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Abstract

Let G, denote a graph chosen uniformly at random from the set of r-regular
graphs with vertex set {1,2,... ,n} where 3 < r < ¢on for some small constant
co- We prove that with probability tending to 1 as n — oo, G, has the following
properties: G, is r-connected, G, is Hamiltonian and the independence number
of GG, is approximately 2"11"&; also for r < n!'™" r — oo (where n > 0 can be
arbitrarily small) the chromatic number of G, is approximately 21(’;?.

1 Introduction

The properties of random r-regular graphs have received much attention. For a com-
prehensive discussion of this topic, see the recent survey by Wormald [25] or Chapter
9 of the book, Random Graphs, by Janson, Luczak and Rucinski [14].

A major obstacle in the development of the subject has been a lack of suitable tech-
niques for modelling simple random graphs over the entire range, 0 < r < n — 1, of
possible values of r. The classical method for generating uniformly distributed simple
r-regular graphs, is by rejection sampling using the configuration model of Bollobas
[3]. The configuration model is a probabilistic interpretation of a counting formula
of Bender and Canfield [2]. The method is most easily applied when r is constant or
grows slowly with n, the number of vertices, as n tends to infinity. The formative paper
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[3] on this topic considered the case where » = O((logn)'/?). McKay [19] and McKay
and Wormald [20, 21] subsequently gave alternative approaches which are useful for
r = o(n'/?) or r = Q(n).

We use edge switching techniques extensively in this paper to prove results directly in
the space of simple r-regular graphs. These techniques have been successfully applied
in [19], [20, 21], [9], [16] and [15]. We also make use of a partitioning technique which
allows us to build up simple r-regular graphs as the union of smaller less dense graphs.

Let GG, denote a graph chosen uniformly at random from the set G, of simple r-regular
graphs with vertex set V = {1,2,... ,n} and edge set E. We consider properties
of simple r-regular graphs for the case where r — 0o as n — oo, but 7 = o(n). The
properties we study are vertex r-connectivity, Hamiltonicity, independence number and
chromatic number. These properties are also studied, in a recent paper by Krivelevich,
Sudakov, Vu and Wormald [15], for the case where r(n) > /nlogn. Our paper
complements [15] both in both in the range of r studied and in the techniques applied.

Theorem 1 Assume 3 < r < con for some small positive absolute constant cy. Then
with probability tending to 1 as n — oo,

(a) G, is r-connected.

(b) G, is Hamiltonian.

The results of Theorem 1 are well known for r constant. Result (a) is from Bollobés
[4] and (b) is from Robinson and Wormald [23, 24], Bollobds [5], Fenner and Frieze [8].
For 7 = o(n'/?) such results could have been proved with the help of the models of [19]
and [20]. In fact this was done, for Hamiltonicity, up to 7 = o(n'/®), in an unpublished
work by Frieze [9], and for r-connectivity, up to r < n'%%? by Luczak [17].

As [15] proves the case where r > n'/2logn, this implies G, is r-connected and Hamil-
tonian whp! for all 3 <r <mn — 4.

Theorem 2 Let €, be positive constants, then for any n*/* < r < n'"" whp the
independence number a of G, satisfies

2
a(G,) — 7n(logr —loglogr+1—1log2)| < % (1)

Our proof of Theorem 2 is easily adapted to prove:

1 A sequence of events &, is said to occur with high probability (whp) if lim,, ., Pr(&,) = 1.



Theorem 3 Ifn'/4 < r < n' " then whp the chromatic number x of G, satisfies

r loglogr
= 1+0 | ——— .
2logr < * < logr ) )

Frieze and Luczak [12] showed that for any fixed €, > 0 there exists 7. such that if
re <7 < n'/377 then whp (1) is true, and that if » < n'/37 and r is sufficiently large
then whp

x(Gr)

r 167 loglogr

(logr)?

The paper [15] also gives asymptotically tight estimates for a(G,) and x(G,) when
nS/Tt1 < r < 0.9n, n > 0 constant. By proving the theorems above, we have closed
the gap in the middle range of r.

\xm @)
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2 (Generating graphs with a fixed degree sequence.

Let d = (dy,ds,. .. ,d,), and let 2D = (dy +da + - - - + d,,). Let Gq be the set of simple
graphs G with vertex set V' = [n], degree sequence d, and D edges.

Let Q be the set of all (2D)!/(D!2P) partitions of W = [2D] into D 2-element sets.
An element of €2 is a configuration. The constituent 2-element sets of a configuration
F are referred to as the edges of F'.

Let Wy, Ws, ..., W, be the natural ordered partition Pg of W = [2D] into sets of size
|W;| = d;, and where (maxW;) + 1 = min W, for i < n.

Let Q4 be €2 with the understanding that the underlying set W is partitioned into Py.
The degree sequence of an element F' of Q4 is d. Define ¢p, : W — [n] by ¢(w) = i
if w € W;. Let y(F) denote the multigraph with vertex set [n] and edge multiset

Er ={(¢(z),6(v)) : (z,y) € F}.

Definition: Let Qf denote those configurations F' for which «(F) is simple
relative to Py.

We often write Qp or 2 for {0q when the context is clear.

If d; =r, (1 <i<mn)we will say the configuration, F', is r-regular. The probability
|2*|/|€?| that the underlying r-regular multigraph y(F') of such a configuration F' is
simple is exp(—©O(r2)). For 7 = o(n'/?) this follows from [20, 21] and for larger values
of r from Lemma 2 below. This result allows us to prove many results directly via
configurations and then condition the probability estimates for simple graphs.



Lemma 1 Let A = maX;cj, d;. Suppose that A < n/1000 and that d satisfies
min;c, d; > A/4. Given a,b € [n], if G is sampled u.a.r. from Ga, then

20A

Pr({a,b} € B(G)) < om

—
Proof Let
Ql = {G € gd : {a, b} € E(G)} and Qz = gd \ Ql.

