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1 Introduction

There has been some recent success in designing polynomial time approximation schemes for
certain graph problems (like the Max Cut problem) on dense graphs — see for example Arora,
Karger and Karpinski [5], Fernandez de la Vega [11], Arora, Frieze and Kaplan [4]. This is
in contrast to the fact that the existence of such schemes for general graphs would imply that
NP equals P by the powerful results of Arora, Lund, Motwani, Sudan and Szegedy [6]. This
mirrors the situation in approximate counting where dense problems have sometimes been easier
to attack — Annan [3], Broder [7], Jerrum and Sinclair [16], Dyer, Frieze and Jerrum [10] and
Alon, Frieze and Welsh [2].

This raises the question of why dense problems should be particularly “easy”, at least in theory.
A plausible answer is that dense graphs are like random graphs. This answer on one level
seems superficial but it does have a significant level of truth to it. The reason being Szemerédi’s
remarkable Regularity Lemma, [20] — “one of the most powerful tools of (extremal) graph theory”,
Komlds and Simonovits [17]. This theorem shows in a very strong sense that large dense graphs
have many properties of random graphs. The lemma promises a partition of every graph into a
bounded number of pieces such that the edges between pieces are nicely dispersed — we make this
precise in Section 2. Szemerédi’s original proof was non-costructive but recently Alon, Duke,
Lefmann, R6dl and Yuster [1] have proved a constructive version.

There are two main contributions of the paper. The first is to develop a new algorithmic proof
of the Regularity Lemma. Our algorithm is a Monte Carlo algorithm which runs in constant
(depending on the error parameter €) time to produce (implicitly) a partition proving the Lemma.
With the partition, we argue that we can solve the Max-Cut, Graph Bisection, Min multi-way
cuts and Graph Seperator problems approximately in dense graphs. The running time is again
constant to implicitly produce a solution and O(a(1l/e)n + B(1/¢€)) to explicitly produce one;

here a(1/€) = O((1/€%)) and 8 = 20(1/€") " Arora, Karger and Karpinski [5] gave the first
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PTAS’s for these problems whose running time is O(n°(/ 62)). Fernandez de la Vega [11] gave
an O(2'/ €2+o(l)n2) time algorithm for the unweighted Max Cut and Maximum Acyclic Subgraph
problems. Algorithms with similar running times to ours for the above problems have also been
obtained by Goldwasser, Goldreich and Ron [14]. Sampling plays an important role in all of
these papers. In particular the approach in [14] caused us to incorporate sampling and thereby
significantly improve on earlier versions of this paper.

Perhaps a central point of our paper is that the Regularity Lemma provides a uniform explanation
of why these Max-SNP hard problems turn out to be easy in dense graphs. In addition to the
above problems, we also give a simple PTAS for dense versions of a special case of the Quadratic
Assignment Problem (QAP) [8, 19] and the Maximum Acyclic Subgraph problem. The
first PTAS for the QAP was given in [4] where the running time is O(n®(/<)). In the algorithm
here this becomes O(a(1/e)n + B(1/e€)).

We also prove a constructive version of the Regularity Lemma for s-uniform hypergraphs for
fixed s. [An s—uniform hypergraph has a finite vertex set and each edge consists of s vertices.]
This yields PTAS’s for dense versions of all Max-SNP problems where density is as defined in
[5]. (The class Max-SNP was introduced by Papadimitriou and Yanakakis [18]. We will briefly
explain the class in section 6. )

Our second contribution is that the version of the Regularity Lemma we prove constructively
has considerably better constants (but has a weaker conclusion that is still sufficient for our
purposes) than the original one of SZemeredi’s. This may be of use in other contexts where the
Regularity Lemma is used. (The 3 of the last paragraph we would get from Szemerédi’s original
version is extremely large - only log*(8) is a polynomial).

For concreteness, we focus first on the /— way cut problem : We are given a graph G = (V, E)
and weights w(e) € R for each e € E. Let S = 51,53, ...,5; be a partition of V. Let E(S) be
the set of edges e = (u,v) such that u,v are in different subsets of partition S. Then let

e€E(S)

The ¢-way cut problem is to
Maximise w(S) over all partitions S of V' into £ subsets.
It is assumed that the value of £ is fixed and |w(e)| < 1 for all e € E on problem instances.

Theorem 1 There is a randomised algorithm A;(e) which given an n-verter graph G, with
probability at least 3/4, computes a partition S, such that

w(Se) > w(S*) — en’. (1)
Here 8* is the mazimum weight partition.

