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Abstract

We consider the existence of perfect matchings in random graphs with n vertices (or n+n
vertices in the bipartite case) and m random edges, subject to a lower bound on minimum
vertex degree. We establish tight thresholds in terms of the number of random edges. For
example we show that a random bipartite graph with n + n vertices and cn random edges,
and minimum degree at least 2, has a perfect whp.

1 Introduction

To quote from Lovész [16], “the problem of the existence of 1- factors (perfect matchings), the
solution of which (the Kénig-Hall theorem for bipartite graphs and Tutte’s theorem for the
general case) is an outstanding result making this probably the most developed field of graph
theory”. Erd8s and Rényi ([9],[10]) found a way to use these results for a surprisingly sharp
study of existence of perfect matchings in random graphs. For B,, ,,,, a random bipartite graph
with n 4+ n vertices and m = n(lnn + ¢,) random edges, they proved [9] that

lim Pr(B, m, has a perfect matching) = lim Pr(§(Bpm) > 1)
n— oo n—00
0 Cp — —00,
= e ¢,o0
1 Cp — 00,

where ¢ denotes minimum degree. Of course minimum degree at least one is a trivial necessary
condition for the existence of a perfect matching. The Hall theorem turned out to be perfectly
tailored for use in combination with probabilistic techniques, pioneered by the authors several
years earlier, [9]. Even though Tutte’s theorem for the non-bipartite case is considerably more
involved, in [10] they managed to extend the analysis to the random graph Gp ,,, a random
general graph with n vertices and m = % (Ilnn + ¢,) edges, showing that

nango Pr(G, , has a perfect matching) = nlgl;o Pr(6(Gnm) > 1)
0 Cp — —00,
= e ¢,—c
1 Cp — 00.

*Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213. Supported in part
by NSF grant CCR-9818411.
tDepartment of mathematics, Ohio State University, Columbus OH43210. Supported in part by NSF grant



In both cases a perfect matching becomes likely as soon as one has sufficiently many random
edges for the minimum degree to be at least one with high probability (whp). This has led
researchers to consider the existence of perfect matchings in models of a random graph in which
the minimum degree requirement is always satisfied. Perhaps the first result along these lines
is due to Walkup [21]. He considered a k-out model B, oy of a random bipartite graph, again
with n + n vertices Vi + V5. Here each vertex v € V; “chooses” k random neighbours in its
complementary class V3_;. Walkup showed that

. . 0 k=1
nli)n;o Pr(By_out has a perfect matching) = {1 > 2
Frieze [11] proved a non-bipartite version of this result, the argument being based on Tutte’s
theorem and considerably harder. Very recently Karoriski and Pittel [13] have proven whp
existence of a perfect matching in what they called the B(; .-1)_ou: graph, a subgraph of
Bs_out, Obtained from Bj_,.; by letting each of its degree 1 vertices select another random
neighbor in the complementary class. Observe that in all of these results [21], [11] and [13] the
number of random edges depends linearly on the number of vertices, and the minimum degree
has been raised to 2, in a sharp contrast with the case m being of order nlogn. Here is why.
When there are order nlnn random edges, there are few vertices of degree 1 and they are far
apart. In sparser models, with minimum degree 1, whp there will be a linear (in n) number of
vertices of degree 1, and some two vertices of degree 1 will have a common neighbor, which rules
out a perfect matching. In the case of random regular graphs it turns out that minimum degree
3 is required, Bollobds [3]: Let G, denote a random r-regular graph on vertex set [n], n even.
Then

0 r=2
lim Pr(G, has a perfect matching) = =S
n—o0 1 r=1lorr>3.

The case r = 1 is trivial since then G, is itself a perfect matching of [n]. G2 is whp a collection
of O(Inn) disjoint cycles and they will all have to be even for G5 to have a perfect matching.
The meat of the result is therefore in the case r > 3 and this follows from r-connectivity and
Tutte’s theorem.

Another approach was considered by Bollobas and Frieze [6]. Let g,‘i?n’f denote the set of graphs
with vertex set [n], m edges and minimum degree at least x. Let G323~
from gg,Z,,f. By conditioning on minimum degree 1, say, we will need fewer random edges to get
a perfect matching whp: Let m = 7 (Inn + 2Inlnn 4 c,).

be sampled uniformly

0 cn, — 00 sufficiently slowly,
. 5> . 1l
Jim Pr(G,>, has a perfect matching) = { e3¢ ¢, — ¢, (1)
n even cn — 0.

The restriction “sufficiently slowly” may seem out of place, but bear in mind that if m = n/2
then the probability of a perfect matching is 1. The precise threshold between n/2 and f—lnlnn
for the non-existence of a perfect matching was not determined. (Using the approach developed
in the present paper for the bipartite case, we have found that “sufficiently slowly” in (1) can be
replaced simply by m > n/2.) This work was extended in Bollobds, Fenner and Frieze [4] who
considered the probability that Gfl,zmk has |k/2| disjoint Hamilton cycles plus a further disjoint
perfect matching if k is odd.

In this paper we continue this line of research. We first consider the bipartite version of (1). Let
Bfl?n’f denote the set of bipartite graphs with vertex set [n], [n], m edges and minimum degree at
least k. Let BJ2" be sampled uniformly from B32y.



Theorem 1. Let m = §(Inn + 2Inlnn + ¢,). then

0 Cp — —00, M > n,
lim Pr(BS2! has a perfect matching) = { e ¢ ¢, —c, (2)
n—o0 ’
Cn — 00.

The probability on the RHS of (2) is the limiting probability that a pair of vertices of degree
1 have a common neighbor. Thus, the probability that a perfect matching exists is (close to)
1 when either m = n/2 or ¢, is large, and the probability is very small for m everywhere in
between, except ¢, not far to the left from 0.

The next natural question in this line of research is: How many random edges are needed if we
constrain the minimum degree to be at least 2, so ruling out the possibility of two vertices of
degree 1 having a common neighbour. These are the two principal results of the paper.

Theorem 2. Let ¢ > 2 be an absolute constant. Then

lim Pr(B222 has a perfect matching) = 1.

n,cn
n—o00 ’

If ¢ = 2 then we are dealing with 2-regular bipartite graphs and all such graphs have a perfect
matching. Thus the content of the theorem lies in the case ¢ > 2.

