = 1 if the right-hand-side of (2.1) is greater than 1.
The process begins at t = 0, with G0 being the null graph. Time-step t, t ≥ 1,

is defined to be the transition between Gt−1 and Gt. At the beginning of each
time-step t, a new vertex vt is chosen uniformly at random from S, and added
to Vt−1 to create Vt. Next, independently, for each vertex u ∈ Vt−1 such that
vt ∈ S(u, t − 1), a directed link (vt, u) is created with probability p. Thus, the
probability that a link (vt, u) is added in time-step t equals p |S(u, t− 1)|.

We say that an event holds asymptotically almost surely (a.a.s.) if the prob-
ability that it holds tends to one as t goes to infinity. It was shown in [3] that
a.a.s. the SPA model produces graphs with a power law degree distribution,
with exponent 1 + 1/(pA1). Moreover, a precise expression for the probability
distribution of the in-degree of the individual vertex vi born at time i was given.
In [21] (see also [22]) the relationship between the link structure of graphs pro-
duced by the model and the relative positions of the vertices in the metric space
was analyzed. See Figure 1 for a drawing of a simulation of the SPA model.

Fig. 1. A simulation on the unit square with t = 5, 000 and p = A1 = A2 = 1.

Now, let us discuss a few simple new facts about the model. Knowing the
expected in-degree of a node, given its age, will help us to analyze geometric
properties of the SPA Model. Let us note that the result for i� 1 (f(t)� g(t)
is used to indicate that f(t)/g(t) tends to infinity together with t) was proved
in [21] (see (2.2)); we extend it here to all i ≥ 1 (see (2.3)). As before, let vi be
the node added at time i.



Theorem 1. Suppose that i = i(t)� 1 as t→∞. Then,

E(deg−(vi, t)) = (1 + o(1))
A2

A1

(
t

i

)pA1

− A2

A1
, (2.2)

E(|S(vi, t)|) = (1 + o(1))A2t
pA1−1i−pA1 .

Moreover, for all i ≥ 1,

E(deg−(vi, t)) ≤
eA2

A1

(
t

i

)pA1

− A2

A1
, (2.3)

E(|S(vi, t)|) ≤ (1 + o(1))eA2t
pA1−1i−pA1 .

Proof. In order to simplify calculations, we make the following substitution:

X(vi, t) = deg−(vi, t) +
A2

A1
. (2.4)

It follows from the definition of the process that

X(vi, t+ 1) =

{
X(vi, t) + 1, with probability pA1X(vi,t)

t

X(vi, t), otherwise.

Finding the conditional expectation,

E(X(vi, t+ 1) | X(vi, t)) = (X(vi, t) + 1)
pA1X(vi, t)

t
+X(vi, t)

(
1− pA1X(vi, t)

t

)
= X(vi, t)

(
1 +

pA1

t

)
.

Taking expectations again, we get

E(X(vi, t+ 1)) = E(X(vi, t))

(
1 +

pA1

t

)
.

Since all nodes start with in-degree zero, X(vi, i) = A2

A1
. Note that, for 0 < x < 1,

log(1 + x) = x−O(x2). If i� 1, one can use this to get

E(X(vi, t)) =
A2

A1

t−1∏
j=i

(
1 +

pA1

j

)
= (1 + o(1))

A2

A1
exp

t−1∑
j=i

pA1

j

 ,

but in all cases i ≥ 1,

E(X(vi, t)) ≤
A2

A1
exp

t−1∑
j=i

pA1

j

 .



Therefore, when i� 1,

E(X(vi, t)) = (1 + o(1))
A2

A1
exp

(
pA1 log

(
t

i

))
= (1 + o(1))

A2

A1

(
t

i

)pA1

,

and (2.2) follows from (2.4) and (2.1). Moreover, for any i ≥ 1

E(X(vi, t)) ≤
A2

A1
exp

(
pA1

(
log

(
t

i

)
+ 1/i

))
≤ eA2

A1

(
t

i

)pA1

,

and (2.3) follows from (2.4) and (2.1) as before, which completes the proof.

