Chapter 1
On the Satisfiability and Maximum Satisfiability of Random 3-CNF Formulas

Andrei 7. Broder*

Abstract

We analyze the pure literal rule heuristic for computing a
satisfying assignment to a random 3-CNF formula with n
variables. We show that the pure literal rule by itself finds
satisfying assignments for almost all 3-CNF formulas with
up to 1.63n clauses, but it fails for more than 1.7n clauses.

As an aside we show that the value of mazimum satis-
fiability for random 3-CNF formulas is tightly concentrated
around its mean.

1 Introduction

Given a boolean formula w in conjunctive normal form,
the satisfiability problem (SAT) is to determine whether
there is a truth assignment that satisfies w. Since sAT
is NP-complete, one is interested in efficient heuristics
that perform well “on average,” or with high probability.
The choice of the probabilistic space is crucial for the
significance of such a study. In particular, it is easy to
decide SAT in probabilistic spaces that generate formulas
with large clauses [16]. To circumvent this problem,
recent studies have focused on formulas with exactly %
literals per clause (the k-SAT problem). Of particular
interest is the case k = 3, since this is the minimal & for
which the problem is NP-complete.

(3)

Consider the space 2,/
over n variables with exactly 3 literals per clause. It
is clear that if the ratio ¢ = m/n is small then a
random formulais almost surely satisfiable. (As a trivial
example, if m/n = o(y/n), then with high probability no
variable occurs twice.) Experimental evidence [18, 19]
strongly suggests that there exists a threshold v, such
that formulas are almost surely satisfiable for ¢ < v and
almost surely unsatisfiable for ¢ > ~, where v is about
4.2 . So far however, only much weaker bounds were
proven and it is not known whether a sharp threshold
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really exists. Such a threshold (namely c=1) exists for

2-CNF formulas [15, 5].
Chao and Franco [3] and Chvatal and Reed [5]

analyzed heuristics that almost surely find satisfying
assignments for w € Qﬁ?n with m < n, thus proving
that ¢ = 1 is a lower bound for the maximum value of ¢
that guarantees almost sure satisfiability in Qﬁ?n Very
recently, Frieze and Suen [14] have increased this lower

bound to =~ 3.003.

A simple counting argument [7] shows that if ¢
exceeds a constant greater than logg,72 = 5.190...

(3)

then a formula in er?,n
This bound is not optimal; a minuscule improvement
(to about logg 72 — 10~7) will be presented in the final
paper.

Most practical algorithms for the satisfiability prob-
lem (such as the well-known Davis-Putnam algorithm
[6]) work iteratively. At each iteration, the algorithm
selects a literal and assigns to it the value 1. All clauses

1s almost surely unsatisfiable.

containing this literal are erased from the formula, and
the complement of the chosen literal is erased from the
remaining clauses. Algorithms differ in the way they
select the literal for each iteration. The following three
rules are the most common ones:

1. The unit clause rule: If a clause contains only one
literal, that literal must have the value 1;

2. The pure literal rule: If a formula contains a literal
but does not contain its complement, this literal is
assigned the value 1;

3. The smallest clause rule: If there 1s no unit clause
or a pure literal, give value 1 to a (random) variable
in a smallest clause.

Previous analyses of algorithms for random saAT
instances avoided the pure literal rule, and considered
only the unit clause rule, or a combination of the unit
clause rule and the smallest clause rule. The reason is
that if one starts with a random formula and applies
the unit clause rule and/or the smallest clause rule,
the distribution of literals in the remaining formula is
random and uniform, conditional only on the number



and size of the remaining clauses. This property, which
greatly simplifies the analysis, does not hold when the
pure literal rule is applied since in the remaining formula
there is a dependency between the occurrence of a literal
and the occurrence of its complement.