If we consider Gfl?jl then we have to allow for the existence of small components which are

isolated odd cycles i.e. we will not have a “probability one” result. Also, for a change, we will
allow n to assume odd values as well. For a graph G = (V, E), let u*(G) denote the maximum
matching number. Slightly stretching, we say that G has a perfect matching if p*(G) = [|V|/2].
Let X (@) stand for the total number of odd isolated cycles in G. Clearly
. V|- X(G
1) < @) = |19
6>2

n,cn'

Let u}, X,, v, stand for p*, X,v computed at G = G

Theorem 3. Let ¢ > 1 be an absolute constant. Then

lim Pr(y;, =v,) =1,

n—00

and X, is, in the limit, Poisson (\),

1 140 o p
A=-1 =
1%1 -5 2 er—1’
and p satisfies
o _
ple? =1) o,
eP—1—p

In particular, as n — oo,
e >, if n even,

Pr(Gfl’Zjl has a perfect matching) = o(1) + { e+ A, if n odd. (3)

Notice that ¢ = 1 corresponds to the random 2-regular (nonbipartite) graph, which typically has
©(logn) odd (isolated) cycles. Sure enough, the explicit term in the RHS of (3) approaches zero
ascl 1.



It was shown in Aronson, Frieze and Pittel [2] that whp a simple greedy algorithm of Karp and
Sipser [14] found a matching that was within O(n'/3) of optimal. Theorem 3 shows that the
Karp-Sipser algorithm is whp also Q(n'/%) from optimal.

For integer k > 2 let graph G have property Ay, if G contains |[(k—1)/2] edge disjoint Hamilton
cycles, and, if k is even, a further edge disjoint matching of size |n/2|. Bollobds, Cooper, Fenner
and Frieze [5] show that for k > 3, there exists a constant c; < 2(k + 1)® such that if ¢ > ¢y
G2k has property Ag. Thus the current paper deals with the property A, and proves a
sharp result. It is reasonable to conjecture that the true value for ¢ is (k + 1)/2. Note that if
¢ = (k+1)/2 and cn is integer then Gfl?cﬁ"’l is a random (k+ 1)-regular graph and this is known

to have A; whp, Robinson and Wormald [20] .

2 Enumerational Preliminaries

2.1 Enumerating bipartite graphs meeting vertex degree bounds.

In our probabilistic model, the sample space B4(n,m) is the set of all bipartite graphs on the
bipartition [n] U [n] with m edges, and the minimum degree d at least (d = 1 or d = 2). The
probability measure is uniform, i.e. each sample graph Bg(n, m) is assigned the same probability,
Na(n,m)~!, where Ny(n,m) = [Ba(n,m)|. We will obtain a sharp asymptotic formula for
Ny(n,m), as a special case for the number of bipartite graphs meeting more general conditions
on vertex degrees.

Consider the bipartite graphs with vertex bipartition R U C, (Rows and Columns), R = [v4]
and C = [vp]. Given u, the vi-tuple a, and the vo-tuple b of nonnegative integers a;, i € [v1],
bj, j € [v2], let N(a,b) denote the total number of the bipartite graphs with the row degree
sequence a and the column degree sequence b. Using the bipartite version of the pairing model,
we see that

N(a,b) < N*(ab)i N*(ab)i= a,-!l-d 0or (4)

1€[v1] jEv2]
The fudge factor, i.e. the ratio

N(a,b)
F(a,b) = — "~ 5
(a5) = Fao s, (5)
is the probability that the uniformly random pairing is graph induced. A sharp asymptotic
formula for F(a,b) has been a subject of many papers. A culmination point is [?] by McKay
who proved that if D3/y — 0, D being the maximum degree, then

N(a,b) = N*(ab)exp <_%A(a)x(b)+0(p3/u)>, (6)

Ma) = ;%Z as(ai — 1), )
i€[v1]

Ab) = 3 bk - D), (®)
j€va]

The formulas (4) and (6) are instrumental in asymptotic evaluation (estimation) of the total
number of bipartite graphs with a given number of edges and certain restrictions on the degree
sequence.



Let the v;-tuple ¢ = (c1,...,¢,,) and the vo- tuple d = (dy,...,d,,) of nonnegative integers
be given. Introduce Neq(v, ), v = (v1,v2), the total number of bipartite graphs with p edges,
such that a; > ¢;, (¢ € [11]), and b; > dj, (§ € [r»]). Of course, Nea(v,pu) =0if p < . c;, or
p <>, d;. So we assume that u > max{}_;c;,>_; d;}. Neglecting for now the fudge factor in

(6),

ch(l/, H) < Z N*(aa b)a (9)
ai2cibj2d;37; ai=3; bj=p

In order to rewrite (4) in a more manageable way, we observe that

1
D @y > T a!- I] b = Ge(z)Ha(y);
B1,u2>0 @i>eib;>d;i 3, ai=pn, X b=k 1o, v jclval 7
Ge(z) = ] felo); (10)
1:6[1/1]
Ha(y) = [ fa), (11)
J€[ve]

where

P 2t
fi(z) = ZEZeZ_ZE' (12)

>t o<t
Therefore (4) becomes
Nea(v;p) < pllzy*|Ge(z)Ha(y) (13)
_ u!(27ri)71 7{ _,L.*#*ch(:L') dz - (27ri)71 ‘7{ yiﬂ*lHd(y) dy, (14)
|z|=r1 ly|=r2

for all 71,79 > 0. Using an inequality (Pittel [18])

7)1 < flaep (- ELZEE2) (15)

(10), (11), and the fact that
|z| —Re z = r(1 — cosf) > crf?, when z =re', 6 € (—m,n],

we see from (14), after a straightforward estimation, that

1 Ge(r 1 Hy(r
Nea(v, 1) <p p! . (”1) y . dgf)-
VriY(ei+1) 1 rad;(di+1)t T2

Here and elsewhere A <; B means that A = O(B), uniformly for all feasible parameters that
determine the values of A and B. In the sequel we consider only max; ¢; = O(1), max; d; = O(1),
in which case the bound (16) simplifies to

(16)

GC(:L) . (V2T2)71/2‘Hdgtr2)'

Nea(v,p) <p p! - (ar1) '/
T1 T2

(17)

The task of determining the “best” values of r; and ry and incorporating the left-out fudge factor
will be made easier by looking at the above through probabilistic lenses.



Fix 71,72 > 0 and introduce the independent random variables Y;, Z;, with the distributions

rl/ll

PI‘(Y;' = f) = m, (f > Ci); (18)
rﬁ !