Another fact that we will need follows directly from the following result
proved in [21]. The degree of an individual vertex is not concentrated, due to
variation happening shortly after birth. (That is, a.a.s. there are vertices that
have smaller/larger degrees than what we would expect.) However, provided
that the degree of the vertex at end time t is large enough (that is, is tending to
infinity faster than log t), sharp bounds on the degree of the vertex during most
of the process were obtained. This is expressed in the following theorem. First,
define a injective function f : R→ R by

f(i) =
A2

A1

(
t

i

)pA1

,

so f(i) is the expected degree, at time t, of a vertex born at time i (up to a
factor of (1 + o(1))). Thus, f−1(k) is the birth time of a vertex of final degree
k, assuming the degree of the vertex is close to the expected value during its
lifetime. Hence, if a vertex of final degree k has behaviour close to its expected
degree, then

ta = f−1
(
A2k

A1a

)
will be the time when that vertex has degree a. Indeed, for a vertex born at time
f−1(k), the expected degree at time ta is equal to

A2

A1

(
ta

f−1(k)

)pA1

=
A2

A1

(
A2

A1

(
t

f−1(k)

)pA1
)/(

A2

A1

(
t

ta

)pA1
)

=
A2k

A1

/(
A2k

A1a

)
= a.

Theorem 2 ([21]). Let ω = ω(t) be any function tending to infinity together
with t. The following statement holds a.a.s. for every vertex v for which deg−(v, t) =
k = k(t) ≥ ω log t. Let i = f−1(k), and let tk be

tk = f−1
(

A2k

A1ω log t

)
.

Then, for all values of s such that tk ≤ s ≤ t,

deg−(v, s) = (1 + o(1))
A2

A1

(s
i

)pA1

= (1 + o(1))k
(s
t

)pA1

. (2.5)



The theorem implies that once a given vertex accumulates ω log t neighbours,
the rest of the process (until time-step t) can be predicted with high probability;
in fact, a.a.s. we get a concentration around the expected value.

Now, with Theorem 2 in hand, we get immediately the following.

Theorem 3. Let ω = ω(t) be a function that goes to infinity together with t.
The following holds a.a.s. for every vertex vi added at time i. For all i ≤ s ≤ t
we have

deg−(vi, s) = O

(
(ω log t)

(s
i

)pA1
)
,

|S(vi, s)| = O

(
ω log t

i

)
.

Proof. For a contradiction suppose that k = deg−(vi, s) ≥ (2ω log t)(s/i)pA1 for
some value of s (i ≤ s ≤ t). Since k ≥ ω log t, Theorem 2 can be applied to get
that

deg−(vi, i) = (1 + o(1))
A2

A1

(
i

f−1(k)

)pA1

= (1 + o(1))
A2

A1

(
s

f−1(k)

)pA1 (s
i

)−pA1

= (1 + o(1))k
(s
i

)−pA1

≥ (2 + o(1))ω log t,

which is clearly a contradiction (in fact, deg−(vi, i) = 0).

3. Directed diameter

The small world property, introduced by Watts and Strogatz [31], is a central
notion in the study of complex networks (see also [24]). The small world property
demands a low diameter ofO(log t), and a higher clustering coefficient than found
in a binomial random graph with the same number of nodes and same average
degree. Adamic et al. [1] provided an early study of a social network at Stanford
University, and found that the network has the small world property. Similar
results were found in [2] which studied Cyworld, MySpace, and Orkut, and in [28]
which examined data collected from Flickr, YouTube, LiveJournal, and Orkut.
Low diameter (of 6) and high clustering coefficient were reported in the Twitter
network by both Java et al. [23] and Kwak et al. [25]. Many well-known models for
complex networks, including the preferential attachment model by Barabási and
Albert [5], have diameters growing at most logarithmically with time. (In fact,
in [8] Bollobás and Riordan showed that a.a.s. the diameter of the preferential
attachment model is asymptotic to log t/ log log t.)