We consider the set X of pairs (G, G3) € Q; x Q such that G, is obtained from G; by
deleting disjoint edges {a,b}, {z1,y1}, {2, ¥2} and replacing them by {a,z:},{v1,y2},
{b,z2}. Given G;, we can choose {z1,¥y1},{z2,y2} to be any ordered pair of disjoint
edges which are not incident with a, b or their neighbours and such that {y;,y»} is not
an edge of G;. Thus each G; € Q; is in at least (D — (2A%+1))(D — (4A? + 2)) pairs.
Each G5 € Q, is in at most 2DA? pairs. The factor of 2 follows because a suitable edge
{y1,y2} of G5 has an orientation relative to the switching back to G;. As D > nA/8
it follows that

[l _ 2DA? _ 204
Q] = (D —(2A%2+1))(D — (4A2+2)) = n

O

Lemma 2 Suppose 100 < r < n/1000. Let d; = r, 1 < j < n. If F is chosen
uniformly at random (u.a.r) from Q then for n sufficiently large,

Pr(F e ) > e %",
Proof Consider the following algorithm from Frieze and Luczak [12]:

Algorithm GENERATE

begin
D :=1rn/2
FO = (b
Let o = (z1,%2,... ,Z2p 1, %2p) be an ordering of W
Fori=1to D do
begin
F;'_l U {{Jlgi_l, $21}} (Wlth probablhty 2i1—1) A
F; =

F’i,1 U {{$21‘,1, Zl}, {ZEQi, 212}} — {Zl, 22} (Wlth probability gz:%) B
Here {21, 22} is chosen u.a.r from F; ; and z; is chosen u.a.r from {z1, 22 }.
end
Output F := Fp
end



We first prove that GENERATE produces a u.a.r member of {2 whatever the ordering
o = (z1,%s,... ,x2p) of W. We then describe an ordering o from which we can prove
the lemma.

Let W) = (z1,2,... ,2y) and let ; be the set of configurations of W(®. We show
inductively that F; is a random member of €);. This clearly true for ¢ = 1 and so
assume that for some i > 2 we have that F;_; is chosen u.a.r from ;_;.

Now consider a bipartite graph H with vertex bipartition (£2;_1,2;) and an edge (F, F")
whenever F' = F U {zg;_1,29} or F' = (F \ {a,b}) U {{a,z2;_1},{b, x2}} for some
{a,b} € F. Each F € Q; ; has degree 2i — 1 in H and each F' € (); has degree 1. Our
algorithm chooses F' uniformly from 2;_; (induction) and then uniformly chooses an
H-edge leaving F'. This implies uniformity in €2;.

Label the configuration points in set W} of the partition, as {(k — )r +j : 1 <
j < r}. For the ordering o of W, we specify that x; is always chosen as one of the
remaining points for which @(z;) occurs as little as possible in the given sequence
(p(z1),... ,0(x; 1)). To be specific, wheni= (j —1)n+k, (1<k<n, 1<j<r),
define z; to be the point in W, with label (k — 1)r + j.

Let Qf = {F € Q; : «(F) is simple}. Let A; = [2i/n] denote the maximum possible

degree in y(F;). Let the edge {¢(x2;_1), d(z2;)} = {a,b} and let {¢(21), d(22)} = {c,d}.
We will prove that

. . 1 21<n
Pr(F,e ) | Fi1eQ ) > < 60A; 2A§+2Ai) n <2 <rn. (3)

T @i-1)n i—1

If i <n/2 then F; induces a matching. If i > n/2 and if at the ith step of GENERATE,
{a, b} already exists in Case A or is equal to {c, d} in Case B then F; will not be simple.
The probability the edge {a, b} exists, in the corresponding simple random graph, is at
most %A", by Lemma 1. Thus the probability the edge exists (Case A) or exists and
is selected (Case B) is at most

204 1 +2i—2 1\ 604
2i—1 2i—1i—1) (2i—1)n’

n

Assume now that the ith step is type B and {a, b} # {c, d}.

When {a,b} N {c,d} # 0, a loop may be created. This happens with probability at
most 24;/(i — 1).

When one of a,b is adjacent to c or d, a parallel edge may be created. This happens
with probability at most 2A2/(i — 1).

All cases have been covered and the result follows from iterating (3) for i < rn/2. O



Remark 1 Sometimes we need to run algorithm GENERATE starting with an arbitrary
configuration Fj on [2D'] and letting i range from 1 to D with W = [2D'+1,2D'+2D)].
We consider two separate scenarios:

(a) Fy is arbitrary and our random choice of {z1, 22} is restricted to F'\ Fy. The output
is then Fj plus a random configuration on W.

(b) Fp is chosen u.a.r from Qp/ and there is no restriction on {21, 22} and so the output
of the algorithm is u.a.r in Qp/, p.

At this point we describe an simpler algorithm CONSTRUCT for obtaining a u.a.r con-
figuration.

Algorithm CONSTRUCT
begin
Fo :=0; Ry := W :=[2D]
Fori=1to D do
begin
Choose u; € R; 1 arbitrarily
Choose v; uniformly at random from R; ; \ {u;}
F; .= Fi 1 U{{u;,vi}}; R := Ri_1 \ {us,vi}
end
Output F := Fp.
end

Remark 2 Neither of the algorithms generating Fp use any information about the
partition Py associated with the configuration. After iteration ¢, F; is a u.a.r element
of ;. We can, if we wish, complete a certain number I of iterations using CONSTRUCT
and then switch to GENERATE. Instead of initializing the ordering o used in algorithm
GENERATE with W we initialize o with R;, the remaining unmatched points.

3 r-Connectivity

We now prove Theorem 1(a). Since the result is already known for r constant, we can
assume that 10% < r < ¢gn, where ¢y is sufficiently small.

For a simple graph G with edge set F, the disjoint neighbour set, N(S), of a set of
vertices S is defined as N(S) = {w ¢ S : Jv € Ss.t. {v,w} € E}. When S is a
singleton {v} we use the notation N(v).

Lemma 3 Let Q; C G, be the event that for all vertices v,w € V of G,:
(a) If r = o(n) then |[N(v) N N(w)| <10+ o(r).
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(b) Iflog’n < r <mn then |[N(v) N N(w)| < r?/n + 5/ logn.
Then Pr(Q;) = O(1/n?).

Proof Throughout this proof, we fix a vertex v and the set S = N(v), of vertices
which are the (disjoint) neighbours of v.

Let 7(S) = {G : G = G, — v, N(v) = S} be the set of graphs G with vertex set
V — v formed by deleting v from those r-regular graphs, G,, for which N(v) = S. Thus
|S| = r, and the vertices in S have degree r — 1 in G.

Let w be a fixed vertex of V' — v. The vertex w partitions F into sets F(k) = {G :
IN(w)N S| =k} where 0 <k<rifwgSand0<k<r—1lifwes.

For sets R,T C V —v let N(R,T) = N(R,T; S,w) be the set of graphs in F with
Nw)NS =R and N(w)— S =T. If |R| < |S — w|, choose z € (S —w) \ R and
a € T. We consider a bipartite graph B with left vertex set N (R,T) and right vertex
set N(R+z,T — a).

If G € N(R,T) and (w,a), (z,b) are edges of G we make a switching G : (wa, zb) —
(wz, ab) in which edges (w, a), (z,b) are replaced by (w, z), (a,b) provided the resulting
graph G’ is simple. These switchings define the edges of B, and dr(G) (resp. dr(G"))
is the number of edges incident with G (resp. G') in B.

Let v(a,z; G) = |N(a) N N(z)| be the number of common neighbours of @ and z in G.
Let 6(a,z;G) =1if a € N(z).

