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Abstract

We consider a simple game, the k-regular graph game, in which play-

ers take turns adding edges to an initially empty graph subject to the

constraint that the degrees of vertices cannot exceed k. We show a sharp

topological threshold for this game: for the case k = 3 a player can ensure

the resulting graph is planar, while for the case k = 4, a player can force

the appearance of arbitrarily large clique minors.

1 Introduction

In some sense, restricting one’s attention to 3-regular graphs is not a topolog-
ical constraint at all, in the sense that connected 3-regular graphs can require
arbitrarily complex surfaces to be embedded in, or, say, contain arbitrarily large
clique minors. In particular, from a topological point of view, vertices of degree
3 are essentially different from vertices of degree 2. One might then expect the
presence of degrees greater than 3 to lead to a similar increase in topological
trouble. For example, out of the list of 103 forbidden topological minors for em-
beddability in the projective plane, only 6 are required to ensure embeddability
of cubic graphs in the projective plane [1, 3].

We show another kind of topological threshold between degree-3 and degree-4
graph vertices. Consider a game (the k-regular graph game) in which two players
take turns adding edges to an initially empty graph. Players are allowed to add
edges only between pairs of vertices which were previously nonadjacent and of
degree ≤ k − 1. The game ends when this is no longer possible. In particular,
the degree of every vertex in the resulting graph will be exactly k, with at most
k exceptions.

Theorem 1.1. Regardless of who has the first move, a player in the 3-regular
graph game has a strategy to ensure that the resulting graph is planar.

On the other hand, for the analogous 4-regular graph game, we have:

Theorem 1.2. For any ℓ and sufficiently large n, and regardless of who has
the first move, a player in the 4-regular graph game on n vertices has a strategy
to ensure that the resulting graph has a Kℓ minor.
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Figure 1: Components of Types 1, 2, 3a and 3b, respectively

Thus there is no surface S for which a player of the 4-regular graph game can
ensure that the connected components of the result has a drawing on S.

Note that the moves of the two players in this game are equivalent, unlike
Maker-Breaker games (see [2]). In particular, with a symmetric “normal” win
condition—say, the first player in the 6-regular game to break planarity loses—
this would be an impartial game, subject to the Sprague-Grundy theorem [4,5].

2 Proofs

We begin by proving Theorem 1.1. Call the player with the goal of making
the graph planar the planar player ; his opponent is the nonplanar player. At
any stage of the game, the deficit def(v) of a vertex v refers to the difference
between the current degree and the maximum allowable degree. Thus, in the
3-regular graph game, every vertex begins with deficit 3. The deficit of a set of
vertices is the sum of their deficits.

We inductively claim that the planar player can maintain that at any stage,
at the end of his move, each connected component C of G can be drawn in the
plane such that its positive deficit vertices all lie on its unbounded face, and
also that each C is one of the following Types :

1. C has deficit ≤ 3;

2. C has a bridge e, such that the vertex-sets of the connected components
C1, C2 of C \ e (the sides of C) each have deficit exactly 2; or

3. (a) C has bridges e1, e2, such that the component C0 of C\e1 which does
not contain e2 has deficit 2, the component C2 of C \ e2 which does
not contain e1 has deficit 2, and the component C1 of C \ {e1, e2}
which is not C0 or C2 has deficit 1.

(b) C has bridges e1, e2, e3, where e1 and e3 are in distinct components
of C\e2, such that the component C0 of C\e1 which does not contain
e2, e3 has deficit 2, the component C3 of C\e3 which does not contain
e1, e2 has deficit 2, and the components C1, C2 of C\{e1, e2, e3} which
are not C0 or C3 have deficit 1.

Moreover, the planar player will ensure that there is at most one Type 3 com-
ponent after each of his turns (which is why we consider Types 3a and 3b to be
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variants of a single type). At any stage, if all components are of one of these
types and there is at most one component of Type 3, we say the graph satisfies
condition T .

Figure 1 shows schematics of these component types. Note that if a com-
ponent Ci has deficit 2, it has either two vertices of deficit 1, or a single vertex
of deficit 2; similarly, when a component has deficit 3, it may be distributed
among vertices in 3 different ways. Our argument will not be sensitive to these
distinct cases. In particular, the drawings in Figure 1 and Figure 2 use circles to
denote components after the deletion of the relevant bridges, and dots to denote
units of deficit within these components, but we do not assume that distinct
dots drawn on individual circles correspond to distinct vertices, and it is thus
not valid to assume, for example, that two components with deficit ≥ 2 can be
joined by two distinct edges. By the same token, we may not assume that it is
legal to draw an edge between the two sides of a Type 2 component (it may be
a single edge, for example).