The algorithm requires 20(e™)t time to construct an implicit description of the partition and at

most a(e)n + B(e) time to construct the partition itself. a(e) = O(e~2) and log 8 = O(e~2).

We explain the notion of implicit description later in the paper.

1The O notations hides factors of order polylog(1/e)



Remark 1 If we restrict our attention to cases where we know w(S*) = Q(n?) then (4;(¢)) is
a PTAS.

For example if G is y-dense i.e. |E| > yn? and w(e) = 1 for e € E then

w(8*) > (1 -1/0|E| > y(1 - 1/6)n.

We focus next on the Koopmans-Beckmann version of the QAP. Here one is given a set of n
items V which have to be assigned to a set of n locations X, one per location. We are given two
n X n symmetric non-negative matrices T', D. Here Tj  is the amount of traffic between item 4
and i’ and D, , is the distance between location z and z'. Then if item 4 is assigned to location
m(i) for i € [n] the total cost ¢(m) is defined by

eo(m) =Y Tis Duiiymiir)-

i=1 i'=1
The problem is to minimise ¢(7) over all bijections 7 : V — X.

A typical example is where a location is a room in a building (e.g. hospital) and each item is a
facility of some sort (e.g. operating theatre, intensive care unit etc.) and the total cost is the
expected sum over pairs of facilities of the product of traffic intensity and distance.

We will restrict our attention to the case where the n locations are the points of a finite metric
space X with metric D. We assume that

1. diam(X)=1i.e. max, , Dy, = 1.

2. For all € > 0 there exists a partition X = Xy U Xp U ---U Xy, £ = £(e), such that
diam(X;) <e,for 1 <j <UL
We call this an e-refinement of X.
We can therefore define an £ x ¢ matrix D such that if z € X; and ' € X then |Dy 0 —
Dj,]'" S 2e.
Furthermore this partition is computable in time polynomial in n and 1/e — for the cases
we have in mind, this will be insignificant compared with that required by the rest of the
algorithm.

We call this the metric QAP.

The Minimum Linear Arrangement problem [13] where X = {0,1/n,2/n,...,1} is a special
case. We will also assume that T; ; < 1 for all 4,7' and this can be achieved by scaling. Let 7*
denote the permutation which minimises c.

Theorem 2 There is a randomised algorithm algorithm As(e) for the metric QAP which, with
probability at least 3/4, produces a permutation 7. such that c(n.) < c(n*) + en? and which runs
in time at most ax(1/e)n + B5(1/€). The exact expression for B3 will be exposed in the proof of
the Theorem.

The paper is organised as follows: Section 2 summarises the Regularity Lemma. Section 3 states
the new version and explains how it can be used to prove Theorem 1. Section 4 describes our
QAP algorithm. Section 5 describes the proof of our version of the Regularity lemma. Section 6
describes the construcitve Regularity Lemma for hypergraphs and its use for Max-SNP problems.



2 Szemerédi’s Regularity Lemma

Let G = (V,E) be a graph with n vertices. For disjoint sets A, B C V let e(4, B) denote the
number of edges between A and B. The density d(A, B) is defined by

__e(A,B)
A B) = AT

A disjoint pair A, B C V is said to be € — regular if for every X C A with |X| > ¢|A| andY C B
with |Y| > €| B|, we have
|[d(X,Y) —d(A,B)| <e.

Theorem 3 (Regularity Lemma) For every ¢ > 0 and integer m > 0 there are integers
P(e,m),Q(e,m) with the following property: for every graph G = (V,E) with n > P(e,m)
vertices there is a partition of V into k classes V1,..., Vi such that

e m<k<Q(e,m).

o |Vi| € {v —1,v} for 1 <i <k where v =[n/k].

o All but ek? of the pairs (V;,V;) are e-regular.

The partition alluded to in the theorem will be referred to as an € — RL partition.

As mentioned previously, Szemerédi’s proof is non-constructive but Alon et al show how to
construct an € — RL partition (with different values of P, @) in time O(ay (€)M (n)).

Q(e,m) is huge - only log*(Q) is a polynomial in 1/e and m (of degree about 20).

3 The Algorithm

Proof (of Theorem 1) We will see that we do not need the full strength of the Regularity
Lemma in order to prove Theorem 1.