Considering the possibilities for b when the switching G : (wa, zb) — (wz, ab) gives a
simple G’ we have

d(G) = |N(2)| — v(a,z;G) — b(a, z; G)

for G' is simple iff b # a and b ¢ N(a). Here |[N(z)| =r — 1 as € S. The switching
leaves §(a, z; G') = 6(a, z; G) and v(a,z;G") = v(a,z; G) as ({a} UN(a)) N N(z) is the
same set in both graphs.

Considering the switching G’ : (wz, ab) — (wa, zb) giving G we have
dr(G') = |N(a)| - v(a,2; G") — 6(a, 2; G").
We note that |[N(a)|=rasa ¢ S.

The graph B consists of components within which é, v (and hence dy, dg) are invariant.
Consider a component with bipartition size (N, Ng). We now prove that N, > Ng.
In any component with edges we have dg = dr, + 1 so that Ng = Npd;/(dr +1). The
case (N1, Ng) = (0,1) of isolated vertices in the right bipartition, cannot occur. For,
in G,

v(a,z;G") +6(a,z;G") < [N(z) —w|=7r—2
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and so

dr(G') = [N(a)| —v =6 > 2.
Thus

W(R,T)| > IN(R+ z,T — a)|.

Given S and w, the size of N(R,T; S,w) is invariant for all R, T, |R| = k by a simple
symmetry argument.

Let |IN(R,T; S,w)| = n(k). Let f(k) = |F(k)| be the number of graphs in F with
IN(w)NS|=k. Ifw ¢ S then for all k > 0, f(k) = (}) (".%,")n(k). Similarly, if w € S

r—k
then for all k >0, f(k) = ("22) ("1 0)n(k).

Suppose G is chosen u.a.r. from F(S) and let Z(G) = |R|. Then Pr(Z = k) =
f(k)/|F|. Writing N =n —2,p =1 — lyeg,

ez =0 = () (o -0)

Let X be a hypergeometric random variable with Pr(X = k) = (Z) (]Z ,f) (JZ ) Then
Pr(Z = k)/Pr(X = k) decreases with k. It follows that Pr( > k) < Pr(X > k) for
any k.

The hypergeometric random variable X has mean y = p?/N. The proportional error
in bounding Pr(X = j) above by Pr(Y = j), where Y is the binomial random variable
B(p,p/N), is at most exp(p?/(N — p)) (see [7] p57). Thus provided r = o(/n), using
the following bound (4) on Binomial tails (see [1]),

e Bp
Pr(v 2 o) < (§) @
we see that
e Bu
Pr(X > fp) <2 (—) :
B
If r <log’n let k = ap + 10, a = 1/loglogn, then
€p2 ap+10 .
Pr(X > 10) <2 = ).
xep 10 <2 (ife ) et

For log’n < r < nlet k = p?/(n — 2) + 4y/plogn. We can apply Azuma’s inequality
to the 0,1 sequence of observations of the sampling process of X, with ¢; = 1 to infer
that

Pr(X > p?/(n —2) +44/rlogn) = o(n

Note that if » > log?n and r = o(n) then the bound in (b) 1mp11es that in (a). 0
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Lemma 4 Let Q, be the event that no set of vertices U C'V of G,, 1 < |U| < n/70,
induces more than r|U|/12 edges. Then Pr(Qy) =1 — O(1/n?).

Proof Let 8 =1/12 and 0 = 1/70. Let |U| = u.

Note first that in a simple r-regular graph a set of size v induces at most (12‘) edges

and, provided u < 20r,
(;) < Bru.

Let £ = {F € Q" : No vertex set U, 28r < |U| < 0n induces more than Sr|U| edges }.
It suffices to prove that Pr(€) = O(n™2).

In 2 the number of edges X falling inside a set U is dominated by a binomial random
variable Y ~ B(ur,u/(n — u)) in which each configuration point of U independently
selects a pairing on the assumption that all configuration points of U are available, and
that ru configuration points of V' \ U are unavailable. Now, EY = ru?/(n — u) and

Pro(Y > gBru) = Pr(Y > (8(n—u)/u)EY)

()

Asr > 105 Br/2 > 1 and so by Lemma 2

on Bru on Bru
— 34u 2 ne\* [ 34u
P < 27‘2 n < 2r (_)
u=20r u=20r
on Bru/2 B2r?
4
< e’ Z <3_u) < 22" <@> < 2exp {27"2 — %r?log ﬁ}
n n 6r
u=20r
= O(n™),
provided r < con, ¢ sufficiently small. O

Proof of Theorem 1(a). Assume the events Q;, Q, described in Lemmas 3,4. If G,
is not r-connected then there is a separator X of size z <r—1. Let G, — X =A+ B
and [A| =a < |B|=0.

Case 1: 2<a<r/2.
Let u,v € A be arbitrary. If »r = o(n) then as Q; occurs,

IN(u) UN()| >2r — |N(uw)NN@)| > 2r —o(r) — 10 (5)



However
INw)UN@w)| < |[AUuX|<a+r—1<3r/2

which contradicts (5).

If cn < r < n/4 for some ¢ > 0, we see that because Q; occurs we have |N(u)UN (v)| >
(1 —0(1))7r/4, which again contradicts (5).

Case 2: r/2 < a <n/80.
As |[AUX| <a+r—1and AU X contains at least ar/2 edges we see that because Q
occurs

a—;glr—Z(a—l—r—l) and so a < r/5.

Case 3: n/80 < a < [n/2].
If configuration F' is chosen randomly from (2 then the existence of a separator of size
x < r — 1 has probability at most

SHIGICSI N
a=n/80 z=0 a T n
Thus from Lemma 2 the probability of this event in G, is at most

[n/2]
627-2 Z Z4nefa(n7(a+r))r/2n S 67Tn/500 — 0(1)

a=n/80 a

for r < ¢gn, cg sufficiently small. O

4 Hamilton cycles

We prove Theorem 1(b) on the assumption that 107 < r < ¢n.

Definition: Let G denote the subset of G, consisting of those graphs G with the
following properties:

C1: All sets of vertices U of size at most n/70 induce at most r|U|/12 edges.

C2: The graph G is connected.
Lemma 4 and Theorem 1(a) imply that
Lemma 5 |G| = (1 — 0(1))|G,|.
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Given a subset R of the edges of G, let dg(v) be the number of edges of R which are
incident with the vertex v of G.

Definition: Let P be some fized longest path of G. A set of edges R C E(G) is
deletable from G, (R € Del(Q@)), if

D1: R avoids P.

D2: Forallv € V, 7 < dg(v) < 3.