PI‘(Z]' = f) = T(fz)’ (f > dj)a (19)

so that, in distribution, Y; is Poisson (r;) conditioned on {Poisson(r;) > ¢;}, and Z; is Poisson(rz)
conditioned on {Poisson(rz) > d;}. In short, ¥; = Po(r1; > ¢;) and Z; = Po(r2; > d;). Now (13)
can be rewritten as

Ge(r1), 1 Gelzr1) Ha(ri), ,.Ha(yri)
Nealors) < WX S Gy o )
= p!chr(:l)Pr (ZE=”>-Higr2)Pr N Zi=p|. (20)

Now the RHS expressions in (13), (14) and (20) are equal to each other and the RHS of inequality
(17) bounds them all. Therefore,

1 1
sup Pr Y, = <p sup Pr 7Z; = <p . 21
. (z u) o R R )

Furthermore, (9) becomes equality when N*(a,b) is replaced by N(a,b). So, analogously to
(20),
p! i’ ry
Nea(v,p) = () > H ot o7
a;>cib;2d;30; ai=p1,>; bj=p2 i€[v1] J€(ve]

= N!M > Pr(Y =a,Z = b)F(a,b)

rire)H
( ) a;2cib;2d; 3 ai=p1,30; bj=pe

Ge(r1)Ha(r2)
H!W - E (F(Y, Z) . l{zi Yi:u}l{z,- Zj:#}) , (22)

where F(-,-) is defined in (5). To make this formula useful, we need to show that, for a proper
choice of 71, r2, asymptotically we can replace A(Y)A(Z) in the formula (6) by E(A(Y))E(A(Z))).

From now on let us assume that and
pt <y 71,72 <p logu and that vq,vs = O(p). (23)

Since max; ¢;, max; d; are both O(1), using the definition of Y;, Z; and the conditions on vy, v,
and 71,72, we have: for 0 < o' < a,

Pr(max{max ¥, max 2} > 4%) < D Pr(Yi>u)+ Y Pr(Z; > )
i J

-4

< e

Therefore, for a < 1/3, E,,, the expected value in (22), is given by

B = (1+0( "P)E;, +0(e "), (24)
By, = B(F'(Y,2) 1z vi-wls, z-m) (25)
F*(a,b): = exp (—%A(a)A(b)), (26)



see (6). In particular, see (21),

E;, <b (V1V2T‘17'2)_1/2-

Let us estimate the effect of replacing A(Y), A(Z) in (26) by their expected values. To this end,
let us introduce

Ui = (Yi): — E((Ya)2), Vj=(Z))2 — E((Z)2)-

Simple computation shows that E((Y;)s) is of order O(1 + 72), whence of order O(log? 1), and
likewise E(Z;(Z;—1)) = O(log? ). ;From A(Y) = pu~* > i(Yi)2, A(Z) = pt >2;(Z;j)2, it follows
then that E(A(Y)), E(A(Z)) = O(log” 1) and that after using the expansion

ab—ab=(a—a)(b—b)+a(b—b)+bla—a)
we have

IAY)A(Z) —ENY)EX(Z))| <p (log” w)A(Y,Z) + A*(Y, Z), (27)
A(Y,Z) = [MY)-EXY)I+IAMZ) - E(MZ))I-

Therefore, if we replace F*(Y,Z) in (25) by exp(—3E(A(Y))E(A(Z))), then the compensating
factor is exp(O(log? pA(Y,Z) + A%(Y,Z))). Furthermore, setting u = log'® i, we estimate

rt /0!
£ou fCi (7‘1)

log® 1
—c; €ery
S <log5u>

exp(—Q(log® ).

Pr(|U;| >u) <

IN

Likewise

E(Us;|Ui| 2v) = > [(£)2 — E((Ya)2)]

(02— B((¥2)2) >u feu(r1)
<p | —=—
log” p
< exp(—Q(log® ). (28)

Let U; = Uil{jy;|<u}, s0 that [U;| < u. Then (Azuma-Hoeffding inequality), for every ¢ > 0,

t2
Pr( Zt) < 2exp (—2T>
u“rvy

Since EU; = 0, from (28) we have

Z EY;

> U — )

< exp(—Q(log’ 1))

> E(Us; |Ui| > u)




Therefore, for ¢t > 1,

r( ,-2t> < ZPr(|Ui|2u)+Pr<

< > Pr(|U;| >u)+Pr (

iZt)

> (U — EUy)

i

2t—

]

= exp(—Q(log’ ), (29)

t — exp(—Q(log” u)))z)

<y exp(—Q(log’ ) + exp (— ( St

the latter inequality holding if t = pu'/2

alently

log® 4. An analogous inequality holds for 3 ; Vi- Equiv-

r (IACY) = BO(Y))| > #7210g™ 1) < exp(—Q(log” 1),
Pr (|]\(Z) - E\(2))| > 5~ log!" i) < exp(~N)(log® ).
Combining these bounds with (27) and (25), and denoting R =)_,Y;, S =" ;i Zj, We get

E;, = (1+0(u?log" p))e 2P OBA@Pr (R = 1) Pr($ = p) + Dy (30)
1Duul < exp(—Q(log’ p)). (31)
In (30), the exponential factor is exp(—O(log® 1)), and, by (21) and the conditions on y,v;,7;,

the product of the probabilities is of order (v171v273)!/2, the latter being Q((ulogu)~!). The
resulting bound makes the remainder D, relatively negligible, so that

i} —1EXNY)EX(Z)
vu Sb (virivary) /2

The power of this bound is due to wide range of the parameters r; for which it holds. However,
we will also need an asymptotic formula for Ej,,, and this requires asymptotic formulas for the

local probabilities, rather than their upper bounds.

Intuitively, we stand a better chance of achieving this goal when the parameters r;,72 are such
that the events {3>_,Y; = p} and {3°;Z; = pu} have “sizeable” probabilities. What better
candidates than r; = p; and r9 = ps for which

11 va

Somv- 3Ez -

i=1 j=1
Explicitly, using (18) and (19), p; and p, are the roots of

< wfci—l(w) _
2w (3)

and

-’Efd -1 fﬂ)
Z fa;(z) # (33)



respectively; (f(z) := e, fort < 0). For z — 0, the LHS of (32) and (33) approach }, ¢; < p and
3 j d; < p, respectively. Each LHS is strictly increasing, asymptotic to vy and v,z respectively,
as ¢ — o0o. Assuming that ) .c; < p and Ej d; < u, we see that the positive roots p; and
p2 exist uniquely, and that p; < p/v;. Assuming from now that p = O(v;logy;), ¢ = 1,2, we
obtain that p; = O(log 1) which puts p; and p2 into the set of feasible (meeting (23)) r1 and ro,
respectively.