Let Vi,..., Vi be a partition of V. Let d; ; = d(V;,V;). For X CV and I C K = {1,2,...,k}

we let X7 = UieI X; where X; = X NV;. Let S,T be disjoint subsets of V. Let

A(S,T) =€(S,T) = > Y dijISil|Ty].
i€EK jeEK

The term d; ;|S;||T;| would be (approximately) e(S;, T;) if the pair V;, Vj is e-regular. So A(S,T)
measures the deviation from regularity, but the important difference is that we only look at the
total of such deviations over all 4, j.

A partition is e-sufficient if
|A(S,T)| < en? for all disjoint subsets S,T of V.

Notice that we do not insist on the subsets being of (almost) the same size. This can easily be
enforced, at a small extra cost, see Lemma 5 below.



Our version of the Regularity Lemma to be described in Section 5 will produce an e-sufficient
partition with log k = O(e~2). But, in this section, we will see how to use it to get an algorithm.
But first, the following simple lemma (which we do not use) shows that the partition produced
by the original Regularity Lemma is in fact an e sufficient partition.

Lemma 1 An e-RL partition, with k > €1, is 4e-sufficient.

Proof Let Ly = {(i,j) e K x K : |S;| <evor|Tj|<ev}and L={(i,j) e KxK: i#}j
and (V;,V;) is an e-regular pair}. Then

A(S,T)=A1+Ax+ Az + Dy

where
Ai= ) (e(Si, Ty) — dij|Sil| Ty
(inj)ELi
Here Ly = L\ Ly, Ly = (K x K)\ (L1 UL2) and Ly = {(4,7) : i € K}. Now one can easily show
that |A;| < ev?k? for i = 1,2,3,4 and the lemma follows. m]

We now consider the unweighted case of Theorem 1 where w(e) = 1 for e € E. Assume that
now we have an e-sufficient partition Vi, Va,... Vj.

Consider any f-way cut S = S1,Ss,...,S5;. Let S;», =V; NSy, T;r = V; \ Sir. Then

£

w(S) = > eS8,V \S,)

r=1

£
= S5 di 18Tl + 6,

r=1icK jeK

where || < fen?.

There is one more simplification we can make. Let v; = |V;|, 1 < j <k, p = |en/k], 7; = |v;/p],
Ny = |Sir| and 7i; , = |n;/p] for i,r > 1. We observe that

i (v —njp) — PP (75 — 0j0)| < p(vi + v5),

and so
‘ ‘

SN dignie(vi—nye) =2 YD dinin (7 — njp)| < 2etn’.

r=1ieK jeEK r=1ieK jeK
Thus,

¢k k
211](8) — p2 Z Z Z di,jﬁ,‘ﬂn(ﬂj — ﬁj,r) < 3len?. (2)
r=1 i=1 j=1

Thus to find a cut which maximises w(S) to within 3fen?/2 we need only find one which max-
imises



Lt k k

D0 dignin (75 — ). (3)

r=1i=1 j=1

This is a simple matter as 7, , takes one of at most 2/€ values. It is then easy to show that we
now need to solve an f-way cut problem on k/e vertices. For this we use the algorithm of [5].
Once we have maximised (3) we can take n; , = pfi;» and then choose any n; -subset of V; to be
our S;r, for 1 <4 < k. This proves Theorem 1 for this special case, after replacing e by €/(3¢).

Now let us consider the general weighted case. We first replace w(e) by w(e) = e|w(e)/e]. Since
lw(e) — w(e)| < e we see that |w(S) — w(S)| < en? for any partition S. Now each edge has a
weight pe where p € P = {0,£1,£2,...,£W = |1/¢|}. Let E, = {e € E : w(e) = pe} for p € P
andlet G, = (V, Ep). We prove a “multicoloured” version of the Regularity Lemma which gives a
single partition Vq, Vs, ..., Vi, logk = O(|Ple~2) = O(e~3) which is simultaneously an e-sufficient
partition for all G;,. The algorithm of [1] can be modified to construct the partition as can that
of Section 5. We apply the latter algorithm to compute a partition which is simultaneously
e?-sufficient for all graphs G,. Applying the argument for the unweighted case we see that find
a cut which maximises w(S) to within (2W + 1)3len?/2 < 6efn? we need only find one which
maximises

wooe
D0 220D dualir (7 = ij)pe.

p=—W r=1ieK jeK
where d; ; , is the density of V;,V; in Gp.
This proves Theorem 1 for the general case, after replacing e by €/(12¢). m|

Remark 2 Note that we do not need to know the d; ; exactly in order to get a good approxi-
mation. All we need are values d; ; such that |d; ; — d; ;| = O(e) where the hidden constant is
suitably small, uniformly in 4,j. To compute the d; ; exactly would require order n? time and
we have only allowed ourselves order n in the theorem.