Lemma 6 Let G € G, and let R be a random subset of the edges of G where each edge
of G is placed into R independently with probability 1/3. then

Pr(R is deletable | G) > e™™

Pr(D1|G) — (g) N @)n e

For (D2) we condition on (D1). We use the symmetric version of the Lovasz Local
Lemma (see for example Alon and Spencer [1]) to show that

Proof

Pr(D2 | D1) > e ™2

Let A, be the event {dg(v) ¢ [%, %]}, then Pr(4, | D1) < e "/*% and the dependency
graph has degree at most r. So for large r we can apply the lemma to show that
conditional on Dy,

Pr (ﬂ A, | Dl) > (1 — 2e7/100)n > g=n/2,

veV
O

Definition: A set of edges S is addable to a simple graph H, (S € Add(H)), if

Al: H+ S5 € g,.

A2: No longest path of H is closed to a cycle by S.

Let

= {G € G, : G is not Hamiltonian } (6)
{(G,R) : G € N, R € Del(G)}

{H:H=G-R, (G,R) € &}

{(G,8):G€G,G-Se€V¥, S5 ecAdd(G - 9)}.

N e o
[l
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Remark 3 We note that £ C F: Let (G, R) € £ so that G— R € ¥, and let P be any
longest path of G avoided by R. By (C2), G is connected, so P cannot be contained
in any cycle, as this would imply either that G was Hamiltonian, or that P was not a
longest path. Thus R is addable for G — R and (G, R) € F.

Lemma 7 Let H € V. Let S(H) ={S: H+ S € G,}. Let S be chosen u.a.r from
S(H). There exists a constant § > 1077 such that

Pr(S € Add(H)) < e™™,

Proof Let H = G — R, where R is deletable from G.

Given yo let P,, = yoyi..-yn be a longest path starting at yo in H. A Pdsa rotation
P,, = P,.., [22, 6] gives the path P, ., = You1.-¥i¥rYn—1.--Yi+1 formed from P, by

adding the edge y,y; and erasing the edge y;y; 1.

Let END(a) be any set of endpoint vertices formed by Pésa rotations with a fixed, of
a longest path aPb in H. We prove that |[END(a)| > n/210.

The Pésa condition for the rotation endpoint set U of a longest path P requires that
IN(U)| < 2|U|, where N(U) is the disjoint neighbour set of U. Let v = |U| and let
v=|UUN(U)|. Thus u > v/3. The condition (D2) guarantees that U U N (U) induces
at least ru/4 > rv/12 edges in H. Thus (C1) implies ¥ > n/70 and u > n/210.

We condition on H. Let the degree sequence of R be d = (dy, ..., d,,) and that of H be
(r—dy,...,r —d,). We choose a replacement set of edges S of size D = (d; +do+---+
d,)/2 uniformly among all edge sets with degree sequence d such that H + S € G,.
If we generate a random configuration F' on d, then conditional on H + y(F') being
simple, v(F) = S is a u.a.r element of S(H).

The probability that H+v(F) is simple.

We keep H as a fixed graph and generate u.a.r. a configuration F' from the set L, size
|L| = 2D, of configuration points corresponding to the degree sequence d, of R. We
show that

Pr(H + ~(F) is simple) > n~2e™*". (7)

The number of edges D of R is binomial B(rn/2,1/3), and thus whp D = (1 +
o(1))rn/6. We generate the first rn/12 random pairings using CONSTRUCT and the
rest of F' using GENERATE (see Remarks 1, 2). Our reason for this approach is as
follows. The ordering o = (z1, Z3, ..., £ap) of L in GENERATE is deterministic. At step
1 =1, the algorithm GENERATE defaults to Choice A. We cannot ignore the possibility
that H already contains the edge {#(z1), #(z2)}. Similarly, if at step ¢ + 1, GENERATE
uses Choice B, then as the edges of H are fixed, we cannot argue that the existing
edges of F; avoid neighbours of ¢(z1), ¢(z2) in H until 5 > r2.

12



Assuming that the u; are chosen randomly, in the first rn /12 iterations, the probability
that CONSTRUCT inserts a loop or parallel edge is at most

Indeed, when CONSTRUCT starts there are 2D ~ rn/3 configuration points to be paired.
At the last iteration of CONSTRUCT there are 2D —rn /6 ~ rn/6 points remaining. Each
vertex occurs at most 7/2 times in the sequence (by D2).

CONSTRUCT picks a point u; and then a random point uy. Given u; there are < r/2
choices which make a loop, and in the worst case, where d(u;) = r in H + y(F) each
neighbour is missing /2 points. This leads to (r/2+7%/2)/((1—0(1))rn/6) bad choices
for us.

Let S; be the subgraph of S produced by cONSTRUCT. It follows that

Pr(H + Sy is simple ) > e ™.

We now continue with GENERATE for the remaining D—rn /12 edges to be inserted. The
subgraph H remains fixed, and GENERATE is initialized with some fixed configuration
Fy of S1 on {u1,ug, ..., Urn/6}. Forsteps i =1,...,D—rn/12 we run GENERATE with the
minimum degree ordering o of L — {uy, ug, ..., Upy, /6} similar to the ordering described
in the proof of Lemma 2. Observe that

Pr(H + «(F;) is simple | H + y(F;_;) is simple) > <1 ~ 5 1_ 1) <1 — Znﬁ) :
The probability that the algorithm makes a Type B choice at step ¢ is 1 — T1_1 Given a
Type B choice, the probability that a loop or multiple edge is formed is at most 25r/n
for reasons that we now explain. To create a loop we much choose ¢(z;) = ¢(z2i+¢ 2),
for t = 1 or 2 and there are at most 2r choices of {21, 25} that will lead to this. To
create a parallel edge ¢(z;) must be a neighbour of ¢(z9;1; 2), for t = 1 or 2 and
there are at most 272 choices of {21, z;} that will lead to this. These choices are made
randomly from a set of edges of F; of size at least rn/12.

Now H?Zl (1 — Tl—l) > n~2. The number of edges inserted by GENERATE is at most
(1+ o(1))rn/12 and so (1 — 28)HOII2 5 =3 4nq (7) follows.

The probability that v(F) is addable for H.

Let o be an end vertex of longest path P in H. Now let Y = {(a,b) : a €
END(zg),b € END(a)}. Then S € Add(H) implies v(F)NY = 0. For otherwise the
edge ab would close some longest path of H to a cycle.

We will use CONSTRUCT to generate a configuration F' with the required degree se-
quence (dy, ... ,d,).

13



Since |END(a:0)| > n/210, the sum of the values d, over vertices v € END(xg) is
at least 7575. Thus, we can choose u; so that ¢(u;) € END(xo) for each of the first
v = rn/1680 steps. For j < v, writing a for ¢(u;), let Y; be the set of remaining
configuration points y such that ¢(y) € END(a). Then |Y;| > i35 —2j. As F
contains at most rn/2 configuration points,

Pr(y(F)nY =0) < [] <1 - r':;g)

j=

< o (-3 (- 1))

]:

67517'11

where §; ~ 1/(1680 x 840).