How do the probabilities in (30) behave if 71 = p1,72 = p2? For ¥; = Po(p; > 2) and p = vE(Y),
it was proved in [2] that

~y _ 1+0(a®(pr) )
Pr <ZY2 = /J‘i’a) = (27['VV8.I‘(Y))1/2’

i=1

provided that pv — 0o, and a?/(pr) — 0. (The condition pr — oo is equivalent to vVar(Y) — oo
since Var(Y) = ©(p)). Suppose that in the present context v1p; — oo, i.e. Y, Var(Y;) — oo,
which is equivalent to y — >, ¢; — co. Only simple modifications of the proof in [2] are needed
to prove

Lemma 1. If ), Var(Y;) — oo and the ¢; are uniformly bounded, then

N _ - 1 +O(a2(y p )—1)
P (zy . +a> - proemall,

if a®(v1p1)~! — 0. An analogous formula holds for Pr (E] Z;=p+ a) .

Proof See Appendix A.
Suppose, say, that 14p; is bounded, or equivalently that oy := 1 — Y, ¢; = O(1). Extending an

argument in [19] (which covers the case of identically distributed Y;), we can show that

ot

Pr(R=p)=(1+0("))e (34)

0'1!

An analogous relation holds for Pr(S = u) if 02 := p — 3, d; = O(1). Clearly then, regardless
of the behavior of 01,02, in (30) the remainder term D, is negligible compared to the explicit
term.

Thus we have proved the following statement.

Lemma 2. Suppose that v1,vq, 4 — 00 in such a way that v1,v2 = O(p) and p = O(v; logy;),
i =1,2. Let G¢(z) and Hq(y) be defined by (10) and (11).

(i) Suppose that p= <y r1,79 = O(logp). Then

Ge(r1)H L )
Nea(v,p) ~ !L"l‘(”) [e ZEA(Y)EA(Z)pr(R = p)Pr(S = pu)+ O(e Q(log® u))} ,
(rir2)
(35)
H,
Nea(wow) <o pt, CelrHal)  ymaomaa), (36)

“(rar2)H\/1vaTiTS

where Y; = Po(r1;> ¢;), Z; = Po(ra;> d;) are all independent, and R = ) . Y;, S =
> Zj



(if) Suppose also that max; ¢; = O(1), max; d; = O(1), and p > max{}_; ¢;,>_; d;}. Then there
ezxist (unique) positive roots p1,p2 of (82) and (33), and

1Ge(p1)Ha(p2)

Nea(v, ) ~ p! (1p)F e  TEXY)EAZ) . Pr(R = p)Pr(S = p), (37)
1P2

where Y; = Po(p1; > ¢;), Zj = Po(pa; > ¢;j).

Furthermore
Pr(R=p) ! or Pr(R=p)~e 7 o
— T ar Y, Var(v;))/2 —H ol

dependent upon whether o1 := p— . ¢; approaches infinity or stays bounded, with the analogous
formula for Pr(S = pu).

Corollary 4. Suppose n = O(m), dn < m = O(nlogn). Then

fa(p)"Pr (3, Yi =m) n?
Bg(n,m) ~ m! < o exp —2—sz2[(Y)2] ) (38)
where Y is Poisson (p; > d) such that EY =r = m/n. Note that
r? d=0
E[(Y)2] =X pr d=1. (39)
pr/(l—e?) d=2
Further
Pr (ZE = m) ~ (27mVarY)71/2, if m —dn — oo, (40)
and
Pr (ZK = m) ~ e_”% if m —dn > 0 is fized. (41)

As we will see, these results are all we need to evaluate (bound) the probabilities arising in the
proofs of Theorem 1 and Theorem 2. We will also need a crude upper bound for the fraction
of bipartite graphs in question, with the maximum degree exceeding m®. This bound is already
implicit in the preceding analysis! Indeed, from (22), (24), (25), and the observation that the
factor

Pe(y Vi = myesy (o)) (42

’

in (38) is exp(—O(log®n)), it follows that, for o’ < a < 1/3, this fraction is e ™" at most.

One is tempted to call this “overpowering both the conditioning and the fudge factor”. Needless
to say, this trick would work for the counts (fractions) of other graph classes, as long as the degrees
restrictions are so severe that the probability that Y;, Z; meet them is negligible compared to
the factor in (42).
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3 Proof of Theorem 1

We will use Hall’s necessary and sufficient condition for the existence of a perfect matching in a
bipartite graph to prove (1).

The random graph Bg?ﬂ}u has no perfect matching iff for some k > 2 there exists a k-witness. A

k-witness is a pair of sets K C R,L C C, or K C C,L C R, such that |K| =k, |L| = k — 1 and
N(K) C L. Here N(K) denotes the set of neighbours of vertices in K. A k-witness is minimal
if there does not exist K’ C K,L' C L such that (K’,L') is a k'-witness, where k' < k. It is
straightforward that if (K, L) is a minimal k-witness then every member of L has degree at least
two in B, (K U L), the subgraph of B, induced by K U L. Therefore the subgraph has at least
2(k — 1) edges. We can restrict our attention to k& < n/2 since for £ > n/2 we can consider
C\L,R\ K. For 2 <k < n/2, let Wy, denote the random number of minimal k-witnesses,
such that B, (K UL) has p edges, u > 2(k—1). Actually, since k < n/2, we also have y < m—n.

(i) Suppose m = O(nlogn) and m > (1/3 + €)nlogn, € > 0. Let us prove that whp B,, has no
k-witnesses with k& > 3, i.e.

Pr Z Wokp=0] =1, n— oo.
k>3,u>2(k—1)

It siffices to show that

Y Eau— 0, Eny = EWagy.
k>3,u>2(k—1)

Let us bound E,k,. Suppose for certainty that K C R, L C C. We can choose a pair (K, L)
in (7)(,",) ways. (K, L) being a witness imposes the above listed conditions on degrees of the
subgraph induced by K U L. If we delete the row set K, we get a remainder graph, which is a
bipartite graph with bipartition (R',C), R’ = R\ K; it has m — p edges and every vertex in
R' U (C\ L) has degree 1 at least. We bound Ny, the total number of those subgraphs, and
N, the total number of the remainder graphs using Lemma 2 (i), emphasizing the possibility to
choose the corresponding parameters r1,72 anyway we want. The product of these two bounds
divided by the asymptotic expression for Bj(n,m) in Corollary 4 provides an upper bound for
the probability that (K, L) is a k-witness with p edges. Multiplying this bound by 2(}) ("), we
get a bound for E,,. To implement this program, we consider separately k¥ < m? and k > m?,
where 3 € (0,1) will be specified in the course of the argument.