Our inductive argument hinges on the fact that when a planar graph has a
bridge, any drawing of it can be “flipped” along the bridge to adjust the order
of vertices appearing on its outer face.

Observation 2.1. If G is drawn in the plane such that vertices appear in the
cyclic order v1, . . . , vk, vk+1, . . . , vℓ, vk+1, vk, v1 along the outer face (so vkvk+1

is a bridge of G), then G can also be drawn in the plane such that the vertex
order is v1, . . . , vk, vk+1, vℓ, vℓ−1, . . . , vk+1, vk, v1 along the outer face. (Note that
the vi’s are not necessarily all distinct.)

Since all components are of Type 1 at the beginning of the game, and of
Type 1 or Type 2 after the first turn of the game, we assume by induction that
condition T holds and show that the planar player can respond to any move by
the nonplanar player to preserve condition T . This will prove Theorem 1.1.

We show that the planar player can maintain his invariant via the following
remaining cases:

1. If the nonplanar player has added an edge to a component C of Type 1
or Type 2, the result is already of Type 1; if he has joined two Type 1
components, the result is already of Type 2 or Type 1. The planar player
thus has a free move, which will be addressed in case 7.

2. If the nonplanar player has joined a Type 2 component C to a Type 1
component C ′, the planar player makes the result a Type 1 component.

3. If the nonplanar player has joined two Type 2 components C,C ′, the
planar player can make the result a Type 2 component.

4. If the nonplanar player has joined the Type 3 component C to a Type 2
component C ′, the planar player can make the result the Type 3 compo-
nent.
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(f) The nonplanar player has joined the Type 3 compo-
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(g) The planar player has added an edge to
produce the Type 3 component.
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(h) The planar player has added an edge to
the Type 3 component.
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(i) The planar player has added
an edge to the Type 3 compo-
nent.

Figure 2: In each case, the nonplanar player has joined two components with
the dark edge, and the planar player replies with the dashed edge.
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5. If the nonplanar player has joined the Type 3 component C to a Type 1
component C ′, the planar player can make the result a Type 3 or Type 2
component.

6. If the nonplanar player has added an edge within the Type 3 component
C, the planar player can make the result a Type 1 component.

7. In any other case (a “free move” for the planar player) he either turns a
Type 3 component into a Type 2 or Type 1 component, or creates a Type
3 component.

Case proofs:

1. If he adds an edge to a Type 1 or Type 2 component, the deficit of the
component after the nonplanar player’s move is ≤ 4 − 2 = 2 (e.g., as in
Figure 2(b)). If he joins two Type 1 components, the result is a Type 2
or Type 1 component, as in Figure 2(a).

2. We have that C decomposes as C1, C2 joined by a bridge, each of whose
vertex sets have deficit equal to 2, and that C can be drawn in the plane
with all positive deficit vertices on the unbounded face. Assume that the
nonplanar player’s move is an edge from C2 to C ′. Then the planar player
chooses an edge between C1 and C ′, as in Figure 2(c) (unless C ′ now has
deficit 0, in which case the planar player has a free move). The result is a
Type 1 component.

3. Let the sides of C and C ′, respectively be C1, C2 and C ′
1, C

′
2. Suppose

without loss of generality that the nonplanar player’s move is to take an
edge from C2 to C ′

1. The planar player responds with a move from C2 to
C ′

2, as shown in Figure 2(d).

4. Letting Ci (i = 0, 1, 2 or i = 0, 1, 2, 3) be as in the definition of a Type 3
component, we may assume without loss of generality that the nonplanar
player’s edge is from either C0 or C1 to C ′. In the first case, the planar
player responds with an edge from C1 to C ′, as in Figure 2(e). In the sec-
ond case, the planar player takes an edge from C0 to C ′ (the reverse of the
case shown Figure 2(e)). Either way, the result is still a single component
of Type 3 (of the same subtype 3a or 3b as before the nonplanar player’s
move). Note that the fact that the resulting component satisfies the con-
dition that all positive-deficit vertices can be drawn on the unbounded
face is a consequence of Observation 2.1, which, applied to the Type 3
component C, implies that C can be drawn such that the two vertices in
C incident with the two new edges are consecutive along the outer face of
C, among positive deficit vertices.

