
Chapter 1On the Satis�ability and Maximum Satis�ability of Random 3-CNF FormulasAndrei Z. Broder� Alan M. Friezey Eli UpfalzAbstractWe analyze the pure literal rule heuristic for computing asatisfying assignment to a random 3-CNF formula with nvariables. We show that the pure literal rule by itself �ndssatisfying assignments for almost all 3-CNF formulas withup to 1:63n clauses, but it fails for more than 1:7n clauses.As an aside we show that the value of maximum satis-�ability for random 3-CNF formulas is tightly concentratedaround its mean.1 IntroductionGiven a boolean formula ! in conjunctive normal form,the satis�ability problem (sat) is to determine whetherthere is a truth assignment that satis�es !. Since satis NP-complete, one is interested in e�cient heuristicsthat perform well \on average," or with high probability.The choice of the probabilistic space is crucial for thesigni�cance of such a study. In particular, it is easy todecide sat in probabilistic spaces that generate formulaswith large clauses [16]. To circumvent this problem,recent studies have focused on formulas with exactly kliterals per clause (the k-sat problem). Of particularinterest is the case k = 3, since this is the minimal k forwhich the problem is NP-complete.Consider the space 
(3)m;n of all m clause formulasover n variables with exactly 3 literals per clause. Itis clear that if the ratio c = m=n is small then arandom formula is almost surely satis�able. (As a trivialexample, ifm=n = o(pn), then with high probability novariable occurs twice.) Experimental evidence [18, 19]strongly suggests that there exists a threshold , suchthat formulas are almost surely satis�able for c <  andalmost surely unsatis�able for c > , where  is about4:2 . So far however, only much weaker bounds wereproven and it is not known whether a sharp threshold�DEC Systems Research Center, 130 Lytton Ave, Palo Alto,CA 94301. E-mail: broder@src.dec.comyDepartment of Mathematics, Carnegie-Mellon University. Aportion of this work was done while the author was visiting DECSRC. Supported in part by NSF grant CCR9024935. E-mail:af1p@euler.math.cmu.eduzIBM Almaden Research Center, San Jose, CA 95120, andDepartment of Applied Mathematics, Weizmann Institute ofScience, Rehovot, Israel. E-mail: ely@almaden.ibm.com

really exists. Such a threshold (namely c=1) exists for2-CNF formulas [15, 5].Chao and Franco [3] and Chvatal and Reed [5]analyzed heuristics that almost surely �nd satisfyingassignments for ! 2 
(3)m;n with m � n, thus provingthat c = 1 is a lower bound for the maximum value of cthat guarantees almost sure satis�ability in 
(3)m;n. Veryrecently, Frieze and Suen [14] have increased this lowerbound to � 3:003.A simple counting argument [7] shows that if cexceeds a constant greater than log8=7 2 = 5:190 : : :then a formula in 
(3)m;n is almost surely unsatis�able.This bound is not optimal; a minuscule improvement(to about log8=7 2� 10�7) will be presented in the �nalpaper.Most practical algorithms for the satis�ability prob-lem (such as the well-known Davis-Putnam algorithm[6]) work iteratively. At each iteration, the algorithmselects a literal and assigns to it the value 1. All clausescontaining this literal are erased from the formula, andthe complement of the chosen literal is erased from theremaining clauses. Algorithms di�er in the way theyselect the literal for each iteration. The following threerules are the most common ones:1. The unit clause rule: If a clause contains only oneliteral, that literal must have the value 1;2. The pure literal rule: If a formula contains a literalbut does not contain its complement, this literal isassigned the value 1;3. The smallest clause rule: If there is no unit clauseor a pure literal, give value 1 to a (random) variablein a smallest clause.Previous analyses of algorithms for random satinstances avoided the pure literal rule, and consideredonly the unit clause rule, or a combination of the unitclause rule and the smallest clause rule. The reason isthat if one starts with a random formula and appliesthe unit clause rule and/or the smallest clause rule,the distribution of literals in the remaining formula israndom and uniform, conditional only on the number1