Consider a graph Gt produced by the SPA model. For a given pair of vertices
vi, vj ∈ Vt (1 ≤ i < j ≤ t), let l(vi, vj) denote the length of the shortest directed



path from vj to vi if such a path exists, and let l(vi, vj) = 0 otherwise. The
directed diameter of a graph Gt is defined as

D(Gt) = max
1≤i<j≤t

l(vi, vj).

The next subsection (Subsection 3.1) is devoted to proving the following result
on the upper bound of D(Gt):

Theorem 4. Consider the SPA model. There exists an absolute constant c1 > 0
such that a.a.s.

D(Gt) ≤ c1 log t.

Analyzing the lower bound appears to be more challenging and more techni-
cal. In order to avoid some additional technicalities, we will focus on 2-dimensional
Euclidean metric and will assume that some extra condition (namely, that A1 <
3A2) holds. Generalizing the result and removing the condition seems to be pos-
sible but, since it is not clear at the moment whether the upper or the lower
bound (or neither) is correct, we do not do it. The proof of the following result
can be found in Subsection 3.2.

Theorem 5. Consider the SPA model for 2-dimensional Euclidean metric, and
assume that A1 < 3A2. There exists an absolute constant c2 > 0 such that a.a.s.

D(Gt) ≥
c2 log t

log log t
.

3.1. Upper bound

An O(log t) upper bound on the directed diameter is obtained as follows.

Theorem 6. Let C = 18 max(A2, 1). With probability 1 − o(t−2) we have that
for any 1 ≤ i < j ≤ t, Gt does not contain a directed (vi, vj)-path of length at
least k∗ = C log t.

As there are at most t2 pairs vi, vj , the Theorem 4 will follow as well.

Proof. In order to simplify the notation, we use v to denote the vertex added
at step v ≤ t. Let vPu be a directed (v, u)-path of length given by vPu =
(v, tk−1, tk−2, . . . , t1, u), let t0 = u, tk = v.

Pr(vPu) =

k∏
i=1

p

(
A1 deg−(ti−1, ti) +A2

ti

)
.

Let N(v, u, k) be the number of directed (v, u)-paths of length k, then

EN(v, u, k) =
∑

u<t1<···<tk−1<v

pkE

(
k∏
i=1

(
A1 deg−(ti−1, ti) +A2

ti

))
.



However

E(deg−(ti, ti+1) | deg−(tj−1, tj) and (tj−1, tj) ∈ Et, j ≤ i) = E(deg−(ti, ti+1)).

We first consider the case where u tends to infinity together with t. From The-
orem 1 it follows that

E(deg−(ti−1, ti)) = (1 + o(1))
A2

A1

(
ti
ti−1

)pA1

− A2

A1
.

Thus

EN(v, u, k) =
∑

u<t1<···<tk−1<v

pk
k∏
i=1

1

ti

(
A1E(deg−(ti−1, ti)) +A2

)
=

∑
u<t1<···<tk−1<v

(1 + o(1))k(A2p)
k

k∏
i=1

1

ti

(
ti
ti−1

)pA1

= (1 + o(1))k(A2p)
k
( v
u

)pA1 1

v

∑
u<t1<···<tk−1<v

k−1∏
i=1

1

ti
.

However

∑
u<t1<···<tk−1<v

k−1∏
i=1

1

ti
≤ 1

(k − 1)!

( ∑
u<s<v

1

s

)k−1
≤ 1

(k − 1)!
(log v/u+ 1/u)

k−1

≤
(
e(log v/u+ 1/u)

k − 1

)k−1
.