Thus )
Pr(S € Add(H)) < e ™ x nle*

and the lemma follows.

O

We can now complete the proof of Theorem 1(b). Suppose G is chosen u.a.r. from
G’ and then R is chosen by selecting edges independently with probability 1/3. From
Lemma 6, (6), and Lemma 7 we see that

Pr(f) = > Y Pr((G,R))

GEeN ReDel(G)
> e "Pr(N).
Pr(F) = Y > Pr((H+S,5)|G—R=HPr(G-R=H)
He¥ SeAdd(H)

< Y e™Pr(G- R=H)
Hew
< 6757'71..
Now, by Remark 3, £ C F and so Pr(€) < Pr(F), thus
Pr(N) < e* ™ =o(1)

and the theorem follows from Lemma 5. O

Remark 4 We note that by following Frieze [10] we can, at the expense of complicating
the proof, prove the existence of a polynomial time algorithm for finding a Hamilton

cycle.
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5 The independence number

To prove the lower bound in Theorem 2 we will follow the basic strategy of [12]. We
start with the following result of Frieze [11]. Let cn < m < n?/log®n and let d = 2m/n,
then
2
a(Hy,) — ?n(logd—loglogd+1—log2)‘ < %, (8)

onfa ()}

We choose m ~ frn (see (10) below) which implies r = O(n/log?n). Let H,, denote

a random multi-graph obtained as follows: Let (v, vs,... ,vs,) be chosen u.a.r from
[n]*™ and let H,, have vertex set [n] and edge set {{vo;_1,v9}: i =1,2,... ,m}.

with probability

Actually, [11] proves the independence number result for the standard model G, ,,, but
(8,9) follow for the space H,, as a simple consequence, (see [12]). We also note that it is
simplest to use a definition of independent sets on multi-graphs which allows loops on
some vertices of the set. The final graph G, is simple, as all loops and multiple edges
have been removed by algorithm SiMPLIFY. Thus the independent set in G, conforms
to the usual definition.

The paper [12] starts with H,,, m =~ rn/2 and then modifies it into F' € €,,/, and then
into G, without changing the independence number by much. This needed r < n!/3-7
so that the transition from F' € Q,, /3 to G, could be done easily.

In this paper, because the degree, r, is larger, we introduce a decomposition technique
(Section 5.2) which enables us to apply the results and techniques of [11, 12] to larger
values of 7.

To generate H,,, let

m:% <1—\/91‘;g") (10)

and choose a u.a.r sequence T = (v1,2,. - ,V2y) from [n]?™. The number of occur-
rences of vertex v is binomial B(2m, 1/n). It follows by standard calculations that the
degrees of all vertices v € [n| are whp contained in the interval [r — 6+4/7logn,7].

Let H(d) be the set of vertex sequences whose underlying multi-graph has degree se-
quence d = (d(i), ¢ = 1,...,n). Let ¢ = (z1, 29, ..., Zom, ..., Trn) be an ordering of
configuration points used by GENERATE, in which all vertices have degree r, and such
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that, in the initial segment p = (z1, ..., Z2,,) the degree sequence is d. If we run GEN-
ERATE with the ordering o, then the set of configurations {23 produced by GENERATE
on the initial segment p of o is exactly the configurations of H(d). By continuing
GENERATE with o we obtain {2y the configuration space of r-regular multigraphs. In
this way we can uniformly extend the configurations F’ of H,, € H(d) to configura-
tions F' € Qp. Moreover, if u(H,,) is the measure induced on H,, by the generating
sequences T, then the measure of the configurations of H,, is u(H,,)(J[d(3)!)/m!2™.

5.1 Edges created inside [

We remind the reader that from (8) and the fact (10) that m is sufficiently close to
rn/2, then with probability given in (9) the graph H,, has an independent set I where

2 2
’|I|——n(logr—loglogr+1—log2)‘ §ﬂ. (11)
T T

In going from F’ to F' algorithm GENERATE will probably add some edges with both
endpoints in I. Assume that the points &;,&s,... ,&mn_2m are in random order. The
expected number of edges added to I by step A is then at most

rn —2m y <6\/7’10gn|I|>2 ~ o(1).

2m rn — 2m

The expected number of edges produced by step B which are contained in [ is at most

6+/7logn|I| x % = o(ﬁ) )

P

So whp the r-regular multigraph defined by G, = ¢(F) contains an independent set [
where

.2 3
|[|__n(logr—loglogr+1—log2)‘ Sﬂ- (12)
r r

5.2 A decomposition of G,

Let s = 7177/10 where 7 is as in Theorem 2 and is sufficiently small. Let v = n/s and
let V1,Va,..., Vs, be a random partition of [n] into sets of size v. (We assert that we

can afford to ignore the niceties of rounding. In reality s = [r'~7/1°| and |V;| = |v] or
[v1)-

Let I';; = G,[Vi] be the subgraph of G, induced by V; and for ¢ # j let I'; ; be the
bipartite subgraph of G, with vertex partition V;,V; and all G,-edges joining V; to
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V;. Let d;; denote the degree sequence of I'; ;. We observe that if 7,5 and d;; are
given then I';; is a random graph or bipartite graph with this degree sequence and
that furthermore, the I'; ; are conditionally independent once the V; and d; ; are given.
This is because any two graphs on V;, V; with degree sequence d;; have precisely the
same set of extensions to an r-regular graph on V.

The degree d; j(v) of v € V; in I'; ; is sharply concentrated around its mean. Indeed
the randomness of the partition and Theorem 2 of Hoeffding [13] ( sampling without
replacement) gives

Pr(|di;(v) — p| > kp) < 2e < 7/*)

where p = r/s and we have replaced the usual 3 by 4 to account for some rounding.

Putting k = (s/r)'/2logn we see that

PI‘(E]Z',].,U : |di,j(v) - pl > P1/2 logn) = 0(1)
We now fix the V; and a set of degree sequences d; ; which could come from a G, and
also satisfy

2logn  for all 4, j,v. (13)

|dij(v) —pl <p
To generate G, given these degree sequences, it is enough to independently generate

I'; j, where the I'; ; are random graphs on V; U V; with degree sequence d; ;.

In principle we can analyse G, by focusing on a typical set of degree sequences {d, ;, ,j =
1,...,s} and then independently generating the I'; ;. One can thus analyse G, as the
union of an independently chosen collection of random graphs. Each I'; ; will have v
or 2v vertices and maximum degree ~ p = r7/10 < y1/10 when 7 is small. This is small
enough that simple switching analysis will be practical. We expect this model to be
useful for proving many properties of G,.

5.3 Bad loops and multiple edges

Let G be the simple graph obtained by merging multiple edges and deleting loops of
G.. The choice of I can be assumed to depend only on G. Suppose that there are a
loops and b parallel edges so that G has rn/2 — a — b edges.