Let k < mP. Pick o' < a = (1 — 3)/2. ;From the note following Corollary 4, with probability
1—e ™" at least, the maximum vertex degree in the uniformly random bipartite graph is m®
at most. So, backpedaling a bit, we will consider p < m?, (v := (1 + §)/2), only. To bound Ny
we use (17) with r; = p/k,ro = p/(k — 1), and to bound N, we use (36) with r; = ro = p. Here
p is the parameter of Y; in Corollary 4, the root of zfo(z)/f1(z) =r, r := m/n, so that

p=r(l—e?)<r, p=r—0(re ). (43)

The r; for N; seem natural, if one interprets them as parameters of Poissons approximating the
vertex degrees that should add to p on either side of the subgraph induced by K U L. Since k,
are relatively small, r; = ro = p should be expected to deliver a good enough bound for N,.
Most importantly, this choice does the job!
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After cancellations and trivial tinkering, the resulting bound is

Enkp <o m(Z)(kﬁl))'P% (k)# (k_l)”

p(m — #)(7} M M
o D/R) ek — )R fo(p)4
k—1
fi(p)?
exp (_% (n—Z)iEY)z ] (k—l)p2+£;z:llj+1)E(Y)2)
8 | (B(V)2)? (44)
exp (_ET)

Some explanation: k£ — 1 vertices from L in the remaining graph have degrees not bounded
away from zero, whence the factor fo(p)*~! = e?(*=1) in the second line, and k— 1 usual Poissons
(p), each with the second factorial moment equal p?, contributing (k —1)p? in the last line. Also,
we have used fi(u/(k — 1))*~! where we could have used the smaller fo(u/(k —1))*~1.

The last line fraction is of order O(1), as E(Y )y = ©(p?). Further, since log f;(z) = log(e* — 1)
is concave,

klog f1 (%) + (k- 1)log fy <kﬁ1> ~(2k —1)log fi(p) <

(2k 1) (10g fi (2135 1) —log fl(p)> < (2k —1)(log £1)'(p) (2,3—: - p)
<2u—(2k—1)p+3ue™. (45)

Using the last observations and u! = ©(u'/2(u/e)*), we see that E,, is of order E), at most,
where

n2kflefkp

x (m— N)! 2u 2 -

The rest is easy! First, since 2(k — 1) < p <m?,

E:Lk,ll»-i—l _ k2p2 _ O(m—1/3 10g2 n)
* k)
so that
Z E:ka ~ E:Lk,2(k—1)'
2(k—1)<p<mY
Second
E} k1,28 _ n?(k + 1)*pter
E:k,Z(kfl) k(k + 1)(2k — 1)2k(m — 2k + 1)(m — 2k + 2)k4*(k—1)
< n_2 do—p — O( 2 =P)
<y ape "=0(pe’)
Therefore

5
n
* * 4 _—3p —3m/n __ —3e
§ : Enk,Z(k—l) ~ En34 <b m4p € ~ ne m = O(’I’L )’
3<k<m?

as m > (1/3 4+ €)nlogn. In summary,

> Bk, = O(n™%). (47)

3<k<mY2(k—1)<p<m?

12



Consider now k > m#. This time we use (35) not only for N; but for N, as well, using for
the latter 11 = (pn — p)/(n — k) and r9 = (pn — p)/n. That the latter r; are positive follows
from p < m —n/2 and (43). (For p,k not being relatively small anymore, the count Ny of the
remaining graphs would hardly be well bounded via the previous choice 71 = re = p ~ m/n.
What we have chosen turns out to be a working compromise between that old choice and the
“naive” r; = (m — p)/(n — k), 7o = (m — p)/n.) The resulting bound is

(nE(Y)2)2> ,

Enkp. Sp €xp < 2m2 nkp’

By = pzm@_)z.(ﬁ)”(n—k)m‘“( )
ki ) \k pn— p pn— p

"
7AY] B \k—1 pn—pu\n—k pPn—pu\n—k+1 pn—p\k—1
% fl(k) fl(k_1) fl(n_k;I(p)Qf;( n ) fO( n ) ) (48)

(We use the notation a,, <, b, to indicate that a,/b, is polynomially large, at most.) Using
again convexity of log f1(z) and denoting h = (k — 1)(pn — p)/n, we obtain that the logarithm
of the last line fraction is less than

<0.
ef—1—

2nlog f1 (p _ ;;) —2nlog fi(p) + h < ~h((log f1) () — 1) = —

Thus the fraction is bounded, 1 at most, like its counterpart for k& < mP. (Our search for the
proper 1,72 was driven, in fact, by desire to make that fraction bounded again!)

Introduce z = k/n, y = p/n. Using the Stirling formula for factorials, we obtain easily then that

E;Lk,u SP eXp(TLH(CE,y)),

where
1—u

H(u,v) =2rlogp+2H(u) — rH(v/r) 4+ 2vlogu/v + (r — v) log =07

(u € (zn,1/2], v € (0,p)), Tpn == mTﬁ, and
H(w) =wlogl/w+ (1 —w)logl/(1 —w).

It follows that

u?(p —v)? p—r
H, = 1 _
1 2 1 2(p—
Hyy(u,v) = - - == (=) < 0.

So H,(u,v) decreases with v, and H,(u,0+) = oo, Hy(u,p—) = —oo. Hence, given u, H(u,v)
attains its maximum at a unique root v(u) of the equation

(p—vf® _ (M) _ (49)

(r—v)(1—u)v p—v

By (43), p < r and p—r = O(re"") — 0; so we should expect v(u) to be close to v*(u), the root
of (49) with p replaced by r, i.e.

U2

v*(u) = 71—u+u2r

T
Sga
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(u < 1/2). Careful computations reveal that
H*(u,v*(u)) = rlog(1 — u+ u?) + 2H (u),

where H*(u,v) is obtained from H(u,v) by replacing p with r. Furthermore, as the RHS of (49)
is 1+ O(e™"), it can be shown that

v(u) = v*(u)(1+ 0(e™")).

In this setting, strictly speaking, v(u) is also a function of p, and so is H(u,v(u)), both explicitly
and implicitly, via v(u). Since H,(u,v(u)) = 0, the derivative of H(u,v(u)) with respect to p is
just the partial derivative, which is

2r _2(r—v(uw) 2v(u)(p—r)
p o p—u(u) p(p —v(w))

=0(e™");

therefore
H(u,v(u)) = H*(u,v* () + O(e " (r — p)) = H*(u,v*(u)) + O(re >").
Using
log(1 —u+u?) < —u/2, (u<1/2), (1—wu)log(l—u)"!<u,
we see that, for u € (m?/n,1/2] (and m > (1/3 + €)nlogn),

H*(u,v*(u)) < —u(r/2—2-2log(1/u))
< —u((1/6+ /2)logn — 2(1 — ) logn + O(loglogn))
<

—culogn,
where ¢ = ¢(8) > 0if 8 > 11/12 — ¢/4. So, for this choice of 3,

H(u,v(u)) = H"(u,v"(w))+0(r™™)
—emPn~logn + O(e"2™/™ log n)

—mﬁn_l.