2 A. Z. Broder, A. M. Frieze, and E. Upfaland size of the remaining clauses. This property, whichgreatly simpli�es the analysis, does not hold when thepure literal rule is applied since in the remaining formulathere is a dependency between the occurrence of a literaland the occurrence of its complement.In this paper we present the analysis of an algorithmbased on the pure literal rule. We show that in the
(3)m;n probabilistic space, the pure literal rule alone issu�cient to �nd, with high probability, a satisfyingassignment for a random formula ! 2 
(3)m;n, for m=n �1:63. On the other hand, if m=n > 1:7, then the pureliteral rule by itself does not su�ce. The gap between1.63 and 1.7 is not a \real gap". It seems that byincreased computation we can make the gap as small aswe like, although we do not at present have a rigorousproof that there is a precise threshold.Maximum satis�ability (max-sat) is the optimiza-tion version of the satis�ability problem. Given a CNFformula ! the goal is to determine the maximum num-ber of clauses in ! that can be simultaneously satis-�ed. This problem arises often in database and expert-systems applications. The decision version of max-sat is NP-complete; however, max-sat can be approxi-mated within a constant ratio. In particular if all clausescontain at least 3 literals,max-sat can be approximatedwithin a 7=8 factor, since one can always �nd a truthassignment that satis�es at least 7=8 of the clauses in aformula with at least 3 literals per clause [20].We prove a concentration phenomenon for max-sat: we show that there is a function T (m; k) such thatif ! 2 
(k)m;n, with high probability the di�erence be-tween max-sat(!) and T (m; k) is o(T (m; k)). For largem (e.g. n = o(m)) clearly T (m; k) = (1 � 2�k)m. Forsmaller values ofm we prove tight concentration using amartingale technique, but could not determine the ac-tual value. This result shows that the approximationproblem for maximum satis�ability is in a certain sensetrivial in this probabilistic setting since the maximumsatis�ability value is almost always very close to a �xedvalue that depends only on m and k.2 De�nitions and NotationsThroughout this paper formulas are represented inconjunctive normal form. Let V = fx1; :::; xng be a setof n variables. A literal is a variable xi or its negation�xi. The set of all literals is denoted L. A clause isa disjunction of literals, a formula is a conjunction ofclauses.Let ! be a formula over the set V of variables. Atruth assignment for ! is a function t : L! f0; 1g, such

that t(�x) = 1� t(x). A truth assignment satis�es ! if atleast one literal in each clause of ! is assigned the value1. Our analysis is done in the probabilistic space 
(3)m;n,the space of all formulas over n variables with m clausesand exactly 3 literals per clause. To avoid irrelevantintricacies we view the formula as an ordered list ofclauses, and each clause as an ordered list of literals.A random formula ! 2 
(3)m;n is generated by choosingeach of the 3m literals in ! uniformly at random fromthe 2n possible literals.Call a literal z (resp. �z) pure in a formula !, if itappears in ! but �z (resp. z) does not. We also refer tothe associated variable as being pure.Let �m;n;p denote the set of 3-CNF formulas inwhich there arem clauses that contain n variables out ofwhich p are pure. (Note that �m;n;p is not simply 
(3)m;nconditional on p: a formula in �m;n;p must actuallycontain n variables, while a formula in 
(3)m;n mightcontain fewer.)We say that a property holds with high probability(w.h.p.) if it holds with probability 1� o(1) as n!1and quite surely (q.s.) if the o(1) term is O(n�a) for anyconstant a. (The latter terminology is borrowed from[10])3 AlgorithmThe algorithm that we analyze consists of the repeatedsimultaneous elimination of all clauses containing pureliterals. More formally the algorithm can be describedas follows:Algorithm 3.1.while ! contains pure literals doLet � = fAll pure literals in !g.Assign 1 to all literals in �.Remove from ! all clauses containing a literalfrom �.odif ! = ; then Success else Failure.4 Analysis of the algorithmWe �rst observe that if the algorithm fails on an instance! then it will also fail on an instance !̂ obtained byadding an extra clause to !. Hence, for a �xed n, theprobability that the algorithm succeeds decreases as mincreases.