In this paper we present the analysis of an algorithm
based on the pure literal rule. We show that in the
Qﬁ?n probabilistic space, the pure literal rule alone is
sufficient to find, with high probability, a satisfying
assignment for a random formula w € Qﬁ?n, for m/n <
1.63. On the other hand, if m/n > 1.7, then the pure
literal rule by itself does not suffice. The gap between
1.63 and 1.7 is not a “real gap”. It seems that by
increased computation we can make the gap as small as
we like, although we do not at present have a rigorous
proof that there is a precise threshold.

Maximum satisfiability (MAX-SAT) is the optimiza-
tion version of the satisfiability problem. Given a CNF
formula w the goal is to determine the maximum num-
ber of clauses in w that can be simultaneously satis-
fied. This problem arises often in database and expert-
systems applications. The decision version of MAX-
SAT 18 NP-complete; however, MAX-SAT can be approxi-
mated within a constant ratio. In particular if all clauses
contain at least 3 literals, MAX-SAT can be approximated
within a 7/8 factor, since one can always find a truth
assignment that satisfies at least 7/8 of the clauses in a
formula with at least 3 literals per clause [20].

We prove a concentration phenomenon for MAX-
SAT: we show that there is a function T'(m, k) such that
if w € QF),, with high probability the difference be-
tween MAX-SAT(w) and T'(m, k) is o(T'(m, k)). For large
m (e.g. n = o(m)) clearly T'(m, k) = (1 — 27%)m. For
smaller values of m we prove tight concentration using a
martingale technique, but could not determine the ac-
tual value. This result shows that the approximation
problem for maximum satisfiability is in a certain sense
trivial in this probabilistic setting since the maximum
satisfiability value is almost always very close to a fixed
value that depends only on m and &.

2 Definitions and Notations

Throughout this paper formulas are represented in
conjunctive normal form. Let V = {a1,...,2,} be a set
of n variables. A literal is a variable z; or its negation
;. The set of all literals i1s denoted L. A clause 1s
a disjunction of literals, a formula is a conjunction of
clauses.

Let w be a formula over the set V of variables. A
truth assignment for w is a function ¢ : L — {0, 1}, such
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that ¢(Z) = 1 —¢(x). A truth assignment satisfies w if at
least one literal in each clause of w 1s assigned the value

1.
(3)

Our analysis is done in the probabilistic space €/,
the space of all formulas over n variables with m clauses
and exactly 3 literals per clause. To avoid irrelevant
intricacies we view the formula as an ordered list of
clauses, and each clause as an ordered list of literals.
A random formula w € Qﬁ?n is generated by choosing
each of the 3m literals in w uniformly at random from

the 2n possible literals.

Call a literal z (resp. z) pure in a formula w, if it
appears in w but Z (resp. z) does not. We also refer to
the associated variable as being pure.

Let ©,, np denote the set of 3-CNF formulas in
which there are m clauses that contain n variables out of
which p are pure. (Note that ©,, ,, , is not simply Qﬁ?n
conditional on p: a formula in ©,,,, must actually

(3)

contain n variables, while a formula in 7,
contain fewer.)

might

We say that a property holds with high probability
(w.h.p.) if it holds with probability 1 — o(1) as n =
and quite surely (q.s.) if the o(1) term is O(n™%) for any
constant a. (The latter terminology is borrowed from

[10])

3 Algorithm

The algorithm that we analyze consists of the repeated
simultaneous elimination of all clauses containing pure
literals. More formally the algorithm can be described
as follows:

ALGORITHM 3.1.

while w contains pure literals do
Let # = {All pure literals in w}.
Assign 1 to all literals in 7.
Remove from w all clauses containing a literal
from .
od

if w = () then Success else Failure.

4 Analysis of the algorithm

We first observe that if the algorithm fails on an instance
w then it will also fail on an instance w obtained by
adding an extra clause to w. Hence, for a fixed n, the
probability that the algorithm succeeds decreases as m
increases.
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4.1 Maintenance of uniformity.

LEMMA 4.1. Suppose w is chosen uniformly from
Omnyp and all clauses containing pure variables are
deleted. Let w' € Oy i pr be the formula that remains.
Then conditional on the wvalues of m', n', and p/,
the formula ' is equally likely to be any formula in
@m’ynlyp/.