Let k∗ = C log t, where C = 18 max(1, A2). Assuming t sufficiently large, and
recalling that pA1 < 1, we have

∑
k>k∗

EN(v, u, k) ≤ 2A2

∑
k>k∗

(
(1 + o(1))A2pe(log v/u+ 1/u)

k − 1

)k−1

≤ 2A2

(
(1 + o(1))A2e(log v/u+ 1/u)

C log t

)k∗
1

1− 3A2/C

= O(6−18 log t)

= o(t−4).

The result follows for u tending to infinity. In the case where u is a constant,
it follows from Theorem 1 that a multiplicative correction of e can be used in
E(deg−(ti−1, ti)), leading to an error term of O(t−18 log 2) = o(t−4), as before.
This finishes the proof of the upper bound.



3.2. Lower bound

In this subsection, we provide an Ω(log t/ log log t) lower bound on the directed
diameter. We use C(u, r) to denote a disk of radius r centered at vertex u,
where C(u, r(t)) and S(u, t) are related through the equations above. Let Ca(u, r)
denote a cap of area a relative to the area πr2 of C(u, r). To form the cap of the
disk C(u0, r) centred at u0 = (0, 0) ∈ R2 we take the points {(x, y) : ρr ≤ x ≤
r, x2 + y2 ≤ r} ⊆ C(u0, r). Here 0 < ρ < 1 is taken to be an absolute constant
sufficiently close to one to make some claimed inequalities below valid. The
absolute area â(ρ) of this cap is given by â(ρ) = r2(π/2− ρ

√
1− ρ2 − sin−1 ρ).

We note that the relative area a = â/πr2 of the cap is not a function of r.

Construction of a good sequence of disks

We use the notation r = r(t) =
√
A2/πt and r′ = r′(t) =

√
(A1 +A2)/πt, to

indicate the radius of disks (at time t) with vertices of in-degree zero and of in-
degree one, respectively. The condition that r′ < 2r (used below), is equivalent
to √

A1 +A2 < 2
√
A2, (3.1)

which is equivalent to A1 < 3A2.
As before, in order to simplify the notation, we use v to denote the vertex

added at step v ≤ t. An important condition in our construction is that if at
step v a vertex v falls in Ca(u, r(v)) then C(u, r′(v))∩Ca(v, r(v)) = ∅. Thus if v
attaches to u, so that deg−(u, v) = 1, there is still a cap of C(v, r(v)) (namely,
Ca(v, r(v))) that u does not reach. This condition holds provided (3.1) is true.
In this way, we can construct a series of events

u1 ∈ Ca(u0, r(u1)), u2 ∈ Ca(u1, r(u2)), · · · , uk ∈ Ca(uk−1, r(uk)). (3.2)

Our construction further requires that no vertex v falls inside C(u0, r(v)) at any
steps u0 < v < u1 or within C(u0, r

′(v)) and u1 < v < t, and the same for each
uj , 1 ≤ j ≤ k. As a consequence, deg−(uj , t) = 1 for 0 ≤ j ≤ k − 1. In this
way the areas of the disks are controlled at all times. Furthermore, under these
circumstances, the path uk, uk−1, . . . , u0 will be a shortest path from uk to u0.

The next part of the construction is as follows. At step s we divide the unit
square into horizontal strips R(1), R(2), . . . , R(M) of height h and width w. Here

M = 1/wh and h = 4r and w = 4(k+1)r and r = r(s) =
√
A2/πs.

Inside a strip R = R(i), there is centered a strip R′ = R′(i) of height 2r and
width (4k+2)r, thus placing a boundary of depth r around R′ inside R. Note that
the area of R is by a factor of (2 +o(1)) larger than the one of R′ (provided that
k →∞). The purpose of this construction is that any disk of radius r centered
in R′ must be contained within R. Therefore, if two paths, u1k, u

1
k−1, . . . , u

1
0 and

u2k, u
2
k−1, . . . , u

2
0, are constructed such that uij ∈ R′(i), i = 1, 2, j = 0, 1, . . . , k,

then the events corresponding to the two strips are independent. Moreover, if
u ∈ R′(i), then at least half of the cap Ca(u, r) falls in R′(i).