On the Satis�ability and Maximum Satis�ability of Random 3-CNF Formulas 34.1 Maintenance of uniformity.Lemma 4.1. Suppose ! is chosen uniformly from�m;n;p and all clauses containing pure variables aredeleted. Let !0 2 �m0 ;n0;p0 be the formula that remains.Then conditional on the values of m0, n0, and p0,the formula !0 is equally likely to be any formula in�m0 ;n0;p0 .Proof. Fix !0 2 �m0;n0;p0 . We only need to showthat the number of formulas ! 2 �m;n;p which maponto !0 by the deletion process depends only on n, m,p, n0, m0, and p0 and not on the particular !0.Assume that the variables in �m;n;p are xj for j 2 Nand those in �m0;n0;p0 are xj for j 2 N 0 � N . We canconstruct all the ! that map to !0 as follows:1. Choose a set � � N n N 0 of size p. Let G =N n (N 0 [ �), thus jGj = n � n0 � p.2. Assign a label xj or �xj for each j 2 �. Call thesethe �-literals.3. Make up m �m0 clauses using the variables xj forj 2 N such that� Each clause contains at least one �-literal;� Each �-literal occurs at least once;� For each j 2 G, both xj and �xj appear at leastonce;� If xj is pure in !0 (there are exactly p0 suchliterals) then its complementary literal mustappear at least once.4. Insert the new clauses somewhere among the old.Finally observe that the number of sets of clausessatisfying 1{4 above depends only on n, m, p, n0, m0,and p0. 2Lemma 4.2. Suppose that ! is chosen uniformlyfrom 
(3)m;n. Let n0 be the number of variables thatactually appear in ! and let p0 be the number of purevariables in !. Then conditional on the values of n0 andp0, the formula !0 is equally likely to be any formula in�m;n0;p0 .Proof. Obvious. 2We conclude that during the entire execution of thealgorithm, conditional on the current values ofm, n, andp, the formula w is uniformly distributed over �m;n;p.

4.2 The results of one iteration. We will �rststate a local central limit theorem which will be useda number of times in the paper. It is a special case ofTheorem 4.5.2 of Durrett [9].Theorem 4.1. Let Z1; Z2; : : : ; Zn be non-negativei.i.d. integer valued random variables with E(Z1) = �,Var(Z1) = �2 2 (0;1), and Pr(Z1 = k) > 0 for allnon-negative integers k. Let Sn = Z1 + Z2 + � � �+ Zn.Let a = a(n) be a positive integer, and de�ne x byx = (a � n�)=(�pn). Further let pn(x) = Pr(Sn = a).Then jn1=2pn(x)� �(x)j ! 0; as n!1;where �(x) = (2�)�1=2e�x2=2 is the density of thestandard normal distribution.Let � = 3m=(2n� p). Then � is the averagenumber of occurrences of a literal in ! 2 �m;n;p. De�ne�̂ by � = �̂=(1� e��̂). (This is well de�ned since theRHS increases from �1 to 1 with �̂ � 0.)The distribution Z given byPr(Z = k) = �̂ke��̂(1 � e��̂)k! = �̂k(e�̂ � 1)k! ; k � 1;is called a truncated Poisson distribution. Note thatE(Z) = �.Let now ~X = (X1; X2; : : : ; XN ) denote the numberof occurrences of the N = 2n � p literals of theformula ! chosen uniformly at random from �m;n;p.Let ~Y = (Y1; Y2; : : : ; YN ) denote N independent randomvariables with distribution Z. As before, let M = 3m.Lemma 4.3.(a) The variables X1; X2; : : : ; XN are jointly dis-tributed as Y1; Y2; : : : ; YN conditional on P1�j�N Yj =M . (b) Pr�P1�j�N Yj =M� = 
(1=pN ).Proof. LetA = n~x 2 [N ]M��� X1�j�N xj =M and 8j; xj � 1o:Fix ~� 2 A. ThenPr( ~X = ~�) = � M !�1!�2! : : : �N !���X~x2A M !x1!x2! : : :xN !�;