INIA

This inequality shows that
Epry <p exp(—m?) = Epng, < exp(—0.5mP),

as the fudge factor in (48) is only exp(O(log® n)). Consequently

Z Epky < exp(—0.4mP). (50)
mP<k<n/2u<m

Combining (47) and (50) we obtain

Z Enku + Z = O(n_se),

3<k<mP2(k—1)<p<m? mt/3<k<n/2u<mEBniu

so that

Pr Y Wau=0|=1-0@n"%). (51)
k>3, u>2(k—1)

14



(ii) Turn now to the 2-witnesses. From (46), it follows that

n3e—2pp4

En21 <p m2 O(nlog® ne™™/™) = O(e™*"), (52)

with ¢, defined by the notation
n
m= E(logn + 2loglogn + cy).

Case 1 ¢, — o0, and m = O(nlogn).

Then (52) shows that, with probability more than 1 — e~ — 1, there are no 2-witnesses.
By (52), with probability 1 — O(n~1/2) at least, there are no 3-witnesses either. Thus, with
probability approaching 1, there exists a perfect matching.

Case 2: ¢, — ¢ € (—00, ).

We want to prove that W2, the number of 2-witnesses, is, in the limit, Poisson (e~¢/4). We do
so via the factorial moments method. To evaluate E(W,,2;1) sharply, we notice that in this case
N, = 2(g)n exactly, and for N2 we use the part (ii) of Lemma 1 with 7y = 79 = p. So (compare
to (44)

2n(3) 4 o, 1 _ 1
En21~?'pe p"“Z (53)

C —C
e ‘" > \N:i=-¢e “.
4

‘We need to show that, for each ¢t > 2

1
: __ 1t __ _—,—¢
nli}H;o E(Wn21)t =A ) A= 46 .
To simplify our task, let us consider instead W,},;, the total number of vertex-disjoint 2-witnesses.
The difference Wy,21 — Wiy, is whp (51) W,, at most, where W, is the total number of subset
pairs (K,L), K C R, L C C,or K C C, L C R, such that |[K| =3, |L| =1, and L = N(K).
Analogously to (44 ),
n(3)e°

()

Therefore, Wy,a1 = W, with probability 1 — O(n='/2) at least, and it suffices to show that

EW, < e % = O(n*1/2).

. * __ 3\t
2 - ) = &
lim E(W),)2 =X, t>1 (54)

n—oo

This is obviously true for ¢ = 1. Let t > 2. Combinatorially, (W,:5;): is the total number
of ordered t-tuples of (vertex-disjoint) 2-witnesses. Given r + s = ¢, let us compute E,;, the
expected number of ¢-tuples containing r “2 rows, 1 column” (first kind) witnesses, and s “2
columns, 1 row” (second kind) witness. The r vertex-disjoint first kind of witnesses can be
chosen in (1) (7)(2r — 1)!!r! ways. (Indeed, once 2r rows and r columns are selected, we pair
the rows in (2r — 1)!! ways and assign the formed r pairs to r columns in 7! ways.) Given any
such choice, the s 2-nd witnesses, disjoint among themselves and from the r first kind witnesses,
can be chosen in (") ("_Szr) (25 — 1)!!s! ways. There are t! = (r + s)! ways to order all r + s
witnesses. Hence Ni(r, s), the total number of the ordered ¢-tuples of the “alleged” witnesses, is

given by
Ni(rys) — (2’;) (’;) (2r — 1)lip! (";) <” _32’"> (25 — DlIsl(r + 5)!
- ()5
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Deleting 2r rows and 2s columns involved in first kind and second kind witnesses respectively
produces a bipartite graph with m — 2¢ edges that meets the following conditions. (a) Every row
(column) vertex not involved in the s 2-nd (in the r first) kind witnesses has degree at least 1. (b)
No edge can be added to one of (just deleted) r + s 2-witnesses to form a pair (K, L), such that
|[K|=3,|L|=1, KCR,LCC,or KCC,LCR,and N(K) = L. (This condition is necessary
and sufficient for the (r + s) 2-witnesses to be disjoint from all other 2-witnesses.) Denote the
total number of such graphs by Ns(r, s). Clearly Ny(r,s) < Na(r, s), where Na(r, s) is the total
number of bipartite graphs with the condition (b) dropped. Using (35) with r; = ro = p, we
have

(ep _ 1)2n73tetp
p2(m72t)

Na(rys) ~ (m—2t)!-

EA(Y)EA(Z)
(e_ - 2

X . PI‘(R = m — 2t)Pr(S =m — 2t) + O(e_ 10g5 m)) .

Here R = Z?;I%Yi, S = Z;’;fs Z;,Y;,Z; =Po(p;>1)for1 <i<n—2r—s,1<j<n-—r-—2s,
and Y;,Z; =Po(p) forn—2r —s <i<n—2r,n—r—2s < j <n—2s. Using (1) for both local

probabilities, we obtain that the second line in the above formula is asymptotic to

e (- Bt

2m? " 2rnVar(Y;)
Thus
Na(r, s) 2t 4t/ _p 3t t e\’
= ~m~ — 1) ~ . 55
Batmm) =™ P (e” —1)""e i3 (55)
Now

Na(r,s) — Na(r,s) < r(n—2r — s)Nz(l)(r, s)+s(n—r— 23)N2(2)(r, s);

here N2(1)(r, s) (N2(2) (r,s) resp.) is the total number of the remaining graphs, such that a
particular row (column resp.) vertex is incident to a single column (row resp.) vertex, which
happens to be one of the vertices from r first kind (s second kind resp.) witnesses. Consider
N2(1)(r, s). Deleting that row we get a graph with one less number of row vertices and one less
number of edges. So, using (35) with 71 =7, = p and e” — 1 ~ e”, we obtain that

N2(1)(r, 3) < NQ(Ta S) P2
Bi(n,m) ~°  Bi(n,m)mer’
NZ(Z)(Ta 3) < N2(7'a 5) P2
Bi(n,m) ~°  Bi(n,m)mer’

Therefore

Na(r, 8) — Ny(r, s) np?
b) b < < —p 0.
B;(n,m) SV mer =P T

Collecting the pieces, we obtain that
E ~ t LSt . 7,’4 ‘ _) t eic ‘
e r) 2t m2e2p r 8 ’

BW2,,): — g (:) <e;>t — X,

i.e.
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Hence W}},; is in the limit Poisson ()), and then so is W,2;. Consequently, a perfect matching
exists with the limiting probability equal

e—¢
lim Pr(Wy,2; =0) = e * =exp <— > .
n— oo 4
Case 3: ¢, —» —00, m > n.