Let

k =
β log t

log log t
and s =

t

log t
and ` = 2(k + 1)

for some small constant β > 0 and for convenience, pretend that k, s are integers.

We will argue that a.a.s. at least one strip will contain a sequence satisfying
(3.2). The rectangle of size L = 2r` is used to initialize the process, using some
point u = u0; and the sequence of k squares of side 2r will be enough to contain
the subsequent vertices in the construction (3.2) above.

Probability estimates for good sequences

We suppose that the construction of a good sequence of disks occurs in some R
and that they are centered in R′. Given some set of steps s = u0 < u1 < · · · <
uk < t, let E(u0, u1, . . . , uk) be the event that the construction occurred at these
steps and that uj attaches to uj−1, j = 1, 2, . . . , k. This forms a directed path
from uk to u0 with the property that there are no short cuts, i.e. no uj attaches
to any ui where i < j − 1.

These events are disjoint. Suppose we have another sequence s = u′0 < u′1 <
· · · < u′k < t. Suppose that i is the first index such that u′i 6= ui. Then we have
the contradiction that both u′i and ui are the first vertices in C(ui−1, r(ui)).

Pr(E(u0, u1, . . . , uk))

≥ Pr(u0 ∈ R′)
u1−1∏
τ=u0+1

(
1− A2

τ

)
p(a/2)A2

u1

u2−1∏
τ=u1+1

(
1− A1 + 2A2

τ

)
p(a/2)A2

u2
· · ·

· · ·
uk−1∏

τ=uk−1+1

(
1− (k − 2)A1 + (k − 1)A2

τ

)
p(a/2)A2

uk

t∏
τ=uk+1

(
1− (k − 1)A1 + kA2

τ

)
.

Let

q = A1 +A2.



If x = o(1) then 1− x = e−x−O(x2), and so, assuming s→∞,

Pr(E(u0, u1, . . . , uk))

≥ 1

(2 + o(1))M
(apA2/2)k

1

u1
· · · 1

uk

× exp

{
−

k∑
i=0

(iA1 + (i+ 1)A2)

ui+1∑
τ=ui+1

(
1

τ
+O

(
i

τ2

))}

≥ 1

3M
e−O(tk2/s2)(apA2/2)k

1

u1
· · · 1

uk

(
u0
u1

)A2
(
u1
u2

)A1+2A2

· · ·
(uk
t

)(k−1)A1+kA2

≥ 1

4M
(apA2/2)k

uA2
0 tA1

tkq
u1
q−1u2

q−1 · · ·ukq−1,

where the last line depends on the fact that tk2 = o(s2).
We note that for an arbitrary function f ,∑

s≤u0<u1<···<uk≤t

f(u1)f(u2) · · · f(uk) (3.3)

≥ 1

k!

(
t∑

τ=s

f(τ)

)k
−
(
k

2

)
1

k − 2!

(
t∑

τ=s

f2(τ)

)(
t∑

τ=s

f(τ)

)k−2
.

Indeed, to get the desired bound, we need to subtract any product in which a ui
is repeated. Thus we choose two terms from the product of k sums, in

(
k
2

)
ways.

We choose the squared term in
∑t
τ=s f

2(τ) ways. Then we multiply by a bound

on the number of completions
(∑t

τ=s f(τ)
)k−2

.

Thus,

∑
s=u0<u1<···<uk≤t

k∏
j=1

uj
q−1

≥ (1 + o(1))
1

k!

((
1

q
(tq − uq0)

)k
−O(k4)Ψ(u0, t)

(
1

q
(tq − uq0)

)k−2)
,

where

Ψ(u0, t) =


1

1−2q

(
1

u0
1−2q − 1

t1−2q

)
if 2q < 1

log t− log u0 if 2q = 1
1

2q−1
(
t2q−1 − u02q−1

)
if 2q > 1

.