Proof. Fix o' € Oy prpr. We only need to show
that the number of formulas w € ©,,, , which map
onto w’ by the deletion process depends only on n, m,
p, n', m', and p’ and not on the particular w’.

Assume that the variablesin ©,, ,, p are z; for j € v
and those in Oy, s ,» are x; for j € N' C N. We can
construct all the w that map to w’ as follows:

1. Choose a set 7 € N \ N’ of size p. Let G =
N\ (N'Umr), thus |G| =n—n' —p.

2. Assign a label z; or Z; for each j € m. Call these
the m-literals.

3. Make up m — m’ clauses using the variables «; for
j € N such that

e BEach clause contains at least one m-literal;
e BEach w-literal occurs at least once;

e Foreach j € GG, both z; and %; appear at least
once;

o If z; is pure in w’ (there are exactly p’ such
literals) then its complementary literal must
appear at least once.

4. Insert the new clauses somewhere among the old.

Finally observe that the number of sets of clauses
satisfying 1-4 above depends only on n, m, p, n/, m/,
and p’. O

LEMMA 4.2. Suppose that w is chosen uniformly
from Qﬁ?n Let n' be the number of variables that
actually appear in w and let p’ be the number of pure
variables in w. Then conditional on the values of n' and
p', the formula w' is equally likely to be any formula in
@mynlyp/.

Proof. Obvious. 0O

We conclude that during the entire execution of the
algorithm, conditional on the current values of m, n, and
p, the formula w is uniformly distributed over ©,, , ;.

4.2 The results of one iteration. We will first
state a local central limit theorem which will be used

a number of times in the paper. It is a special case of
Theorem 4.5.2 of Durrett [9].

THEOREM 4.1. Let 71,75, ..., 2, be non-negative

i.i.d. integer valued random variables with E(Z1) = p,
Var(Z;) = ¢ € (0,00), and Pr(Z; = k) > 0 for all
non-negatwe integers k. Let S, = Z1 4+ Zo+ -+ Zy.

Let a = a(n) be a positive integer, and define x by
z = (a —nu)/(o\/n). Further let p,(z) = Pr(S, = a).
Then

Int/2p, (2) — ¢(x)| = 0,

as n — oo,

where ¢(x) = (271')_1/26_x2/2 is the density of the
standard normal distribution.

Let A = 3m/(2n—p). Then A is the average
number of occurrences of a literal in w € O, , ,. Define

Aby A= A/(1- 6_5‘). (This is well defined since the
RHS increases from —1 to co with A >0.)

The distribution Z given by

b Y b
Pr(Z7 =k)= c = — , k>1,
(1—e= Mkl (er = 1)k!
1s called a truncated Poisson distribution. Note that

E(Z)= A

Let now X = (X1, X2,...,Xn) denote the number
of occurrences of the N = 2n — p literals of the
formula w chosen uniformly at random from ©,, , p.

Let Y = (Y1,Ya,...,Yy) denote N independent random
variables with distribution Z. As before, let M = 3m.

LEMMA 4.3.

(a) The variables X1, Xa,...,Xn are jointly dis-
tributed as Y1,Ys, ..., YN conditional on ZlgjgNYj =
M.

(b) PI‘(E1§]’§NYJ’ = M) = Q(l/\/ﬁ)

Proof. Let

A:{EE[N]M‘ Z @:Mande,ljZl}.
1<5EN

Fix é’e A. Then

L M M!
Pr(X =€) = (m)/<§4 m)



and

— —

r(Y =¢|
and (a) follows. To prove (b), apply Theorem 4.1 with
Zi=Y;forj=1,...,Nandxz=0. O

Zl<]<NY M)

e _1@)/(;1}1N _1951)

e )/ (B )

!
TEA

N

For the remainder of the paper, we fix an arbitrary
constant d, such that 1/2 < 4§ < 1.