3a: m > (3 — e)nlogn.

In this case, after with trivial modifications in the above derivation,

e\ 2
* € i
E(Wn21)2 ~ < 4 > — 00,
and, by Chebyshev’s inequality,

lim Pr(W,;y >0)=1.

n—o0
So, whp, a perfect matching does not exist.

3b: m < (1/3 —e)nlogn, m —n — .

Note that np — co. Let X,, denote the total number of isolated trees with 2 row vertices and 1
column vertex. (X, > 0 implies that there is no perfect matching.) If the X,, trees are deleted,
the remaining graph has n — 2¢ row vertices, n — ¢t column vertices, and m — 2¢ edges, and every
vertex has degree 1, at least. Evaluating the number of such graphs by (35), we easily obtain

E(X,); ~ (”) (Z)(Qt—l)!!(t!)Z(m_Qt)! ”_4 tl)St

2t m!  (ef
mpe 3P ¢
2 bl
using the definition of p for the second equality. Also from this definition, p ~ 2(m — n)/n if
p — 0, and p < m/n always. So, if p — 0,

mpe > ~ 2m(m —n)/n > 2(m —n) = oo,

and, if lim p > 0, then

—-3m/n

mpe 3P > pne > pn® = .

Thus
E(X,) — 00, E(X,):~E*X,),

so that (Chebyshev’s inequality) Pr(X, > 0) — 1. That is, whp, there is no perfect matching.

3c: 0:=m —n >0 is fixed.

If we form 4n — 3m isolated edges, the remaining 3(m — n) row vertices and 3(m — n) column
vertices can be partitioned into 2(m — n) trees of size 3, half of the trees each containing 2 row
vertices and 1 column vertex, and another half - 1 row vertex and 2 column vertices. The total
number of such bipartite graphs is

2

N*(n,m) = (4nf3m)2(4n—3m)!-[(222:2;)(2(7%—70—1)!!(m—n)!

n!)?
T - 35;)!)220(01)2' (56)
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As for B;(n,m), the total number of all bipartite graphs, by Corollary 4 and (34), it is given by

fulp)"e (™) am = n)™ "/ (m n>!)2 oxp (- B,

pm 2m2

Bi(n,m) ~ m!(

where, using the definition of p,
20 20
_ 9 (1_29 2/n2))
p=— < o™ +O(c*/n )>

So, after simple computations,

min?s
Bi(n,m) ~ 20 (o1)2" (57)
Since, for fixed o,
(n|)2 ~ m!n2a,

it follows from (56) and (57) that, with probability approaching 1, the random graph has 20 > 0
isolated trees of size 3, thus no perfect matching exists.

Theorem 1 is proved completely. O

4 Proof of Theorem 2

Let now m = cn where ¢ > 2 is a fixed constant and let B,, = B322. A direct application of
Hall’s theorem has resisted our efforts. Along these lines we can only manage

Lemma 3. There ezxists an € = €(c) such that,

Pr(3K CR: |K|<en and |[N(K)| < |K|) = O(n™").

However this lemma can be used in the proof of the following: Let p*(G) denote the size of a
maximum matching in G.

Lemma 4. Fort>1, m ~cn, e; >0 and w = K logn for some sufficiently large K = K(c),

IfPr(p*(BS22_, >n—1t)>1—¢ then

n,m—w

(logn)*

Pr(p*(BoZ2)>n—t+1)>1—e + 7

Lemma 5. If m ~ cn then

Pr(u*(BiZ2) <n— O(n™)) <n~*.
With these two preceding lemmas we can easily prove Theorem 2. Let m ~ cn and let m, =
m—rw, r=0,1,...,74. Then

(logn)*

Pr(u'(B332) <n—r) <n”'+(0™) —r) =57

(58)

This is proved by downwards induction on r with the base case 7 = An4? (for some constant
A > 0) being verified by Lemma 5 and Lemma 4 providing the inductive step. Theorem 2 is the
case 7 = 0 of (58).
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4.1 Proof of Lemma 3

In the notations of the proof of Theorem 1, we need to show that

Y Epgu—0, (59)

2<k<em

2k<p<m
for some € > 0. Here E,, is the expected number of the minimal k-witnesses (K, L), |K| =
k,|L| = k-1, N(K) = L, with p edges. We know that every vertex from L has at least two
neighbors from K. Picking z € (0, p), we use (36) with r; = ro = z to bound N, the number
of such bipartite graphs. We use (35) with 1 = ro = p to bound Nj, the total number of
feasible bipartite graphs that remain after deletion of all vertices belonging to K. Here p is the
parameter of truncated Poissons Y; in Corollary 4, i.e. p € (0,00) satisfies

pfilp) _ plef=1) _m _
fp) “e—1-p - n (60)

Using Corollary 4 and (40), we obtain that E,, is of order E, , at most, where

o~ DG SRR et e

nky — kZ(ZL) 20 . fz(p)Zk*1 . (61)

Consequently

* — 22
Enk,lt+1 _ u+ 1 p2 < % p<pi= LWmJ (62)
By mo(utD) 2 \2 u<

if z is small. Therefore, if k¥ < 0.51, then

max{g,2.2k}

Z By <t Eqg k- (63)
pn=2k

Furthermore, using (61) for &k in question and u = 2k, 7 f2(p) = p(e? — 1) and the equation (60),

E} hi120k41) < (n— k)2 _fz(z)2 pleP

By 2k S T(m—2k)2 2t fap)?
_ 2 f2(2) : p/2 2
= (1+0(z%)) <z2/2> (sinhp/Q)
1+ 0(2)
1+p7/12
< 1,

provided that z is chosen sufficiently small. So

B/2
Z E:;k,zk <o Engy = O(n3m_4) = O(n_l)a
k=2

and, invoking (63),

£/2 max{m,2.2k}

> Y Euu=0(n7"). (64)

k=2 pn=2k
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Let us bound E,, for the same k’s, but 1 > max{f, 2.2k}. To bound N; this time, we choose
ry = ro = p/k. In particular, r; > 2.2, thus bounded away from zero, just like the optimal r, the
root of 7f1(r)/f2(r) = p/k. (For u = 2k, the root would be zero!) Using fo(u/k) < e*/*, we get