(Note that s = u0, unlike the other ui, and so the lower bound of the sum is a
function of u0 and t only.) Let

E(s, t) =
⋃

s=u0<u1<···<uk<t

E(u0, u1, · · · , uk).



From the above it follows that

Pr(E(s, t))

≥ 1

5M

(apA2/2)k

qkk!

uA2
0 tA1

tkq

(
(tq − uq0)

k −O(k4)Ψ(u0, t) (tq − uq0)
k−2
)

=
1

5Mk!

(
apA2

2q

)k
tq ×

(u0
t

)A2
((

1−
(u0
t

)q)k
−O(k4t−2q)Ψ(u0, t)

)
= Ω(M−1tq−β−o(1)).

The expected number N(s, t) of strips where our construction succeeds is

E[N(s, t)] ≥ ctq−β−o(1).

for some absolute constant c > 0.
Suppose first that q = A1 + A2 > 1/2. As long as β < q − 1/2, E[N(s, t)] =

Ω(t1/2+ε) for some ε > 0. The concentration of N(s, t) follows from a standard
martingale argument. All positions of the points v, 1 ≤ v ≤ t in the unit square
are equally likely. Changing the location of a given point alters the value of
N(s, t) by at most 2. So,

Pr(N(s, t) = 0) ≤ exp

{
−Ω

(
(t1/2+ε)2

t

)}
= o(1),

and the proof of the lower bound is complete.
Suppose now that q = A1+A2 ≤ 1/2. In this case the argument for a concen-

tration of N(s, t) is slightly more technical but standard as well. Unfortunately,
since the events corresponding to horizontal strips R(1), R(2), . . . , R(M) are not
independent, we cannot use the Chernoff bound to get the result. However, the
main effect on conditioning on a given strip (that yields a path (w1, w2, . . . , wk))
is to make the sum (3.3) slightly smaller, by not allowing that, for every i, ui
to be equal to wj for some j. This reduces the sum by an amount of order at
most ktq(k−1)/k!, which is negligible comparing to the expression without the
deletions. (Other effects are in our favour). In particular, for any two disjoint
vectors (u0, u1, . . . , uk) and (w0, w1, . . . , wk), the events E(u0, u1, . . . , uk) and
E ′(w0, w1, . . . , wk) that correspond to different strips, we have

Pr(E(u0,u1, . . . , uk) ∧ E ′(w0, w1, . . . , wk))

= (1 + o(1)) Pr(E(u0, u1, . . . , uk)) Pr(E ′(w0, w1, . . . , wk)).

It follows that Pr(E(s, t) ∧ E ′(s, t)) = (1 + o(1)) Pr(E(s, t))2, Var[N(s, t)] =
o(E[N(s, t)]2), and the concentration follows by Chebyshev’s inequality.

4. Small separators

Let us note that there are some significant differences between graphs generated
by the preferential attachment model and those found in the real world. One



major difference is found in their expansion properties. Mihail, Papadimitriou,
and Saberi [27] showed that a.a.s. the preferential attachment model has conduc-
tance bounded below by a constant. On the other hand, Blandford, Blelloch and
Kash [6] found that some WWW related graphs have smaller separators than
the preferential attachment model predicts. This observation is consistent with
observations due to Estrada [15], who found that half of the real-world networks
he looked at were good expanders and the other half were not so good. In this
subsection, we show that the SPA model has small separators.

Let us recall that Vt ⊆ S where S is the unit hypercube [0, 1]m. We use the
geometry of the model to obtain a sparse cut.

Theorem 7. Let

S′ =

{
s = (s1, s2, . . . , sm) ∈ S : s1 <

1

2

}
.