THEOREM 4.2. Suppose that w is chosen uniformly
from ©p, np and all clauses contaimng pure variables
are deleted. Assume that m,p > nd. Let w' € Oy ' p!
be the formula that remains. Then quzte surely

where

(a is the probability that a random literal in w is pure),
and

! (exp((?a — az);\) — 1),

e A _
(B is approzimately the probability that a fired literal

appears only in clauses that are deleted).

The value A above is defined as before by

A

A= _
1—e A

where A = 3m/(2n —p) is the average number of

occurrences of a literal in w.

Proof. Let X; denote the number of occurrences of
the ¢’th literal contained in w. We start by analyzing
the number of pure literals in w. Assume that the

first p literals correspond to pure variables. Let D, =
X1+ Xo+ -+ X,. Thus E(D,) = Ap.
Cram 4.1.
|D, — Ap| < n® q.s.

A. Z. Broder, A. M. Frieze, and E. Upfal

Proof. Define the random variable Dp =Y1+Y+
+Y,, where Y1,Y5, ..., Y, are as in Lemma4.3. Then
part (b) of this lemma implies that
Pr<|Dp —Ap| > n6>
= O(n'/?) Pr(|ﬁp — Ap| > né).

—

4.1)

(Fix v, condition on D, = v, and apply the Lemma to
Xi,..,Xp)

Now let V; = min{Y;,Inn} and let Dp =V, + Yy +
-++Y,. Then

Pr(3i:Y; #Y)

(4.2) < exp(—(1—o(1))Innlnlnn).

Note that this implies ( ) = Ap+ O(n~

Since Yl,Yz, cey Yp are independent, bounded ran-
dom variables, we can apply Hoeffding’s Theorem [17]

to show
277,26
4p(Inn)? ) '

Combining (4.1), (4.2), and (4.3) completes the
proof of Claim 4.1. O

10)  say.

Pr(|D, — E(D;)| > n’/2)
(4.3) e (_

Returning to the proof of the theorem we now
consider the number of clauses left in o’. Fix D,. The
probability that a certain clause does not contain any
pure variables is precisely

Sm—D, 3m—Dy—1 3m—D,—2
3m dm—1 3m—2
Dp ° -1
~(1-22) a+o0 .
(1-52) (+0m)

Hence using Claim 4.1 we see that

E(m')=E (m ( — ?l))—;;) (1 + O(m_l)))
=m(l —a)®+ O(né),
where

_ M p
T 3m 2n—p

We also need to show that m’ is concentrated
around its mean. This can be easily derived via
the use of martingale tail inequalities. To do so,
fix Xq,Xs,..., Xon_p, the number of occurrences of

each literal. Now consider some random permutation
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@1, P2, ..., O3m of the 3m literals. Now interchanging a
pair ¢;, ¢; can change m’ by at most one. Hence (see
e.g. Alon and Spencer [1]),

Pr(jm' —E(m)| >t | X1, X0, ..., X2n_p)
2t*
<2 —-—— .
< 2exp ( Bm)
Putting ¢ = n’ and removing the conditioning shows
that
|m' — E(m")| < n® q.s.

Let us now consider n’ and p’. The same use of
the martingale argument above shows that both are
sufficiently concentrated around their means. Thus we
need only to estimate E(n') and E(p').

Again fix the number of occurrences of each literal.
Consider a fixed non-pure variable, z; say. Suppose that
the literal x; occurs k& > 1 times, and that Z; occurs
! > 1 times. Now throw the literals randomly into 3m
slots corresponding to the literals of w as follows: (a)
throw the k + [ literals z; and Z;; (b) fill the clauses
containing them with other literals; (c) fill the other
clauses.