5. This situation is analogous to the previous one. Again, the first case is
shown, in Figure 2(f). The result is either a component of Type 3a or
Type 2; Observation 2.1 is used in the same way.
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6. If C was of Type 3a, then it is already a component of Type 1 after
the nonplanar player’s move, so the planar player has a free move. If C
was of Type 3b, then it is always possible for the planar player to add a
second edge to the component, since, a Type 3b component admits edges
between both the pairs C0, C2 and C1, C3 of its components under removal
of the its bridges e1, e2, e3, and Observation 2.1 implies that these edges
can be added while preserving the property that the result can be drawn
in the plane with all positive-definite vertices on the outer face. Adding
the second edge brings the deficit to 2, making the result again a Type 1
component.

7. If there remain any two Type 1 components of positive deficit, the pla-
nar player can join them to produce a Type 2 (or Type 1) component.
Otherwise, if there is already a component C of Type 3, he can add an
edge to C to produce a component of Type 1 or Type 2, as in Figures
2(h) and 2(i). (In the first case Observation 2.1 ensures that the result
can be drawn as indicated.) Or if there is currently no Type 3 compo-
nent, the planar player can join a Type 1 or Type 2 component C to a
Type 2 component C ′ to produce a single component of Type 1, 2, or 3
(depending on the type of C); the case where C has Type 2 is shown in
Figure 2(g). Finally, if no move described so far is possible because there
is at most one component remaining in the graph, and this component is
of Type 1 or Type 2, then he can make arbitrary legal moves until the end
of the game without endangering planarity. This completes the proof of
Theorem 1.1.

We turn now to the proof of Theorem 1.2. We call the player with the goal
of forcing a Kℓ minor the minor player, and the player with the goal of avoiding
this the structure player. Our proof has the following two ingredients:

Lemma 2.2. In the course of playing the 4-regular graph game, a player can
force the appearance of components of arbitrarily large deficit.

Lemma 2.3. Suppose G is a connected labeled graph, with nonnegative vertex
labels bounded some fixed number b. For any s, if the sum of the labels of G
is sufficiently large relative to b and ∆(G), we can find k disjoint connected
subgraphs of G each with label sums ≥ s.

By Lemma 2.2, the minor player can build arbitrarily large deficit compo-
nents in the course of play. Applying Lemma 2.3, we see that he can find ℓ
disjoint connected subgraphs each of total deficit ≥

(

ℓ

2

)

. Over the next at most
(

ℓ

2

)

moves, the minor player joins previously unconnected pairs of these ℓ sub-
graphs (the deficit of each subgraph will remain positive while he is not yet
finished), creating a Kℓ minor.

All that remains is to prove Lemmas 2.2 and 2.3.
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Proof of Lemma 2.2. First note that this Lemma would be very easy if we were
instead considering the 5-regular graph game, as then the minor player could
simply grow an arbitrarily large deficit component by joining it to isolated ver-
tices on each of his turns; while following such a strategy, the deficit of the
component increases by at least 5−2−2 = 1 after each time both of the players
have made a move. For the 4-regular graph game, this Lemma will require a bit
of care; note, for example, that the Lemma does not hold for the 3-regular graph
game, even though the invariant the planar player maintains to win that game
allows the presence of arbitrarily many deficit-4 components. (In particular,
having isolated vertices of deficit 4 is a stronger condition than having general
components of deficit 4.)

We divide the minor player’s strategy into two rounds. In the first round,
he chooses m edges of a matching for some large m. Note that if we ignored the
role of the structure player, the result would be a large number of components,
each of size 2, of deficit 6. We let C1, C2, . . . , Cm denote these pairs of vertices
(as sets) which the minor player has joined.

We claim that once the minor player has completed this round, the sum

δ =
∑

def(C)≥5

def(C)

(taken over all connected components of the graph which at this round have
deficit ≥ 5) is large (tends to ∞ with m). To see this, let us allow even that
the structure player is given the m edges of the minor player’s matching ahead
of time. In absence of the structure player’s moves, δ would be 6m. We classify
the structure player’s moves in this round into two types:

1. Edges in components which, at the end of this round have deficit ≤ 4, and

2. Edges in components which, at the end of this round have deficit ≥ 5.

Let mi denote the number of moves he makes of Type i (so m = m1 +m2). We
have that

δ ≥ 6m− 6m1/β − 2m2,

where the constant β is the minimum number of edges per component required
to decrease the deficit of components below 5. We need only show that β > 1.
To bound β, consider any component C of the graph after this first round of
play. If it contains mC edges of the minor player’s matching and m′

C
edges of

the structure player, then its deficit satisfies

def(C) ≥ 6mC − 2m′
C .