4 A. Z. Broder, A. M. Frieze, and E. UpfalandPr�~Y = ~� jP1�j�N Yj = M�= � Y1�j�N �̂�j(e�̂ � 1)�j!���X~x2A Y1�j�N �̂xj(e�̂ � 1)xj!�= � (e��̂ � 1)�N �̂M�1!�2! : : : �N ! ���X~x2A (e��̂ � 1)�N �̂Mx1!x2! : : :xN ! �and (a) follows. To prove (b), apply Theorem 4.1 withZj = Yj for j = 1; : : : ; N and x = 0. 2For the remainder of the paper, we �x an arbitraryconstant �, such that 1=2 < � < 1.Theorem 4.2. Suppose that ! is chosen uniformlyfrom �m;n;p and all clauses containing pure variablesare deleted. Assume that m; p � n�. Let !0 2 �m0 ;n0;p0be the formula that remains. Then quite surely��m0 �m(1 � �)3�� = O(n�)��n0 � (n� p)(1� �2)�� = O(n�)jp0 � 2(n� p)�(1 � �)j = O(n�)where � = p2n� p ;(� is the probability that a random literal in ! is pure),and � = 1e��̂ � 1�exp((2�� �2)�̂)� 1�;(� is approximately the probability that a �xed literalappears only in clauses that are deleted).The value �̂ above is de�ned as before by� = �̂1� e��̂ ;where � = 3m=(2n� p) is the average number ofoccurrences of a literal in !.Proof. Let Xi denote the number of occurrences ofthe i'th literal contained in !. We start by analyzingthe number of pure literals in !. Assume that the�rst p literals correspond to pure variables. Let Dp =X1 +X2 + � � �+Xp. Thus E(Dp) = �p.Claim 4.1. jDp � �pj < n� q.s.

Proof. De�ne the random variable D̂p = Y1 + Y2 +� � �+Yp, where Y1; Y2; : : : ; Yp are as in Lemma 4.3. Thenpart (b) of this lemma implies thatPr�jDp � �pj � n��= O(n1=2)Pr�jD̂p � �pj � n��:(4.1)(Fix v, condition on Dp = v, and apply the Lemma toX1; : : : ; Xp.)Now let ~Yi = minfYi; lnng and let ~Dp = ~Y1 + ~Y2 +� � �+ ~Yp. ThenPr(9i : ~Yi 6= Yi)� exp��(1� o(1)) lnn ln lnn�:(4.2)Note that this implies E( ~Dp) = �p+ O(n�10), say.Since ~Y1; ~Y2; : : : ; ~Yp are independent, bounded ran-dom variables, we can apply Hoe�ding's Theorem [17]to showPr�j ~Dp � E( ~Dp)j � n�=2�� 2 exp�� 2n2�4p(lnn)2� :(4.3)Combining (4.1), (4.2), and (4.3) completes theproof of Claim 4.1. 2Returning to the proof of the theorem we nowconsider the number of clauses left in !0. Fix Dp. Theprobability that a certain clause does not contain anypure variables is precisely3m�Dp3m � 3m �Dp � 13m � 1 � 3m�Dp � 23m � 2= �1� Dp3m�3 �1 + O(m�1)� :Hence using Claim 4.1 we see thatE(m0) = E m�1� Dp3m�3 �1 +O(m�1)�!= m(1 � �)3 +O(n�);where � = �p3m = p2n� p :We also need to show that m0 is concentratedaround its mean. This can be easily derived viathe use of martingale tail inequalities. To do so,�x X1; X2; : : : ; X2n�p, the number of occurrences ofeach literal. Now consider some random permutation