Remark 5 Given G’, the a loops are independently chosen randomly from the n pos-
sibilities, with replacement. Similarly, if we fix the multiplicities of the parallel edges
then the edges with multiplicity greater than one are uniformly chosen at random from
the rn/2 — a — b possibilities.
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Call a loop or parallel edge a bad edge if it contains a member of I. Now whp a + b =
O(r?logr) (see Lemma 10 in the Appendix) and so from Remark 5 the expected number
of bad edges is at most O(r(logr)?) and with probability at least 1 — n=3:

There will be at most O(r(logr)?) bad edges. (14)

5.4 Simplification

The multigraphs v(F; ;) have the right degree sequence d; j, but we now need to trans-
form them into random simple graphs with these degree sequences.

We focus on graphs, the construction for bipartite graphs is similar. We show how to
simplify a random configuration F' from (23 where

d = (d,ds. ... ,d,) and p/2 < mind; < maxd; < 2p.

Recalling that n'/* < r < n'~", let
5
P /10

€1 =

An edge {wi, w2} € F is a loop if ¢p(w1) = ¢(ws). An edge {wq, w2} € F, wy < ws
is redundant if F' contains an edge {w},w)}, w| < wh with ¢(w}) = ¢(w;),7 = 1,2
such that w] < w;. It is convenient to ignore multiple loops at the same vertex when
computing the number of redundant edges. Let 2, be the set of configurations in Q4
which have a loops and b redundant edges.

Algorithm SIMPLIFY

1. Start with a random configuration F* € )4.
2. Suppose F™* has a loops and b redundant edges.
3. If a > plogv or b > p?logv, output G° = L — construed as failure.

4. Suppose the redundant edges of F'* are e;,2 = 1,2,... ,b and the loops of F™* are
€,i=b+1,2,... ,a+b. Here ¢; = {z;,y;}, xz; <y; fori =1,2,... ;a+ b and
x; <zipgfori=1,2,...,b—landi=b+1,2,...,a+b— 1.

5. Let ¥ denote the set of sequences f; = {a;,5;} € F*, 0, <B;: i=1,2,...a+b
such that F** € Qg where

F**:F*—61_fl_"'_fl_"'_ea+b_fa+b+
+ {xl, al} + {yl,ﬂl} + -+ {$a+b, aa—l—b} + {ya+b75a+b}- (15)

18



In this definition we restrict our attention to f;’s which satisfy

dist(e;, f;) > 2 and dist(f;, f;) > 1for 1 <i#j<a+b. (16)
Here dist denotes minimum distance in y(F™*) between vertices of the given edges.
Choose a random member of 3 and carry out the transformation (15).

6. For F' € Qg define 7p = mp,p by lettmg ﬂF‘“’ be the probability that F** = F

at this point, conditional on reaching this pomt and conditional on a, b.
Let

W ={F € Qoo: mp €1 e, 1+e}.
If F** ¢ ng"d then Output G¥ = L

7. If F** € Q§% then

= v(F**) Probability =%
Output TF
P {GS — 1 Probability Z=£a=!

The exchange of edges in Step 5 is called a switching (or set of switchings).

Let G5 = v(Q§%%) and Q5% = Qg \ 5%, We will prove the following theorem: We
have several distinct probablhty spaces and we use the symbols Pr, E (resp. Prq, E)
for the uniform probability measure on the space  (resp. Q) of configurations. The
symbol P denotes the probability measure induced by SIMPLIFY on {2}y and Pr refers
to the uniform measure on Gq.

Theorem 4

(a) Pr(G% = 1) < 3¢;.
(b) Pr(G5e%) > 1 — v splogloey,
(c) P(F™ € Qf5?) > 1 — pisploslosr,

(d) If G € G5 then
PGS =G |G°# 1) =G5

O

The proof of this theorem is much as in previous papers [19, 20, 21, 9] but we give it
in an appendix for completeness.
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Let us apply this theorem to finish the proof of the lower bound in Theorem 2. We
observe first that G, satisfies the following:

PT‘(E’L,] : F,’,j §é gg‘:‘;d) < 0(1) + 32y_%P210glogu _ 0(1)’

where the first o(1) is the probability that (13) does not hold.

So, starting with the F;;’s we use SIMPLIFY to generate a random member of ggjjd.

One problem with algorithm SIMPLIFY is that we cannot guarantee that an iteration
on a given partition does not return L. For those ¢, 7 which return 1 we assume that
we generate I'; ; by direct sampling i.e. we choose it at random from (lq, ..

We next estimate the expected number of edges contained in I that SIMPLIFY produces.
We create an edge contained in I only when we delete a bad edge e and {«a, B} NI # 0.
Let 3; ; denote the number of bad edges in I'; ;. The expected number of edges created

in I is bounded by

omgaet) - ofrse(2)

% i

- o(tesry)

= O((logr)?).

Here we used (14) for the expected number of bad edges,

E(Z Bij) = O(r(log r)?).

The term O((logr)3?) is o(n/r) as required.

Finally, we consider the edges introduced into I in the cases where SIMPLIFY produces
L. Tt follows from Lemma 10 and Theorem 4(c) that with probability at least 1—o(n~?2),
for every i, j, the execution of SIMPLIFY produces F** € Q7 “. Then conditional on
this occurrence, the iterations that output | are determined by the random choices in
Step 7, which are independent of I. Thus the number of edges introduced into I by
failing iterations has expectation bounded by

9/210g r
O(I" x & x 10p/) = O (mﬁ) — o(/1) (17)

Jnlr

where we have used (11) and the final factor 2 is from Lemma 1.

Thus the total number of edges introduced into I by our process has expectation o(|I|)
and this becomes a high probability bound using the Markov inequality. This completes
our discussion of the lower bound in Theorem 2.
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We now consider the upper bound of Theorem 2. This is usually a straightforward
application of the first moment method. Here the model makes it more difficult. The
proof we give is identical to the first part of the proof of Theorem 2.2 of [15] except
that we give enough details to show that the conclusion (1) holds. We use switchings
on the set of r-regular graphs as we did in Lemma 3, but now we need a more complex
C¢ switching.