Similar ideas work for graph-bisection and separator problems.

4 Metric QAP

We use the notation introduced in section 1 for this problem. We replace T" by T where TM/ =
€1|T;,i7 /e1], €1 = €/2. This replaces ¢ by é where

le(m) = &(m)| < en®/2 (4)

for all bijections 7. We can therefore attempt to minimise ¢.

Now each T s = pe; for some p € P = {0,+1,42,...,+M = |1/e1|}. Let E, = {(i,#') : Tis =
per} for p € P and let G, = (V,E,). The G, are graphs since we have assumed that T is
symmetric.

We compute an ex-refinement of X, ea = €2/36. (The idea for doing this comes from [4]).



We compute a partition V4, Va,..., Vi, logk = O(es 2) of V which is simultaneously e3-sufficient,
€3 = €2/(36£(e2)?) for every G,.

Now let 7 be a fixed bijection from V to X and
Si’j = {7} eV;: 7T(U) S Xj}.

Next let p = lean/k], es = €2/(1200), v = [n/k] and s;; = ||S:;|/p]. We claim that if d; i ,
denotes the density of V;,Vy in G, and if

A=p* Y sigsidippDjgpe
i,iI’jij,’p
then
é(m) = A + err(mw), (5)
where |err(r)| < en?/2.
This and (4) implies that we can minimise ¢ up to error < en? by choosing values of s; ; which
minimise A and then arbitrarily choosing a 7 consistent with these values. The number of

distinct values for s; ; is at most 2/e4 and the number of distinct ¢, j is k,£. Thus the number
of possibilities for the s; ; is significantly smaller than (2/es)*¢ and Theorem 2 follows with

B3 = (2/ea)™.
Proof of (5) Let
Av= Y [8llSi,5|diipDijjrver-

44,5,3",p

Then as

psij — |Si;ll < ean/k
we have

Ay = A +errq(7) (6)

where

lerry ()| < 10—648n2.

€1

Next let

Ay = E ep(si,j; Si’,j’)Dj,j’p€1>
4,4 ,J,3",p

where e, (A, B) is the number of G, edges joining sets A and B.
For a fixed j # j' we have (by es-sufficiency)

D (U8il1Sir g7 |diir p — €0(Sig S 1)) | < €3n®.

i

This then implies that

Ay = Ay + erra(7) (7
where 2
lerra ()| < (363 + @) n2.
€1 €1



We finally approximate

é(m) = Ag + errs(m) (8)
where 5
lerrs(m)| < 2202,
€1

Equation (5) follows from (6), (7) and (8).

Maximum Acyclic Subgraph Problem: Here we are given a (weighted) digraph and the
problem is to find the maximum (weight) subset of the edges which induces an acyclic digraph.
This similar to the QAP but we need to use an e-sufficient partition for digraphs. This requires
simple changes to the undirected case — see also Section 6. We assume also that each |V;| < en,
see Remark 5. We re-formulate the problem as one of finding a bijection f : V' — [n] which
maximises [{e = (z,y) € E: f(z) < f(y)}. This is relaxed to finding ¢ : V — [[1/€]] such that
(i) |¢7(i)| ~ en for j € [[1/€]] and (ii) |{e = (z,y) € E : ¢(z) < ¢(y)} is maximised. With
an e-sufficient partion we can find ¢ by (approximately) optimising over the the choice of the
number n; ; of V; which are mapped into j by ¢. Details are left to the final paper.

5 A new version of the Regularity Lemma
The main Theorem we prove in this section is the following :

Theorem 4 For any graph G(V, E) with |V| = n sufficiently large, and € > 0, we can construct
in time O(e~2)n an e-sufficient partition of V; the partition has at most k parts, where logk =

O(e72).

This will follow from the two lemmas below. Earlier versions of the paper used an approach based
on that given in [1]. It now seems that one obtains more efficient algorithms and (conceptually)
simpler proofs by using sampling.

For a partition P we use, following [20], a number called the indez of P. It has a slightly different
form to that of [20], reflecting the fact that we do not keep the subsets of the partition (nearly)
equal in size.

1
ind(P)=— > dIVallVil.

1<r<s<k
Note that ind(P) < 1/2.