Let us partition the vertex set Vt as follows: V ′t = Vt ∩ S′, V ′′t = Vt ∩ (S \ S′) =
Vt \ V ′t . Then, a.a.s. the following properties hold

(i) |V ′t | = (1 + o(1))t/2,
(ii) |V ′′t | = (1 + o(1))t/2, and

(iii) |E(V ′t , V
′′
t )| = O(tmax{1−1/m,pA1} log5 t) = o(t).

Proof. Clearly, we expect t/2 vertices in each set V ′t and V ′′t . The concentration
follows immediately from the Chernoff bound. It remains to show that an upper
bound for the size of the cut holds a.a.s.

It follows from Theorem 3 (by taking ω = log t) that a.a.s. for every i ∈ [t]
the maximum sphere of influence of a vertex vi added at time i is O(i−1 log2 t)
(during the whole process). Since we aim for a result that holds a.a.s., we may
assume that this property holds for all i. Therefore, the maximum radius of
influence of vi is O((log2 t/i)1/m).

We will investigate how many edges are in the cut by counting (indepen-
dently) edges in this cut directed to vertices of similar age. For a given integer
k such that 0 ≤ k < log t, let

V (k) = {vi ∈ Vt : ek ≤ i < min{ek+1, t}},
E(k) = {(vi, vj) ∈ Et : vi ∈ V (k) and i < j ≤ t}
C(k) = E(k) ∩ E(V ′t , V

′′
t ).

It is clear that {E(k) : 0 ≤ k < log t} is a partition of the edge set and so
{C(k) : 0 ≤ k < log t} is a partition of the cut E(V ′t , V

′′
t ). It remains to estimate

the size of C(k) for a given value of k.
Fix 0 ≤ k < log t, and let vi ∈ V (k). Note that the maximum radius of

influence of vi is O((e−k log2 t)1/m). Therefore, if there is an edge in the cut
directed to vi = (s1, s2, . . . , sm), then vi must fall into a strip within dis-
tance O((e−k log2 t)1/m) from the cutting hyperplane; that is, |s1 − 1/2| =
O((e−k log2 t)1/m). Since |V (k)| = O(ek), we get that

O((e−k log2 t)1/m) · |V (k)| = O(ek(1−1/m)(log t)2/m)



vertices of V (k) are expected to appear in this strip during the whole process.
Hence, it follows from the Chernoff bound that with probability at least 1 −
exp(−Θ(log2 t)) there are O(ek(1−1/m) log2 t) vertices in this strip at the end
of the process. (Note that the exponent of log t has changed from 2/m to 2 in
order to guarantee the value at least log2 t which is required for a bound to
hold with the desired probability.) By Theorem 3 (again, by taking ω = log t),
a.a.s. all vertices introduced in this time period have (final) in-degree at most
(t/ek)pA1 log2 t, we get that

|C(k)| = O(ek(1−1/m) log2 t) · (t/ek)pA1 log2 t = O(tpA1ek(1−1/m−pA1) log4 t)

edges in the cut a.a.s.
Finally, we get that a.a.s.

|E(V ′t , V
′′
t )| =

dlog te−1∑
k=0

|C(k)| =
dlog te−1∑
k=0

O(tpA1ek(1−1/m−pA1) log4 t)

≤
{

log t ·O(tpA1t1−1/m−pA1 log4 t) = O(t1−1/m log5 t), if pA1 < 1− 1/m;

log t ·O(tpA1 log4 t) = O(tpA1 log5 t), otherwise,

which finishes the proof.

As we already mentioned, it is believed that a large fraction of real-world
networks possess bad spectral expansion properties realized by relatively large
gaps between the first and second eigenvalues of their adjacency matrices. The
fact that the SPA model has sparse cuts easily implies bad spectral expansion
properties.

The normalized Laplacian of a graph relates to important graph proper-
ties; see [12]. Let A denote the adjacency matrix and D denote the diago-
nal degree matrix of a graph G. Then the normalized Laplacian of G is L =
I −D−1/2AD−1/2. Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2 denote the eigenvalues of
L. The spectral gap of the normalized Laplacian is

λ = max{|λ1 − 1|, |λn−1 − 1|}.