Lemma 8 Fiz A C V,|A| = a. Let Cy C G, be the graphs for which A contains k

edges. Then
|Ck| 1(a\r 1 1 k k a r
— (N (1ro( 4+ 24+ 540207 ). 18
ICk—1] k\2/n * a+r+ar+a2+n+n (18)

Proof Fix an r-regular graph G and suppose A contains k edges. For v € A, let
d, denote the number of neighbours of v in A. Let ¢ be given by

b= (r—d)(r—dj) = ((r—da) + -+ (r —do))* = Y (r — d)2.

i#jEA icA

The function Y (r — d;)? is minimized, subject to >.d; = 2k, at d; = 2k/a. The
maximum is at d; = r, ¢ = 1,...,2k/r, d; = 0, i = 2k/r + 1,...,a (with suitable
interpolation). Thus

(ar —2k)* —r*(a — 2k/r) < ¢ < (ar — 2k)* — a(r — 2k/a)?

and so after some simplification (note that k£ < ar/2) we see that

(o)

Denote by p, the number of pairs of edges ux,vy of G, between A and V' \ A which
satisfy the properties

P0O: u,v € A and z,y &€ A.
P1: u # v and the edge uv & A,
P2: z #y.

Thus p is given by

p=30—1%—n.

% is the sum of (r —d,)(r — d,) over the k edges uv of A, so that ¢ < kr? and 7 is the
overcounting due to coinciding pairs uz, vz so that n < a?r.
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Hence,

1 1 k k
p= (22 (1+0(=+-+=+ 2
2 a r ar a?

Let B be a bipartite graph with bipartition (Cy_1,Cx) and an edge from G € Cy_; to
G' € Cy if a switching can be made, as described below. Thus Cy_1dr, = Crdg, where
dy, (resp. dg) is the average degree of the left (resp. right) bipartition.

What constraints must we place on the choice of edges to use in switching? We assume
below that u,v € A, z,y ¢ A and u,v,w,x,y, z are distinct.

Switch up (G — G'): uz,vy,wz — wv,we, Yyz.

We require wz ¢ A avoiding a total of k—1 edges. To ensure simplicity of G', we require
wz,yz ¢ G. On choosing wz the vertices w, z must not be adjacent to z,y € N(u,v),
avoiding a total of at most 272 edges. Thus

dy, = 2p(nr/2 — k — O(r?)) = pnr (1 +0 <5 + f)) .

™m n

Switch down (G' — G) : wv,wz,yz — uz, vy, wz.

To avoid the possibility that wz € A, we avoid edges from A to V' \ A in our choices
of zw,yz, a total of ar — k edges. To ensure G is simple, when choosing zw,yz we
require that w and z are not adjacent in G’ and z,y ¢ N(u,v), ruling out a total of
O(r?) choices for each edge. Thus

dr = 4k(nr/2 — (ar — k) — O(r?))? = kn*r? (1 +0 <g + f)) .

n n

1 1 1 k k
Gl =10 alz (o) (140 (=+=+=+=+2+1)).
k\2/)n a r ar a2 n n

Now let a = 27"(log r —loglogr +1—1log2+¢). Applying the above lemma we see that
if k= [(¢)z] then

k
@—kl ﬁ a h 1+0 loﬂ_i_ﬁ *
ICk] T\ r\2 7 n '

Hence

O
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So the probability that GG, contains an independent set of size a is at most
c kn \ 1 k
n M S <E) n 1+ 0 ﬂ + f
a) |Ckl a re(3) T n
a 2n r n

efea/2
= o(1).

This completes the proof of Theorem 2. O

VAN

6 The chromatic number

The lower bound on the chromatic number in Theorem 3 follows from the upper bound
on the independence number in Theorem 2. We use the same strategy of transforming
H,, to G, as in the previous section. It follows from Luczak [18] that whp

r loglogr
H,)= 1+0 .
X(Hm) 2logr ( * ( log r ))
We start with a minimum proper colouring of H,,. Applying the analysis of the previous

section to each individual colour class we see that whp, in going from H,, to G, the
number of edges which are improperly coloured is

o (n(logn)5/2 W T ) 0 <n(1ogn)3/2) .

r3/2 logr r1/2

(In particular see the analysis of Section 5.1.)

Lemma 9 Fiz C; > 0 constant. Then whp every A C V,a = |A| <ag = %%1)3/2’

contains at most La G,-edges, where £ = r3/*.

Proof It follows from Lemma 8 that

Cdf _ 1

Cul < (8) (@) ex

Pr(A contains > fa edges) < |Co|™ Z ICea| <2
k>ta
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for some constant Cy > 0. (Here we use k < min {ar, (%)} in the error term of (18).)

Hence
e < 3 (0) (())
i <<%>H <%>z> C3 < Cqe

a={

S ((Ce™) ™ ey

a={

= o(1).

IN

a

IN

O

It follows from this lemma that whp the vertices incident with the improperly coloured
edges induce a subgraph H of G, such that every subgraph of H has a vertex of degree
at most 3/%. Consequently, H can be re-coloured using at most 73/4 4+ 1 new colours,
which is negligible and completes the proof of Theorem 3. O

Acknowledgement: We wish to thank an anonymous referee for two most careful
and thorough reviews.
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APPENDIX:
Proof of Theorem 4

We will give the proof for graphs, the proof for bipartite graphs is similar and slightly
simpler in that we do not have to worry about loops or triangles.

Recall that F' is chosen randomly from g3 where
d = (d,ds. ... ,d,) and p/2 < mind; < maxd; < 2p.

Lemma 10 )
Pr(F has > plogv loops ) < v~ 2Ploslosr,

Pr(F has > p*logv redundant edges ) < v~2°"lo8logv,

Proof Let 2D =dy +---+d, and k; = plogv. Then

v+k — 1Y (20)" 1 )
Pr(F has >k 1 < 2D — 2k,
r( as >k OOPS)—( E—1 )(2) 2D — 2k,

v 202 \™ 12 \ ™
<|—"- < .
—\k pv/3 ~ \logv

v+ 2ky — 1\ (2k2)! 4k 1 i
Pr(F has > < 227\ 3D — 4k,
r(F has > k, redundant edges) < < 9%y — 1 ) k2!2k2( p) oD — 4k,

(3 .8 ’“2< 228 \ 2
“\k 7 ) = \logr)

This verifies that the chance of failure in Step 3 is less than e;.

Fix a,b and let E be the multi-set {(F*, F**) : F* € Qu3, F** € Qpp and F* can
be transformed into F** via Step 5 of SIMPLIFY}. Here the number of times the pair

(F™*, F**) occurs in E is equal to the number of members of ¥ in Step 5 that transform
F* into F**. For Fy € Qup, dp(F1) = |[{(F,F') € E: F = Fi}| and for F, € Qq,

Let ky = p?logv. Then
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dr(F2) = |{(F,F') € E: F' = F,}|. We note that where 7 is as defined in Algorithm
SIMPLIFY,

T _ ) —
mfo = Qa7 > do(F)T (19)
’ (o

Lemma 11 (3)
(D — 8(a + b)p*)**? < dr(F) < D**?.