We start with an arbitrary partition e.g the trivial partition consisting of a single set V. We then
refine it until it is e-sufficient. To keep the running time within O(n) we only keep a representation
of the current partition. This will be a tree structure where each node = represents a subset
Ve, CV. If 21,29,..., are the children of z then V,,,V,,,..., is a partition of V,. An exact
description is left until after we have proved Lemmas 2 and 3 below.

Lemma 2 Fiz 0 < § < 1. If P is not e-sufficient then in time O(20/<)5-1log 1) we can
with probability at least 1 — § construct a disjoint pair A, B CV such that



Remark 3 Since P is not e-sufficient, there exists a pair 4, B such that |A(A, B)| > en?. In
the above, we find a pair A, B, but with a slightly weaker conclusion.

Lemma 3 Given a partition P, a pair of sets disjoint A, B with |A(A,B)| > yn? we can
construct a new partition P’ with

o k' < 3k.
e ind(P’) > ind(P) + 472.

It follows that at most 200e~2 constructions from LeQmma 2 suffice to determine an e-sufficient
partition. Also, at the end of the process k = 20(1/¢)). The argument can be extended to the
multi-coloured case so that general weights can be handled as they were for Theorem 1.

Before proving Lemma 2 we consider the following computational problem which arises in its
proof. We are given a complete graph (W;, Ws, E) where each e € E has a weight w(e) € [-1,1].
For S C Wy, T C Wy we define w(S,T) = > cgurw(e). Let ny = |[Wyi|,ny = [Wy| and
n =mny +n2. For A C W; we define P(A) = {z € Wy : w(A,z) > 0} and similarly define
P(B) C W, for B C W,. Let

p:3—zlngandm:36%+l—glné. 9)

7?0 S G

Lemma 4 Suppose there exist S C Wy, T C W with w(S,T) > yn?. Fiz 0 < § < 1. There is a
randomised algorithm SAMPLE which with probability at least 1 — § produces sets Zy C Wi, Zs C
Wy with |Z1|,|Z2| < p such that A = P(Zs), B = P(Z1) satisfy w(A, B) > yn%/4. The running
time of the algorithm is O(m?2P) assuming that we can pick a random vertex in unit time and
we can check the adjacency of two vertices in unit time.

Proof We describe an algorithm which has similarities to one described in [14].

SAMPLE

o Independently choose random subsets Uy, Ry C Wy, Ua, Re C Wy with |U;| = |Uz| = p and

|R1| = |Rz| =m
e For all U] CU; and U}, C U; do
begin
if w(P(UL) N R1, P(U!) N Ry) > ym? (n"—n - 2) then

output A = P(U)) and B = P(U]) and terminate.
end

For each u € Wy we can write

w(u, U NT) = Z ay
veU2

av:{o vgT

w(u,v) veT

where for v € Wy

Thus

E(w(u,UsNT) = nﬁw(u,T).
2



Applying Theorems 2 and 4 (sampling with replacement) of Hoeffding [15] we see that
r (o020 T) = Lo, 1)| 2 ) <2070 = o916,
2

Let
BAD = {u eVr: ‘UJ(U,UQ NnT)— nﬂw(u,T)‘ > 'yp/4} .
2

So, we have E(|BAD|) < dyn1/16 and so
Pry, (|BAD| > eny /4) < §/4.
Thus we have that with probability at leat 1 — §/4,

lw(P(T),T) — w((P(U> N T), T)| |BAD|ns + (ny — |BAD|)yns /4

<
< Aning/2.
Thus if ' = P(Us NT) we see that with probability at leat 1 — §/4,

w(S",T) w(P(T),T) — ynina/2

>
> w(S,T) —ynina/2.

A similar argument applied to Uy and S’ shows that if 7' = P(U; N'S") then with probability at
leat 1 —§/2,

w(S',T") w(S',T) — ynina /2

>
> w(S,T) —ynins.