With probability 1 — O((k + {)?/m) no two of the
k 41 literals end up in the same clause. Assuming this,

the probability r that the variable z; does not make it
to the next round satisfies

(2amin - arznin)k-l—l S r S (2amax - arznax)k-l—l
where
o :Dp—Q(k—I—l) N _ D, .
T 3m— (k40 T 3m = 3(k + 1)

(During part (b) of the construction there are at most
3m—(k+!) and at least 3m—3(k—+!) literals not yet used,
out of which at most D, and at least D, — 2(k + ) are
pure.) Thus assuming k,! < Inn (see Equation (4.2))
we conclude that

2D ’
r= |2 — Dy 140 kil .
3m 3m D,
Let vy ; denote the number of j’s such that X, =k,
and Xz, =1{. Then

E(n—p—n')

2D D\ 2\ FH
-E 2Dp [ Dp
( 2 ”’“”<3m (3m))
1<k <]

By martingale arguments again, we can show that for
all k,1 <lInn, almost surely

AR+ s
Putting
1 o
8= = (exp((?a —a?)A) — 1),

we see that
En—p—n')=(n —p)ﬁ2 + O(né).

Note that 3 is approximately the probability that
a fixed literal appears only in clauses that are deleted.
A similar argument to the above yields the (intuitively
reasonable) fact that

E(p) = 2(n —p)B(1 — B) + O(n°).

4.3 The first iteration. The first iteration of the
algorithm 1s different since we start with a random

w € Qﬁ)n.
THEOREM 4.3. Suppose that w is chosen uniformly
from Qﬁ?n Let n' be the number of variables that

actually appear in w and let p' be the number of pure
variables in w. Then q.s.

n' = n(1— exp(—3m/n)) + O(n’)
p =2n exp(—3m/(2n))(1 — exp(—3m/(2n))) + O(né)

Proof. Use the martingale argument. O

4.4 A sufficient condition for success.

LEMMA 4.4. Let w be a random formula in Qﬁ?n,

and let ¢ = m/n. With high probabilily every subset of
n/(600¢?) clauses in w has at least one pure literal with
respect to itself.

Proof. If a certain subset of k clauses does not
have a pure literal with respect to itself, then its 3k
literals are all chosen from among a set of less than 3k/2
variables. The probability that there exists a subset of
k clauses in w such that all its 3% literals belong to a set
of £ < 3k/2 variables is less than

EPHIGION

1<3k/2



Since £ = 3k/2 gives the largest term in the sum,
2 3k
3k reennF [2en\? [ 3k
< (== - il
re () () (5)
3/2 172\ k
= % ced/? % E = o(1),
2 2 n
for k <n/(600c?). DO

Hence if the algorithm starts with ¢n clauses, and
at some point during its execution the number of
clauses remaining becomes less than n/(600¢?) then the
algorithm will succeed (w.h.p.), since from that point
on the Lemma above promises that the algorithm will
not run out of pure literals.

4.5 Putting everything together. In this subsec-
tion we show that if the algorithm starts with w drawn
{from Qg)ﬂ, it almost surely finds a satisfying assign-
ment, if ¢ < 1.63. The i1dea of the proof is to use Theo-
rem 4.3 once, and then Theorem 4.2 repeatedly, to show
that after a fired, finite number of iterations, with high
probability the number of clauses left in w is less than
n/(600¢?), after which by Lemma 4.4, the algorithm al-
most surely does not fail.

Lemmas 4.1 and 4.2 ensures that the uniformity
conditions required by Theorem 4.2 are satisfied. How-
ever there are two potential stumbling blocks:

e In principle, at the start of each application of
Theorem 4.2 the values m, n, and p are known
only within a 14 0(1) factor. Nevertheless it can be
shown that if we use such approximate values, the
values predicted for m’, n’, and p’ still are almost
surely within a 1+ o(1) factor of the actual values.
Since the number of iterations is finite, this suffices
to prove that the final values are accurate within a
a 14 o(1) factor.

e In practice, what we have at the start of each ap-
plication of Theorem 4.2 are the numeric estimates
for m, n, and p. (More precisely numeric estimates
of the ratios m/ng, n/ng, and p/ng, where ng is
the initial n.) Since we use finite precision, we
need to worry about the cumulative round-off er-
ror. Again since the number of applications is small
(say < 100) if we use enough precision (say 40 dig-
its) then we can guarantee that the final results are
correct to, say, 10 digits, and Lemma 4.4 can be
applied.