(i)

(D3 — 3(Cs — 8ap?) — 20ap*)® x
x (Ty — 8(a+ b)p® — 3(Cs — 8(a + b)p?) — 2(Cy — 16(a + b)p?) — 40(a + b)p*)® <
< dp(F") < D5(Ty + 8(a +b)p?)’

where C; is the number of i-cycles in F',

D2 =3 (5) and Ty =Ta(F) = 3 (o) = 1k(0)) oty — )

=1 (z,y)eF!
<y

and tk(z) is the rank of x in the set Wy(,).

Proof (i) The upper bound is obvious. For the lower bound, we observe that the
conditions (16) guarantee that (15) holds. 8(a+ b)p? is an upper bound on the number
of edges excluded by these conditions.

(ii) Imagine that we make a transition form F’ to F' € Q, in a+b steps, adding a loop
or multiple edge each time. Thus we create a sequence F' = F, .1, Fyip,... ,F1 = F.
Suppose the first a transitions involve the creation of a loop. Fix b+ 1 < a+ b+ 1.
When we delete a loop we create a path of length 2 through the corresponding vertex.
So to create a loop e = {a1, as} we need a path of length 2 in v(F;). So we take 2 pairs
{a;,b;}, j = 1,2 where ¢(a1) = ¢(az) and replace them by {ai, az}, {b1,b2}. There are
at most Dj choices here for each loop and so < DJ choices for a loops. (D, is invariant
in the sequence Fy 411, Furp,--- , Fi.

Now fix 1 < i < b. To create a redundant edge {ai,as} we must take 2 pairs
{a;,b;}, j = 1,2 and replace them by {ai,as}, {b1,b2}. Here F; must have another
pair {z,y}, < y such that ¢(a1) = &(z), d(az) = ¢(y) and a; > z. The summand
in the definition of I'; bounds the number of choices for {a;,b;}, i = 1,2 for a given
{z,y} € F;. We must however consider F; here. As part of the proof of Lemma 12
below we see that

T3(F) = T1(Fiun)| < 80% (20)
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This explains the extra factor on the RHS of the upper bound.

For the lower bound we first insert the loops. When we insert loop {a;,as} we need
to avoid the case where the edge {b1,bs} is parallel to some edge {z,y} € F;. Here
F’ contains a 3-cycle ({z,y},{a1,b1},{b2,a2}). There are 3C; paths of length 2 in
triangles. Of course C3 here refers to F; but in the bound it refers to F’. As part of
the proof of Lemma 12 below we see that

Cu(F:) — Cu(Fin)l <2020 k=34 (21)

By only considering the addition of loops at distance at least 3 from each other in Fj
we do not need to account for any triangles we create in the process. Any vertex has
at most 20p* length two paths at distance at most 2.

For the lower bound in the case of redundant edges we must be sure that inserting the
redundant edge (a1, az) does not create an edge (b1, bs) parallel to some (u,v) € F'.
In this case F' contains a 4-cycle ({u,v},{b1,a1},{z,y}, {az,b2}). There is also the
case where (b1, by) is a loop. Here F' contains a 3-cycle ({z,y}, {a1,b1}, {b2,a2}). By
keeping the added redundant edges always at distance at least 3 from each other and
the previously created loops we do not need to account for the 3-cycles or 4-cycles we
create in the process. We loosely bound the number of pairs forbidden in this way, by
40(a + b)p*. O

Lemma 12

(i) For k= 3,4,
k 2
Pro(C > (2p)" +1) < exp{—m +O0(p )}

(ii)
1

E(T1) > —p°v.
(T1) 2 55p°v
(iii)
t? 2
Pro(|I'y —E(I'})| >t) <2 - .
ro(T3 — B(00)| 2 1) < 2exp { — o0+ 0(2) )
Proof (i) We use a martingale argument on configurations in 2. We imagine

that we produce F' using CONSTRUCT. At stage ¢t we choose u; as the minimum
of R; ;. Consider fixing the first ¢ pairs and denote them by Yi,Ys,...,Y; and let
w, be the minimum of R;,. We compare E(Z | Y1,Y2,...,Y;, (wa, wp)) and E(Z |
Y, Y, ..., Y, (we,w,)) for arbitrary wy, w,. We use the following mapping between
the conditional spaces: If w, is paired with w, in the first then in the second we pair
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wp and w,. Thus if §; bounds the change in Z when pairs (a, 3), (7, ) are replaced
by (a,7),(8,6) we get

Pr(1Z — E(Z)| > t) < 2exp{—zhg }-

We inflate the RHS by €°*") in order to replace Pr by Pry, see Lemma 2.
For Z = C} we have E(Z) < (2p)* and 67 < 2(2p)*! (used in (21).
(ii) A random member of F' is a random unordered pair of elements of W. Thus if

{z,y} € F, z <y then E(dyz) — k(z)) > 3(dy(z) — 1) > 3(3p —1). Hence

E(T)) > (2o~ DE( Y (dow) —1k(2)) > (2o — 1) - bov - 33— 1),
(z,y)EF

For (iii) we simply observe that fr, < 2(2p)?, (used in (20). O
Now let
Qg‘,’g = {F' € Qo: (a) Cs+ Cy > p*v%logr or (b) Ty — E(T1)| > p*v'/%logr}

and
Agood Abad
Q0 = Qoo \ Lo

It follows from Lemma 12 that

< yPlogy, (22)

Lemma 13 For all a < plogv, b < p?logv,

(1)
PO | a,b) = 1 — O 277
(ii)
g C g
Proof

It follows from (19) and Lemmas 11, 12 that if F € ng’é’d and (a,b) € [plogv] x[p?log V]
then

T
ﬁ — (14 05)|Qqp| D+ °DIE(I;)" (23)
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where |0r| < €,/3 and

A

55"

|Qap]

B(F* € 085 | a,8) = (1+8)" 22D * *DIE(T,)"

where |0'| < €;/3 too.
Furthermore, since 'y < 4p%v,
bad

P(F** € Q5% | a,b) < 2—22
’ |Qa,b

D D2(4p%v)°.

Therefore, since E(T'1) > 5p%,

*k Aba, Abad
P(F** € Qg,éi | a,b) < 80 Q0%

- < 80° 20 — O(80byF*loe¥) = O (v 3" e,
P(F+ € QF5" | a,b) Qg5 (

This verifies (i). To obtain (ii) we choose F € ng’o"d and write

Agood
1— Oy 3r"losv) = Z Tp >1—€1/3|90,0

T .
Qool ~ 1+€1/3 [Qog| 7
ponge €200 €1/3 Qo
So . /3
+ 6]_ 1 2]
s < ——(14+0(v 27 °¢")) <1 .
ﬂ}T — 1 _ 61/2}( _% (l/ )) — _F 61
A lower bound follows in the same way. O

Theorem 4 follows by combining the results from above: (b) and (c) from (22) and
Lemma 13(ii). For part (a), Lemma 10 is used. Part (d) follows from the fact that
each F' € QfF “ has the same probability =< of being output.

good
|Qo,0
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