In particular, def(C) ≤ 4 implies that

m′
C ≥ 3mC − 2.

Moreover, in the case where mC = 1, we see that m′
C

≥ 5 since the structure
player cannot duplicate the minor player’s edge (his best case is to complete a
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K4). In particular, since m′
C
≥ 4 in all cases, β ≥ 4, completing the proof that

δ becomes arbitrarily large.

We now show that he can force the appearance of a single component of
large deficit. He simply chooses one component of deficit ≥ 5 arbitrarily, and,
on each turn, grows this component by joining it to a new component of deficit
≥ 5 arbitrarily. Taking into account also the structure player’s move, the deficit
of this component is increasing by at least 5 − 2 − 2 > 1 on each turn; in
particular, it will become arbitrarily large.

Proof of Lemma 2.3. Let G be a connected graph with maximum degree ∆ with
vertices with labels ℓ(v) from 0, 1, . . . , b, and let ℓ(X) denote the label sum of
a subset X ⊂ G. Consider a spanning tree T of G. We begin by showing that
when ℓ(G) is sufficiently large, we can find an edge e of T such that the ratio
ρe = ℓ(C2)/ℓ(C1) for the components C1, C2 of T \ e satisfies

1

∆
< ρe < ∆. (1)

To see this, fix an edge e ∈ T , and let us consider the case where ρe <
1
∆ . If x is

the endpoint of e in the larger label-sum component C1 of T \ e, and e′ = {x, y}
is the edge for which y is in the highest label-sum component of C1 \x, then we
have that

ρe′ ≤
ℓ(C2) + b+ ∆−2

∆−1ℓ(C1)
1

∆−1 (ℓ(C1)− b)

Letting ℓ(G) be sufficiently large that, say, b < ( 1
∆−1 − 1

∆ )ℓ(C1) (so that also

b < ℓ(C1)
∆ ) we see that

ρe′ ≤
∆

∆− 1

ℓ(C2) +
∆−1
∆ ℓ(C1)

1
(∆−1)ℓ(C1)

= (∆− 1) + ∆ρe.

In particular, if ρe <
1
∆ , then ρe < ρe′ < ∆; thus, we can walk along the tree to

find an edge e satisfying (1).
We now simply apply our ability to find such edges recursively, t times for

some t, to divide T into 2t trees, each with label sums ≥ ℓ(G)
(∆+1)t .

3 Discussion

Although we have focused on topological questions regarding the game we have
introduced, many other questions seem natural as well. For example, what if
we consider subgraphs instead of minors? For example:

Question 1. Which graphs H have the property that a player in the 3-regular
graph game on sufficiently many vertices can ensure that the resulting graph
contains a copy of H?
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For example, K4 does not have this property; indeed no cubic graph has this
property. This can be seen by showing that either player in the 3-regular graph
game has a strategy to ensure that the graph is connected. (The player can
maintain the invariant that while disconnected, the graph consists of isolated
vertices, plus a single other component with at least one vertex of deficit 2.)

Turning back to topological issues, one can probe the relationship between
degree-4 and degree-3 vertices a bit more. Let us define the cubic+k graph
game, in which degrees of vertices must remain at most 3, except for k special
vertices whose degrees may rise to 4. Let now g3(k) be the minimum genus g
such that for any number of vertices n, Player 1 can ensure that any connected
component of the result of the cubic+k game can be drawn in some surface of
genus g. Then Theorem 1.1 implies that g3(0) = 0, while the proof of Theorem
1.2, which works when some vertices have a degree threshold of 3 so long as
sufficiently many have a degree threshold of 4, implies that g3(k) → ∞. Thus
the asymptotic behavior of g3(k) can be studied. Rather than the particular
rate of growth of g3(k), however, it may be more interesting to compare with
the function g4(n), which we define as the minimum genus such that Player
1 can ensure that the any connected component of the result of the 4-regular
graph game on n vertices can be drawn on some surface of genus g:

Question 2. Is g3(n) ∼ g4(n)?

A first step would be finding a single value of n for which g3(n) 6= g4(n).
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