The full details of the proof, which include the complete
error analysis, are left for the final paper.
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The battle plan above when applied to m = 1.63n
results in the values presented in Figure 1, that is, we
apply Theorem 4.3 once and Theorem 4.2, iteratively 77
times to conclude that after 78 iterations, almost surely
the number of clauses left is (.0000148 + 10_7)71(1 +
o(1)). Since this is less than n/(600-1.63%) ~ .000627n,
by Lemma 4.4 the algorithm will almost surely succeed
in this case. (The actual computations were done by
MAPLE [4]) with 30 digits of accuracy, which ensure more
than 7 digits in the final result.

We can probably prove a slightly better bound than
1.63 at the expense of even more iterations, but for
m > 1.7n the algorithm is almost certain to fail — the
proof of this is given in the next section.

Tter. m/ng= | n/ngr | p/ng=
0 | 1.6300000 | .9924785 | .1584094
1] 1.2416257 | .8321861 | .0754947
2 | 1.0729162 | .7559570 | .0456785
3| .9757320 | .7099215 | .0311313
4| 9115719 | .6785915 | .0228269

16 | .6839027 | .5604441 | .0039727
17 | .6766309 | .5564652 | .0036935
18 | .6698942 | 5527661 | .0034551
30 | .6114513 | 5201327 | .0022309
31| .6075173 | 5178994 | .0022046
32| .6036380 | .5156923 | .0021859
44 | 5567591 | 4886338 | .0025312
45 | 5524330 | .4860991 | .0026174
46 | 5479711 | 4834778 | .0027162
58 | 4731273 | 4383696 | .0058926
59 | 4635879 | .4324521 | .0065074
60 | .4531244 | 4259134 | .0072370
73 | .0918368 | .1403240 | .0492052
74| .0448331 | .0806850 | .0407996
75 | .0129840 | .0284797 | .0198463
76 | .0013075 | .0034452 | .0030089
77 | .0000148 | .0000434 | .0000422

Figure 1: Repeated applications of Theorem 1 for m =
1.63n.

Simulation experiments show excellent concordance
with these values even for moderate values of n. Details
will be given in the final paper.
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4.6 An upper bound on the performance of the
algorithm. We show in this section that our analysis
of the algorithm is close to optimal. For formulas with
more than 1.7n random clauses the algorithm almost
always fails.

THEOREM 4.4. Let w € Q). with m > 1.7n.
Then with high probability the algorithm fails to find a
satisfying assignment for w.

Proof. (Outline) Without loss of generality we can
assume that m/n = 1.7. Let n;, m;, p; denote the
number of variables, clauses and pure literals at the
end of iteration 7. Let A;, ;\Z', a;, and §; denote the

associated values of A, A, o, and 3 (See Theorem 4.2.)
Suppose that aj gets small. Then simple estima-
tions give
2\,
M — 1

wo,

(4.4) Sk

agp1 = B < ag +

If simultaneously Mg is reasonably large, so that 2 <
e* — 1 then we can expect a; to tend to zero. More
precisely, fix € > 0 and let £ = &, and n = 7, satisfy

26 &
m—l—QE and _6_5—7].
Then
. . 2Nk
Ax > 1 implies <1—2e.
er — 1

Suppose that after a (bounded) number of iterations we
reach a stage r where quite surely
N

ar <€?/2 and /\Tzl—e'

(When m = 1.7n and ¢ = 107%/2 we find that Theorems
4.2 and 4.3 imply that this happens at r = 20.)
Calculations, using Theorem 4.2 and (4.4) then show
that as long as m;,n;,p; > n® and i > r then quite
surely

(4.5) A > 0
iy < (1=
n; > ne(l—e —O(né)
m; > mr(l—e)S—O(né)

Thus (q.s.) there exists a s > r, with s = O(Ilnn) and a
constant v > 0 such that

ms,ng >yn and  ps < n’.