Summarising the above computation we see that with probability at leat 1 — /2,
w(P(U1 N S"),P(UsNT)) > yn® — ynins. (10)

We see then that the sets Uy N.S', U, NT will likely suffice as U7, Uj. It would be too expensive
for us to actually find them by computing w(P(Us), P(U})) for each U] C U; and Uj C Us.
Instead we use niny/m? times w(R; N P(U}), Ry N P(U])) as an estimate. We prove that for
any X CW; and Y C W, we have

nin2
m2

Pr (‘w(X,Y) - w(X NR,Y N Rg)‘ > 'ynlnz) < e 274 (11)

Before proving this, let us see that it suffices to complete the proof of the lemma. We first
condition on the values of Uy, Us. Then

ning
m2

Pr (EIU{ CULULCU,: ‘w(P(Ué),P(Ul’)) MM (P N Ry, P(UD N RQ)‘ > mm)

< 2%Pe 5 < §/2.
(12)

It follows from (10) and (12) that with probability at least 1 — §

2
w(P(UsNT)N Ry, P(U; NS") N Ry) > ym? (n"n - 2) .
1762

10



Hence with probability at least 1 — J SAMPLE will output two sets Uj, Us. Furthermore, another
application of (11) shows that with A = P(U}), B = P(U7)

w(A, B) > yn® — 3yniny > yn® /4

proving the lemma.

Proof of (12)

If

b — 0 ug X

7 ww,Y) weX
then

w(XNR,Y) =) by

u€ER,
In particular
E(w(X NRy,Y)) = nﬂw(x, Y).
1

Now b, € [—|Y],|Y|] and so applying Theorems 2 and 4 of [15] we see that
Pr (‘w(X NR.,Y) - Zw(X, Y)‘ > 7m|Y|/3) < e §)2. (13)
ny
Applying the symmetric argument, we get

Pr (‘w(X NR,YNRy) — nﬂw(X ﬂRl,Y)‘ > ym|X ﬁR1|/3> <e ?§/2. (14)
2

Inequality (12) and the lemma follows by combining (13) and (14). O

Proof of Lemma 2 Suppose there exist S,7 C V such that |A(S,T)| > en?. First we consider
a random partition of K into two sets I, J. Let

X =X(I1,J)=> > (e(Si, Ty) — di j|S:|T;)).

iel jeJ

Then

(@) 1X] <n’

(i) B(X]) > [BOO)| = |4GD] > .

It follows that

2
en €
Pr{|X|>—)> .
d (' 1> ) “ 41—«

Suppose we repeat the whole refinement procedure r times at each attempt. Let say we have an
X-failure if during some attempt at refinement we never achieve |X| > en?/4. The probability
of an X-failure in the whole construction is O(¢"?(1 — €/4)"). This can be made as small as

necessary by taking r = O(e 'loge™1).

Assume then that we have a pair I, J with X (I,J) > en?/4 (the case of X(I,J) < —en?/4 is
similar). At this point it would be natural to apply Lemma 4 with w = A and v = ¢/4. This

11



would require exact knowledge of the d; ;. This turns out to be expensive and unnecessary. For
each i, j we randomly choose ¢ = 1200e=2log(k?/d) pairs of vertices in V; x V; (see Remark 4
below). Let X; ; be the number of times that a pair of adjacent vertices is chosen. Then Xj ;
has binomial distribution B(q,d; ;) and so if d; ; = X ;/q

Pr(|d; ;j — di j| > €/20) < 2e79/1200 < 95 /2. (15)

For e = (z,y) € V; x V; we let

~

_ [ 1—-d;; eisanedgeof G
w(e) = { —cii,j otherwise

It follows that with probability at least 1 — §
|lw(e) — Ale)| < €/20 for alle € V; x V.

It follows that w(S,T) > en?/5. Applying Lemma 4 we obtain that with probability at least
1-46
en?
en?  en?  en?

> =
- 20 40 40
Replacing 0 by 6/2 completes the proof of Lemma 2. |

Remark 4 We need not actually pick g vertices for each V; x V. Instead we pick O(k?q) vertices

from V' and then let czi,j = X, ;/q:q; where g; is the number of vertices chosen from V;. Details
are left to the final paper.

Proof of Lemma 3 Without loss of generality, assume that A(A,B) > yn?. (The case
A(A, B) < —yn? is handles exactly symmetrically.)

We obtain our new partition P’ by replacing each V; by the sets V; N A,V; N B,V; \ (AU B),
empty sets not included. Thus the number of sets k' < 3k as required.

Consider a fixed pair 1 <i < j<k. For X CV; xV;, X #0 let e(X) = | X N E(Q)|, d(X) =
e(X)/|X| and define

p(X) = = d(X)*|X]|.
Thus
d; ;|Vil [Vj] = o(Vi x V).
If X is partitioned into non-empty sets X; U X» then

2

_ 1 | Xo| | X1]
#(X1) +o(X2) —o(X) = x| (e(Xl) x| e(Xo) m)
- Bl - oy
- Bl%ac) - axy (16)
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It follows that if Ci’j = A; X Bj and C_’i’j = (V, X VJ) \ Ci,j then

ind(P') —ind(P) > — Z Cij) + ¢(Cij) — ¢(Vi x V)

(Interpret the summand as zero if C; ; = 0 or V; x Vj.)