A spectral gap bounded away from zero is an indication of bad expansion prop-
erties. The next theorem represents a drastic departure from the good expansion
found in binomial random graphs, where λ = o(1) [12, 13].

Theorem 8. Consider the SPA model. Let λ = λ(t) be the spectral gap of the
normalized Laplacian of Gt. Then a.a.s.

λ(t) = 1 + o(1).

In order to prove this result, we use the expander mixing lemma for the
normalized Laplacian (see [12] for its proof). For two sets of vertices X and Y
we use the notation vol(X) for the volume of the subgraph induced by X, X̄ for



the complement of X, and e(X,Y ) for the number of edges with one end in each
of X and Y. (Note that X ∩ Y does not have to be empty; in general, e(X,Y ) is
defined to be the number of edges between X \ Y to Y plus twice the number
of edges that contain only vertices of X ∩ Y .)

Lemma 1. Let λ be the spectral gap of the normalized Laplacian of G. For all
sets X ⊆ G, ∣∣∣∣e(X,X)− (vol(X))2

vol(G)

∣∣∣∣ ≤ λvol(X)vol(X̄)

vol(G)
.

Now, we are ready to come back to the proof of Theorem 8.

Proof (Proof of Theorem 8). Using the notation introduced before Theorem 7
and the theorem itself we get that a.a.s.

vol(V ′t ) = (1 + o(1))vol(V̄ ′t ) = Θ(t)

vol(G) = (2 + o(1))vol(V ′t )

e(V ′t , V
′
t ) = vol(V ′t )− e(V ′t , V ′′t ) = (1 + o(1))vol(V ′t ).

It follows from Lemma 1 (applied to X = V ′t ) that a.a.s. λ(t) ≥ 1 + o(1). By
definition, λ(t) ≤ 1 so λ(t) = 1 + o(1).

5. Emergence of giant component

Let us note that all edges in Gt are from younger vertices to older ones; that
is, denoting by vi the vertex added at time i we get that if (vj , vi) ∈ Et, then
j > i. This implies that Gt has t strongly connected components, each of which
consists of one vertex.

On the other hand, it seems that investigating the size of the largest weak
connected component is a non-trivial task. Let Ĝt = (Vt, Êt) be the underlying
graph of Gt; that is, Ĝ is an undirected graph on the vertex set Vt and {vj , vi} ∈
Êt if and only if (vj , vi) ∈ Et. We wish to know the size of the largest component

in Ĝt.
One can show that the expected number of edges added at time t of the

process is deg+(vt, t) = pA2

1−pA1
. Therefore, if p > p1 := (A1 + A2)−1, then the

expected out degree in Gt is larger than 1, and so is the expected degree in
Ĝt. By looking at the ‘branching factor’ of the breadth-first search process it is
natural to conjecture that a.a.s. there exists a giant component if p > p1. On the
other hand, if p < p1, then the expected out-degree in Gt is smaller than one, but
this fact does not in itself guarantee absence of the giant component in Ĝt. Is p1
the threshold we search for? If p < p2 := (A1 + 2A2)−1, then deg+(vt, t) < 1/2
and so the average degree in Ĝt is smaller than one. Perhaps p2 is the threshold
for the giant component?

We performed a number of simulations to make a better prediction (see
Figure 2). For a given set of parameters A1, A2, we performed a number of



simulations (p = i/100, 0 ≤ i < 1/A1). Unfortunately, it seems that t = 100, 000
is still too small to observe a clear trend. However, based on these numerical
results, one can conjecture that p3 := (2A1 + 2A2)−1 is the threshold for the
giant component. It remains as an open problem but it seems that the answer
lies between p3 and p1.
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Fig. 2. A simulation of the SPA model on the unit 2-dimensional torus with t =
100, 000. (The x-axis is p, y-axis is the fraction of vertices in the largest component of
Ĝt.)
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