We complete the proof by showing that for ¢ > s

(4.6) E(piy1) < (1—¢/2)E(p:)
4.7 miy1 > m; —O(psInn)
48) nit1 > ni—O(piInn)

Inequality (4.6) shows that (w.h.p.) there exists a
t > s, t = O(lnn) such that p, = 0 and then (4.7)
shows that m; > m, — O(n’(Inn)?) > 0 and thus the
algorithm has failed.

The proof of (4.7) and (4.8) is immediate since quite
surely no pure variable appears in the formula more
than Inn times.

To prove (4.6) fix ¢ > s and let p = p;, v = n;,
and g = my;. Let Y1,Y5,...)Y, be as in Lemma 4.3.
Assume that the first p literals are pure and condition
on X9 +---+X, =Y 4+---4+Y, = D. Consider the
probability that the complement of the z,41 (the p +1
literal) becomes pure. The number of occurrences of
Zp41 18 X,41 which is of course distributed as Y, ;. We
obtain that

E(piy1 | D) < (20 —p) Y Pr(Ypp1 = k| D)
(4.9)

Applying Theorem 4.1 twice we obtain that

Pr(Yyp1 = k| D)
 Pr(Yyy = kAY, 44 Y, =3u—D—k)
- Pr(Y,414+---+Y, =3u—D)
_ Pr(Y 1 =k)Pr(Y, o4+ Y, =3u—D—k)
- Pr(Y,y14+---+Y, =3u—D)
A 51
= —1t (1 +0(n ))
(er — 1)k!

But quite surely £ <Inn and |D — Ap| < /Aplnn.
Values outside of these ranges make insignificant con-
tributions to the expectation in (4.9) and so we assume
that &k, D are within these ranges. Thus

2v—0p

2\ D
- exp -1
eri — 1 3u—3lnn

x (L+0(n"™1)

2A 2v—p S—1
- : -D-(14+0(n .
< 2Bl (14 0wt )

E(pis1| D) <




Removing the conditioning, and substituting A; =
3p/(2v — p), we get

E(piy1) < fA_ (f) (1+0(n"™h)
= (10

and (4.6) follows since A;

> n (see (4.5)). This
completes our outline proof. 0O

5 Concentration of maximum satisfiability

Given a formula w, let M(w) denote the maximum
number of clauses in w that can be simultaneously
satisfied. TLet T(m,k) = E(M(w)) for w € Qgﬁ?n
We prove that M(w) is tightly concentrated around
T(m, k).

Let Xo(0), X2(0),..., Xm(o) be a sequence of ran-
dom variables (the “Doob martingale”) defined by

X;(0) = E(M(w) |w € © and the first ¢ clauses
in ¢ and w are identical).
Clearly Xo = E(M) = T(m,k) and X,,,(c) = M(o).
Also E(X;41 | X;) = X;, which is the martingale

condition. Since |X;41(0) — Xi(o)] < 1, we can use
Azuma’s inequality to prove:

THEOREM 5.1. Let w € Q%%
E(M(w)). Then

Pr(|M(w) — T(m, k)| > \/2mlogm) < 1/m.

and let T(m, k) =

The martingale technique only shows that the value
of M(w) is almost sure close to it expectation. Tt
does not specify the expectation. For n linear in m
computing the expectation i1s an open problem; for
o(m) a straightforward calculation shows that
M (w) is almost always close to (1 — 27%)m.

n =
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Appendices
A The MAPLE program

Below is a straightforward MAPLE program used to
compute the table in Figures 1. (This is not meant
as an example of Maple programming. The terser

A. Z. Broder, A. M. Frieze, and E. Upfal

original was modified for ease of readability.) The
program maintains three global variables, mu, nu, pi,
that represent respectively the ratios m/ng, n/ng, and

P/n0~

Digits := 40;

start := proc(c)