& > [Vl 17;1 ~ Tl B
| g )
- A(A,-,B-)
2 2 Bl A 4 P
A,B
> 2 . 1
= nQZ ViV an

Now 7, i A(A;, Bj) > yn” and the minimum of (17) subject to this inequality is obtained by
putting A(AZ,B ) = AlV;||V;| where A = yn?/ > Vil [Vj|. Substituting in (17) yields the
lemma. |

5.1 Representing partitions

We can now explain our tree structure 7 which represents partitions. Objects at level [ of
T are indexed by superscript I. Thus at level I we keep U{(”, U;(l), IO g 0 and Jgg for
1<i<j<k®. ¢ =+ indicating whether or not A(S,T) was positive in Lemma 2. We need
to explain here, how, given [ and knowledge that v € Vz-(l) we can determine which of S, T®
or SO NTW v now lies. Assume that o) = + and let w be defined in terms of cgg as is done

in Lemma 3. Then if i € I®) we compute w(v ,,Uz(l)) and place v in S® if this is non-negative.
We deal with i € J% by computing w(v,,Ul(l)) etc. The depth of the tree is O(¢~2) and it
take O(p) time — p defined in (9) — to go down one level. It therefore takes O(2°(/<™") time to
produce a new level of the tree. Thus on termination we have a data structure which answers
the question: which subset contains vertex v? Each query takes O(e~*) time. This is what we

mean by an implicit description. An explicit description can then be obtained in O(e~*n) time.
O

These times can be reduced to O(e ?n and O(e 2n) if we only estimate the w(wv,, UJ'-(I)) — by

sampling, of course — in the final construction. We leave the details to the final paper.

Remark 5 In some cases we need the subsets of the partition to be small e.g. |V;| < v. This is
achieved by starting with an arbitrary partion of V into sets of size v or v — 1.

5.2 Multicoloured Version

The extension of Lemma 3 to the multicolored case is straightforward. We use the suffix i to
extend our notation from G to G;. The usual form of the Cauchy Schwartz inequality implies
that if P’ is a refinement of P then ind(P’) > ind(P). So if we have a partition P and a pair of
sets A, B and a graph G; for which |A;(4, B)| > yn?, v = €/40 then we can find a refinement
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P’ of P such that >, ind;(P') > >, ind;(P) + yn?® and so at most (W + 1)/4? iterations are
needed to get an e-sufficient partition w.r.t. all the G;.

5.3 Equitable Partitions

Let a partition of V' be equitable if ||V;| —|Vj|| < 1 for all 4, j. The decomposition in Szemerédi’s
theorem is equitable. We show that equitability can be achieved at a small extra cost.

Lemma 5 An equitable partition P, with logk = O(e~2) can be obtain after O(e~?2) iterations.

Proof After finding an e-sufficient partition P as described above we take each V; and
partition it into V;;, 1 < j < s; where |V; ;| = len/k] for 1 < j < s; and |Vi,| < en/k to
obtained a partition P’. Note that ||J;cx Vi,s;| < en. Now (16) shows that ind(P’') > ind(P).
P’ may not be e-sufficient and so we repeat the whole process and make it so. After at most
2002 iterations we will have an e-sufficient partition in which all but at most en vertices lie in
a collection of sets which are of equal size. These latter vertices are then equitably spread over
the equal sized sets. The new partition is 2e-sufficent. O

6 Hypergraphs and other Max-SNP problems

A version of the Regularity Lemma has been proved for hypergraphs by Frankl and Rodl [12]
and Chung [9]. This is however, non- constructive. We prove a constructive version and use this
in a natural way to obtain PTAS’s for all dense max-SNP problems. Again, [5] already gives
PTAS’s for these problems. Our algorithms follow in the same way from the Regularity Lemma
for hypergraphs as the algorithms for graph partitioning problems followed from the Regularity
Lemma for graphs. Unfortunately, we seem to need to consider directed hypergraphs.