On the Satis�ability and Maximum Satis�ability of Random 3-CNF Formulas 5�1; �2; : : : ; �3m of the 3m literals. Now interchanging apair �i; �j can change m0 by at most one. Hence (seee.g. Alon and Spencer [1]),Pr�jm0 �E(m0)j � t j X1; X2; : : : ; X2n�p�� 2 exp��2t23m� :Putting t = n� and removing the conditioning showsthat jm0 � E(m0)j < n� q.s.Let us now consider n0 and p0. The same use ofthe martingale argument above shows that both aresu�ciently concentrated around their means. Thus weneed only to estimate E(n0) and E(p0).Again �x the number of occurrences of each literal.Consider a �xed non-pure variable, xj say. Suppose thatthe literal xj occurs k � 1 times, and that �xj occursl � 1 times. Now throw the literals randomly into 3mslots corresponding to the literals of ! as follows: (a)throw the k + l literals xj and �xj; (b) �ll the clausescontaining them with other literals; (c) �ll the otherclauses.With probability 1 � O((k + l)2=m) no two of thek+ l literals end up in the same clause. Assuming this,the probability r that the variable xj does not make itto the next round satis�es(2�min � �2min)k+l � r � (2�max � �2max)k+lwhere�min = Dp � 2(k + l)3m� (k + l) ; �max = Dp3m� 3(k + l) :(During part (b) of the construction there are at most3m�(k+l) and at least 3m�3(k+l) literals not yet used,out of which at most Dp and at least Dp � 2(k + l) arepure.) Thus assuming k; l � lnn (see Equation (4.2))we conclude thatr = �2Dp3m � �Dp3m�2��1 +O�k + lDp �� :Let �k;l denote the number of j's such thatXxj = k,and X�xj = l. ThenE(n�p� n0)= E� X1�k;l�lnn�k;l�2Dp3m ��Dp3m�2�k+l+ O�n(lnn)2Dp ��= E� X1�k;l�lnn�k;l(2�� �2)k+l�+O(n�):

By martingale arguments again, we can show that forall k; l � lnn, almost surely�k;l = (n� p) �̂k+l(e�̂ � 1)2k!l! +O(n�):Putting � = 1e��̂ � 1�exp((2�� �2)�̂)� 1�;we see thatE(n� p� n0) = (n � p)�2 +O(n�):Note that � is approximately the probability thata �xed literal appears only in clauses that are deleted.A similar argument to the above yields the (intuitivelyreasonable) fact thatE(p0) = 2(n� p)�(1 � �) +O(n�):24.3 The �rst iteration. The �rst iteration of thealgorithm is di�erent since we start with a random! 2 
(3)m;n.Theorem 4.3. Suppose that ! is chosen uniformlyfrom 
(3)m;n. Let n0 be the number of variables thatactually appear in ! and let p0 be the number of purevariables in !. Then q.s.n0 = n�1� exp(�3m=n)� +O(n�)p0 = 2n exp(�3m=(2n))�1� exp(�3m=(2n))�+ O(n�)Proof. Use the martingale argument. 24.4 A su�cient condition for success.Lemma 4.4. Let ! be a random formula in 
(3)m;n,and let c = m=n. With high probability every subset ofn=(600c2) clauses in ! has at least one pure literal withrespect to itself.Proof. If a certain subset of k clauses does nothave a pure literal with respect to itself, then its 3kliterals are all chosen from among a set of less than 3k=2variables. The probability that there exists a subset ofk clauses in ! such that all its 3k literals belong to a setof ` < 3k=2 variables is less thanP = X`�3k=2�mk��ǹ�� ǹ�3k :



6 A. Z. Broder, A. M. Frieze, and E. UpfalSince ` = 3k=2 gives the largest term in the sum,P � 3k2 �ecnk �k�2en3k �3k2 �3k2n�3k= 3k2  ce5=2�32�3=2�kn�1=2!k = o(1);for k � n=(600c2). 2Hence if the algorithm starts with cn clauses, andat some point during its execution the number ofclauses remaining becomes less than n=(600c2) then thealgorithm will succeed (w.h.p.), since from that pointon the Lemma above promises that the algorithm willnot run out of pure literals.4.5 Putting everything together. In this subsec-tion we show that if the algorithm starts with ! drawnfrom 
(3)cn;n, it almost surely �nds a satisfying assign-ment, if c � 1:63. The idea of the proof is to use Theo-rem 4.3 once, and then Theorem 4.2 repeatedly, to showthat after a �xed, �nite number of iterations, with highprobability the number of clauses left in ! is less thann=(600c2), after which by Lemma 4.4, the algorithm al-most surely does not fail.Lemmas 4.1 and 4.2 ensures that the uniformityconditions required by Theorem 4.2 are satis�ed. How-ever there are two potential stumbling blocks:� In principle, at the start of each application ofTheorem 4.2 the values m, n, and p are knownonly within a 1+o(1) factor. Nevertheless it can beshown that if we use such approximate values, thevalues predicted for m0, n0, and p0 still are almostsurely within a 1 + o(1) factor of the actual values.Since the number of iterations is �nite, this su�cesto prove that the �nal values are accurate within aa 1 + o(1) factor.� In practice, what we have at the start of each ap-plication of Theorem 4.2 are the numeric estimatesfor m, n, and p. (More precisely numeric estimatesof the ratios m=n0, n=n0, and p=n0, where n0 isthe initial n.) Since we use �nite precision, weneed to worry about the cumulative round-o� er-ror. Again since the number of applications is small(say < 100) if we use enough precision (say 40 dig-its) then we can guarantee that the �nal results arecorrect to, say, 10 digits, and Lemma 4.4 can beapplied.The full details of the proof, which include the completeerror analysis, are left for the �nal paper.