# Apply Theorem 2 to compute the initial values
mi = C;
nu := 1 - exp(-3%c);

pi:= 2%exp(-3*c/2)*(1 - exp(-3*c/2));
print (mu, nu, pi);
end;
rec := proc()
# Compute current alpha, lambda, lambdah, and beta

alpha := pi/(2*nu-pi);

lambda := 3*mu/(2%nu-pi);

lambdah := fsolve(lambda=x/(l-exp(-x)),x,
fulldigits);

beta := 1/(exp(lambdah)-1)

* (exp((2#alpha - alpha”2)*lambdah) -1);

# Save the old values

muold := mu; nuold := nu; piold := pi;
# Apply Theorem 1 to compute new values
:= muold* (1-alpha) "3;

nu := (nuold - pi)*(l-beta”2);

pi := 2*(nuold-piold)#*beta*(l-beta);

print (mu, nu, pi);
end;

nu

The program used to generate Figure 1 was:

start(1.63); for j to 80 do rec() od;

B Simulation results

Below is a run of a simulation using 100000 variables and
163000 random clauses. Notice that the results are very
close to the predictions made in Figure 1. If we average
over several runs, then the numbers are even closer.
But our proof shows, and the experiments confirm, that
almost surely for every run the results are very close to
expected values.

Tter. m/ng n/ng p/ng | Clauses
1] 1.630000 | 0.992950 | 0.160770 | 123687
2 | 1.236870 | 0.830180 | 0.075240 | 107101
3 | 1.071010 | 0.754250 | 0.044230 97790
41 0.977900 | 0.709650 | 0.029890 91552
5 | 0.915520 | 0.679620 | 0.022700 86984
6 | 0.869840 | 0.656850 | 0.017190 83584
7 | 0.835840 | 0.639620 | 0.014290 80789
8 | 0.807890 | 0.625270 | 0.011750 78517
9 | 0.785170 | 0.613500 | 0.009810 76675

10 | 0.766750 | 0.603680 | 0.007780 75153
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Tter. m/ng n/ng p/ng | Clauses
11 | 0.751530 | 0.595860 | 0.006540 73906
12 | 0.739060 | 0.589300 | 0.005580 72867
13 | 0.728670 | 0.583700 | 0.004970 71928
14 | 0.719280 | 0.578730 | 0.004340 71099
15 | 0.710990 | 0.574390 | 0.004220 70331
16 | 0.703310 | 0.570170 | 0.003860 69610
30 | 0.639180 | 0.535120 | 0.001710 63597
31 | 0.635970 | 0.533400 | 0.001810 63298
32 | 0.632980 | 0.531590 | 0.001620 63019
44 | 0.604350 | 0.515220 | 0.001090 60247
45 | 0.602470 | 0.514130 | 0.001140 60056
46 | 0.600560 | 0.512990 | 0.001020 59876
58 | 0.584220 | 0.503390 | 0.000710 58288
59 | 0.582880 | 0.502680 | 0.000820 58154
60 | 0.581540 | 0.501850 | 0.000830 58003
72 | 0.561520 | 0.490420 | 0.000960 55991
73 | 0.559910 | 0.489460 | 0.000970 55817
74 | 0.558170 | 0.488490 | 0.001070 55633
86 | 0.530090 | 0.471920 | 0.001870 52718
87 | 0.527180 | 0.470050 | 0.001850 52404
838 | 0.524040 | 0.468200 | 0.002060 52060

100 | 0.463400 | 0.431280 | 0.005060 45540
101 | 0.455400 | 0.426210 | 0.005620 44661
102 | 0.446610 | 0.420560 | 0.005480 43791
112 | 0.273310 | 0.303100 | 0.028370 23548
113 | 0.235480 | 0.273780 | 0.034130 19243
114 ] 0.192430 | 0.237610 | 0.040080 14397
115 | 0.143970 | 0.193970 | 0.046370 9311
116 | 0.093110 | 0.140980 | 0.047670 4749
117 | 0.047490 | 0.083960 | 0.040810 1492
118 | 0.014920 | 0.031800 | 0.021140 195
119 | 0.001950 | 0.005010 | 0.004330 6
120 | 0.000060 | 0.000180 | 0.000180 0
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