Let H = (V, E) be a s-uniform directed hypergraphi.e. E C V*. Let Vi, Va,..., V} be a partition
of V and for I = (i1,42,...,1s) € K® let

dr = 6(‘/;'1,%2,...,‘/1'3)/1_[ |‘/;'t|7
t=1

where for disjoint sets Ay, Aa,..., Ak, €(A1,42,...,45) = {e = (a1,02,...,a5) € E : a; €
A, 1<i<s} Let

A(A1, As, .. Ay) = e(Ar, Ay, Ag) = D dr [ Vi 0 Al
I t=1

We say that V1, Vs, ..., V} is e-sufficient if

|A(A1, Az, ..., Ag)| < en® for all disjoint sets Ay, As,..., A; C V.

Lemma 6 There is a polynomial time algorithm for computing an e-sufficient partition of a
s-uniform hypergraph, assuming € and s are fized.

Proof (sketch)
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If P is not e-sufficient then by considering a random ordered partition of K into s subsets
L, I,...,I; we can assume that there are Ay, As, ..., As, A CV;, with |A(41, Aa,..., A5)| >

€n —_ S
= =n’.

We then randomly choose Uy 1 C Vi,,Us1 C Vi ..., Us 1 CV;, of size O~('y_2) and try all subsets
of them to find Uj 1,U3 ; ..., Uy ; such that

nS

APUS 1, Us 1) UL y)y Asy ooy Ay) > A(A Ag, . A) — 723

where P is defined analogously to its definition in Lemma 2. Putting A" = P(Us 1,U3 ) ...,Ug )

we then randomly choose Ui p C V;,,Us2 C Vi, ..., Us2 C Vi, and try all subsets of them to
find U] 5,U3 5 ...,Uy, 5 such that

A(AL, P(U ,Us5) -, Uso), As, oy As) 2 A4} A, Ag) = T

Continuing we end up with U; ;,

1 < i # j < s which define our partition.
The index is defined analogously to the (undirected) case s = 2 and the equivalent of Lemma 3

can be shown. Details will be provided in the full paper. m|

Let MAX-s-FUNCTION-SAT be the problem where the input consists of m Boolean functions
f1, f2,--- fm in n variables, but where each f; depends on only s variables (s fixed). The aim
is to assign truth values to the n variables, so as to satisfy as many of the f; as possible. It is
well-known [18] that a Max-SNP problem can be viewed as a MAX-g-FUNCTION-SAT problem
for a fixed s.

We may formulate the MAX-s-FUNCTION-SAT problem above in terms of “cuts” in a multi-
coloured s-uniform hypergraph H(V, E) as follows : H will have n vertices, one for each variable
and m edges - one edge e; corresponding to each function f;. e; will be the ordered k—tuple
consisting of the arguments of f; in (natural) order. There are at most I = 22" possible Boolean
functions of s variables; we number them 1,2,...[. Edge e; will be coloured with colour p if f; is
the pth of these functions on its arguments. [So, the edges will be coloured with one of [ colours.]

Suppose now we have a truth assignment T': V — {0,1}.

We may express each function in Disjunctive Normal Form. So based only on the colour p we
can determine a subset @, of {0,1}® such that the corresponding function f;(u;1,u;2,...ui,s)
is TRUE iff

(T(uin), T(uip), - - T(uis)) € Qp.
For an edge e = (uj,us,...us), we let T'(e) denote the s-tuple (T'(u1),T(uz),...T(us)). Then

we have
[{i: fi =1 under T}| = Z Z |{e : colour(e) = p; T'(e) = a}|.

P a€Qp

We will use the above expression, i.e., we will approximately maximize the right hand side of
the above expression using Lemma 6.

We note that
|{e : colour(e) = p; T'(e) = a}| = Z [{e: e € V! colour(e) = p; T(e) = a}
T

Q

D dip [[ Vi nT7 ().
1 t=1
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Now we note that the last expression depends only upon the number of variables n; set to
true among those corresponding to vertices each V;. Now we also note that the n; need only be
known approximately to evaluate the expression approximately. So, for each n; we need to try
only 1/e values and then choose the optimal values. The details are left to the final paper.

7 Open Problems

It will be interesting to see if our version of the Regularity Lemma can derive some of the
consequences of the original version; if so, the constants will be substantially better.

It would be especially interesting (and we do not know if this is possible) if we could apply it to
the situation that Szemerédi originally used it for - namely to give an asymptotic upper bound
on the cardinality of any subset of {1,2,...n} which is free of arithmetic progressions of 3 terms
(and more generally any fixed number of terms.)

Acknowledgement: We thank David Karger for a helpful conversation.
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