The battle plan above when applied to m = 1:63nresults in the values presented in Figure 1, that is, weapply Theorem 4.3 once and Theorem 4.2, iteratively 77times to conclude that after 78 iterations, almost surelythe number of clauses left is (:0000148 � 10�7)n�1 +o(1)�. Since this is less than n=(600 �1:632) � :000627n,by Lemma 4.4 the algorithm will almost surely succeedin this case. (The actual computations were done bymaple [4]) with 30 digits of accuracy, which ensure morethan 7 digits in the �nal result.We can probably prove a slightly better bound than1.63 at the expense of even more iterations, but form > 1:7n the algorithm is almost certain to fail { theproof of this is given in the next section.Iter. m=n0 � n=n0 � p=n0 �0 1.6300000 .9924785 .15840941 1.2416257 .8321861 .07549472 1.0729162 .7559570 .04567853 .9757320 .7099215 .03113134 .9115719 .6785915 .0228269... ... ... ...16 .6839027 .5604441 .003972717 .6766309 .5564652 .003693518 .6698942 .5527661 .0034551... ... ... ...30 .6114513 .5201327 .002230931 .6075173 .5178994 .002204632 .6036380 .5156923 .0021859... ... ... ...44 .5567591 .4886338 .002531245 .5524330 .4860991 .002617446 .5479711 .4834778 .0027162... ... ... ...58 .4731273 .4383696 .005892659 .4635879 .4324521 .006507460 .4531244 .4259134 .0072370... ... ... ...73 .0918368 .1403240 .049205274 .0448331 .0806850 .040799675 .0129840 .0284797 .019846376 .0013075 .0034452 .003008977 .0000148 .0000434 .0000422Figure 1: Repeated applications of Theorem 1 for m =1:63n.Simulation experiments show excellent concordancewith these values even for moderate values of n. Detailswill be given in the �nal paper.



On the Satis�ability and Maximum Satis�ability of Random 3-CNF Formulas 74.6 An upper bound on the performance of thealgorithm. We show in this section that our analysisof the algorithm is close to optimal. For formulas withmore than 1:7n random clauses the algorithm almostalways fails.Theorem 4.4. Let ! 2 
(3)m;n, with m � 1:7n.Then with high probability the algorithm fails to �nd asatisfying assignment for !.Proof. (Outline) Without loss of generality we canassume that m=n = 1:7. Let ni, mi, pi denote thenumber of variables, clauses and pure literals at theend of iteration i. Let �i, �̂i, �i, and �i denote theassociated values of �, �̂, �, and � (See Theorem 4.2.)Suppose that �k gets small. Then simple estima-tions give�k+1 = �k � 2�̂ke�̂k � 1�k + 4�̂2ke�̂k � 1�2k:(4.4)If simultaneously �̂k is reasonably large, so that 2�̂k <e�̂k � 1 then we can expect �i to tend to zero. Moreprecisely, �x � > 0 and let � = ��, and � = �� satisfy2�e� � 1 = 1� 2� and �1� e�� = �:Then �k � � implies 2�̂ke�̂k � 1 � 1� 2�:Suppose that after a (bounded) number of iterations wereach a stage r where quite surely�r � �2=2 and �r � �1� � :(Whenm = 1:7n and � = 10�4=2 we �nd that Theorems4.2 and 4.3 imply that this happens at r = 20.)Calculations, using Theorem 4.2 and (4.4) then showthat as long as mi; ni; pi � n� and i > r then quitesurely �i � �(4.5) �i+1 � (1� �)�ini � nr(1� �)� O(n�)mi � mr(1� �)3 � O(n�)Thus (q.s.) there exists a s > r, with s = O(lnn) and aconstant  > 0 such thatms; ns � n and ps � n�:

We complete the proof by showing that for i � sE(pi+1) � (1 � �=2)E(pi)(4.6) mi+1 � mi �O(pi lnn)(4.7) ni+1 � ni � O(pi lnn)(4.8)Inequality (4.6) shows that (w.h.p.) there exists at � s, t = O(lnn) such that pt = 0 and then (4.7)shows that mt � mr � O(n�(lnn)2) > 0 and thus thealgorithm has failed.The proof of (4.7) and (4.8) is immediate since quitesurely no pure variable appears in the formula morethan lnn times.To prove (4.6) �x i � s and let � = pi, � = ni,and � = mi. Let Y1; Y2; : : : ; Y� be as in Lemma 4.3.Assume that the �rst � literals are pure and conditionon X1 + � � �+ X� = Y1 + � � �+ Y� = D. Consider theprobability that the complement of the z�+1 (the � + 1literal) becomes pure. The number of occurrences ofz�+1 is X�+1 which is of course distributed as Y�+1. Weobtain thatE(pi+1 j D) � (2� � �) �Xk=1Pr(Y�+1 = k j D)� k�1Yj=0 2(D � j)3�� 2j � k(4.9)Applying Theorem 4.1 twice we obtain thatPr(Y�+1 = k j D)= Pr(Y�+1 = k ^ Y�+2 + � � �+ Y� = 3��D � k)Pr(Y�+1 + � � �+ Y� = 3��D)= Pr(Y�+1 = k)Pr(Y�+2 + � � �+ Y� = 3��D � k)Pr(Y�+1 + � � �+ Y� = 3��D)= �̂ki(e�̂i � 1)k! �1 + O(n��1)�But quite surely k � lnn and jD � ��j � p�� lnn.Values outside of these ranges make insigni�cant con-tributions to the expectation in (4.9) and so we assumethat k;D are within these ranges. ThusE(pi+1 j D) � 2� � �e�̂i � 1  exp� 2�̂iD3�� 3 lnn�� 1!� �1 +O(n��1)�� 2�̂e�̂ � 1 � 2� � �3� �D � �1 + O(n��1)� :



8 A. Z. Broder, A. M. Frieze, and E. UpfalRemoving the conditioning, and substituting �i =3�=(2� � �), we getE(pi+1) � 2�̂ie�̂i � 1 � E(D)�i �1 + O(n��1)�= 2�̂ie�̂i � 1� �1 +O(n��1)�and (4.6) follows since �i � � (see (4.5)). Thiscompletes our outline proof. 25 Concentration of maximum satis�abilityGiven a formula !, let M (!) denote the maximumnumber of clauses in ! that can be simultaneouslysatis�ed. Let T (m; k) = E(M (!)) for ! 2 
(k)m;n.We prove that M (!) is tightly concentrated aroundT (m; k).Let X0(�); X2(�); : : : ; Xm(�) be a sequence of ran-dom variables (the \Doob martingale") de�ned byXi(�) = E(M (!) j! 2 
 and the �rst i clausesin � and ! are identical):Clearly X0 = E(M ) = T (m; k) and Xm(�) = M (�).Also E(Xi+1 j Xi) = Xi, which is the martingalecondition. Since jXi+1(�) � Xi(�)j � 1, we can useAzuma's inequality to prove:Theorem 5.1. Let ! 2 
(k)m;n and let T (m; k) =E(M (!)). ThenPr�jM (!)� T (m; k)j >p2m logm� � 1=m:The martingale technique only shows that the valueof M (!) is almost sure close to it expectation. Itdoes not specify the expectation. For n linear in mcomputing the expectation is an open problem; forn = o(m) a straightforward calculation shows thatM (!) is almost always close to (1 � 2�k)m.AcknowledgementWe wish to thank Moshe Vardi for introducing us tothis problem, and for several discussions and references.AppendicesA The maple programBelow is a straightforward maple program used tocompute the table in Figures 1. (This is not meantas an example of Maple programming. The terser

original was modi�ed for ease of readability.) Theprogram maintains three global variables, mu, nu, pi,that represent respectively the ratios m=n0, n=n0, andp=n0.Digits := 40;start := proc(c)# Apply Theorem 2 to compute the initial valuesmu := c;nu := 1 - exp(-3*c);pi:= 2*exp(-3*c/2)*(1 - exp(-3*c/2));print(mu, nu, pi);end;rec := proc()# Compute current alpha, lambda, lambdah, and betaalpha := pi/(2*nu-pi);lambda := 3*mu/(2*nu-pi);lambdah := fsolve(lambda=x/(1-exp(-x)),x,fulldigits);beta := 1/(exp(lambdah)-1)* (exp((2*alpha - alpha^2)*lambdah) -1);# Save the old valuesmuold := mu; nuold := nu; piold := pi;# Apply Theorem 1 to compute new valuesmu := muold*(1-alpha)^3;nu := (nuold - pi)*(1-beta^2);pi := 2*(nuold-piold)*beta*(1-beta);print(mu, nu, pi);end;The program used to generate Figure 1 was:start(1.63); for j to 80 do rec() od;B Simulation resultsBelow is a run of a simulationusing 100000 variables and163000 random clauses. Notice that the results are veryclose to the predictions made in Figure 1. If we averageover several runs, then the numbers are even closer.But our proof shows, and the experiments con�rm, thatalmost surely for every run the results are very close toexpected values.Iter. m=n0 n=n0 p=n0 Clauses1 1.630000 0.992950 0.160770 1236872 1.236870 0.830180 0.075240 1071013 1.071010 0.754250 0.044230 977904 0.977900 0.709650 0.029890 915525 0.915520 0.679620 0.022700 869846 0.869840 0.656850 0.017190 835847 0.835840 0.639620 0.014290 807898 0.807890 0.625270 0.011750 785179 0.785170 0.613500 0.009810 7667510 0.766750 0.603680 0.007780 75153



On the Satis�ability and Maximum Satis�ability of Random 3-CNF Formulas 9Iter. m=n0 n=n0 p=n0 Clauses11 0.751530 0.595860 0.006540 7390612 0.739060 0.589300 0.005580 7286713 0.728670 0.583700 0.004970 7192814 0.719280 0.578730 0.004340 7109915 0.710990 0.574390 0.004220 7033116 0.703310 0.570170 0.003860 69610... ... ... ... ...30 0.639180 0.535120 0.001710 6359731 0.635970 0.533400 0.001810 6329832 0.632980 0.531590 0.001620 63019... ... ... ... ...44 0.604350 0.515220 0.001090 6024745 0.602470 0.514130 0.001140 6005646 0.600560 0.512990 0.001020 59876... ... ... ... ...58 0.584220 0.503390 0.000710 5828859 0.582880 0.502680 0.000820 5815460 0.581540 0.501850 0.000830 58003... ... ... ... ...72 0.561520 0.490420 0.000960 5599173 0.559910 0.489460 0.000970 5581774 0.558170 0.488490 0.001070 55633... ... ... ... ...86 0.530090 0.471920 0.001870 5271887 0.527180 0.470050 0.001850 5240488 0.524040 0.468200 0.002060 52060... ... ... ... ...100 0.463400 0.431280 0.005060 45540101 0.455400 0.426210 0.005620 44661102 0.446610 0.420560 0.005480 43791... ... ... ... ...112 0.273310 0.303100 0.028370 23548113 0.235480 0.273780 0.034130 19243114 0.192430 0.237610 0.040080 14397115 0.143970 0.193970 0.046370 9311116 0.093110 0.140980 0.047670 4749117 0.047490 0.083960 0.040810 1492118 0.014920 0.031800 0.021140 195119 0.001950 0.005010 0.004330 6120 0.000060 0.000180 0.000180 0References[1] N. Alon and J. Spencer. The probabilistic method.John Wiley and Sons, 1992.
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