Enkp. Sp exp(nJ(:v, y))’ T = k/na Y= ,LL/’I’L, (65)
where
J(z,y) =2H(z) — cH(y/c) + 2ylog Rl zlog e
’ Y f2(p)?’
and (z,y) € D,
D = {(z,y)|z <7, y>max{y,2.2z}},
;L & L
= 6 Y= 357"
Notice at once that, for (z,y) € D,
f@y) = A-loga +log(l—2)) + L +log -
z, = 2(—logz+log(l—=z —+1lo
z\T, Y g g = gf2(p)2

> 4logz ' +0(1) >0,

if z is small enough. For such a z, J(z,y) increases with z for every y, as long as (z,y) € D. In
addition, the equation Jy(z,y) = 0 has two roots y4(z) > 0,

1
g = 5 V@~ 4p727),

asz < 1/2 and p < ¢, and y_ = O(z?) = O(2*), y+ = ¢ — O(z*). In particular, y*(z) =
max{7y,2.2z} € (y_,yy+), if z is sufficiently small. Furthermore, as a function of y, J(z,y)
decreases on [y_,y.], and increases on [y, ,c|. Therefore,

max{J(z,y) : (z,y) € D} = max{J(z,y"(2)), J (2, ¢)}.

If y*(z) = 2.2z, then

J(z,y) = 2zlog(l/z)—2.2zlog(1/z) + O(x)
= —0.2zlog(1/z) + O(z)

IN

2
cz
—0.05? log(1/2).

If y*(z) = 7, so that z < 7/2.2, then

J(z,y) = 2zlog(l/z)—ylog(1/y) + O(y)
< (53 -1) 76w + 0G)

2
< —0.05cpi2 log(1/2).

Finall
Y J(z,c) = —2(c — 2)log(1/z) + O(1).

Therefore, for z sufficiently small,

2
1
max{J(z,y) : (z,y) € D} < —0.05cpi2 log 5 < 0.
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(From (65) we get then \

Bpgy < €™, a=—0.042,
p

so y

/2 9

« 1

Z Z Enkp. < e n, a* = 003% IOg —.

k=2 p>max{pn.2.2k} P z
Combining this with (64) and the definition of & in (62), we prove (59) with e = %. O

4.2 Proof of Lemma 4

Let w = [Klogn] for some large constant K > 0. Consider the bipartite graph I" with vertex
set B2, + BS22 and an edge (G, H) iff

E(G) CE(H) and E(G) \ E(H) is a matching.
Consider the following experiment SAMPLE:

5>2

n,m—w

e Choose G randomly from B

e Add a random matching M, disjoint from E(G) of size w to obtain H € Bj22.

This induces a probability measure Q on Bfl?"%. Let dr denote degree in I'.

Lemma 6.

G e B’22 implies

nm—w

(n?

—m - 2en)” @) < <"2>

w! w

Proof The RHS is obvious. For the LHS let us bound from below the number of ordered
sequences ej, €z, . .. , €, of w edges which are disjoint from E(G) and form a matching. Observe
that after choosing ej, ez, ... ,e; we rule out at most m — w + 2in choices for e; ;1. (The m —w
edges of G plus the further < 2in edges incident with e, ez, ... ,e;). Thus there are always at
least n? — m — 2wn choices for e; ;. Dividing by w! accounts for removing the ordering. O

Thus for n large and G, G’ € B’>2

n,m—w?

n

jpr((g')) - ‘ < (66)

We now consider the degrees dr(H) for H € be?nf.

For H € B;i?,,% let E~ (H) be the edges of H joining vertices of degree at least 3. How large is
E.(H)? If e € E(H) \ E(G) then other edges of H incident to e must already be in E(G). So,
if (G,H) is an edge of I then E(H) \ E(G) C E- (H).

Lemma 7. Let

0 = c 1y?, where M =c
’ ey —1—y
If H is chosen uniformly at random from Bi’?,,zl then gs’

1A sequence of events &£, is said to occur quite surely if Pr(€,) = 1 — O(n—K) for any K > 0.
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(a)
A(H) < logn.

(b)
|Es (H) — 6n| = O(n*/?logn).

Proof Let X1,Xo2,...,Xn,Y1,Y2,...,Y, be independent copies of Po(y; > 2). Next let
mx = X1+---+ X, and my =Y; +---+Y,. Then, given X,Y, let (z1,Z3,... ,Zmx) be a
(uniformly) random permutation ox of the multi-set {1%X,... ,n%»}, i.e. the set which contains
X, copies of the row vertex %, and let (y1,¥2,...,Ymy) be a random permutation oy of the
multi-set {1¥1,...,n¥"}, containing Y; copies of the column vertex i, 1 < i < n. Conditional
on & = {mx = my = m and (simplicity)} the pairing (z1,v1), (Z2,92),--- , (Tm,ym) defines a
uniformly random graph H € Bfl,zn%. In the notation of Section 2.1 we have that

Pr(Eg) =E (F(Y, Z) . 1{Ei Yi=m}1{2j ijm}) .
Then comparing (22) and (37), and using (39) and (40) we see that
22y
exp (—2("';!7_1)2)
2nVar(Po(y)) ’

i.e. Pr(&) is only polynomially small. This implies that if {(X,Y) € 4}, (4D {2,3,...}?"), is
a gsevent, then so is the event {deg(H) € A}, deg(H) denoting the degree sequence of H € B332.
The part (a) follows then immediately since, for L = logn,

Pr(£o) = (1+0(1)2, 6= (67

Pr(max(max X;, maxY;) > L) < 2nPr(X; > L = logn) = O(ny" /L),
i j

which is O(n=X) for any K > 0. Turn to (b). Let W be the number of pairs (z;,;), i <
min{mx,my} such that X,,, Y,, > 3. We know that, conditioned &, W = E- (H). Assuming
for certainty that mx < my, we see that

E(W | X,Y) = M, (68)
mx
where
mx,3 = ZX'L'I{X,:>2}, my,3 = ZYJI{YJ > 2}
i J
Now
E(mx) = nEX;= nM =nc (69)
mx = n 1= v —1_y = y
B on . [(yler = 1) Y
E(mx,3) = ’I’L(EXl — 2PI'(X1 = 2)) =n (ey —1_ y — v —1— y (70)
= ny, (1)

with the same results for E(my), E(my ). Now mx, my are the sums of independent copies of
Po(y; > 2), whose pgf is (e®¥ — 1 —zy)/(e? — 1 — y). Using this function and (69), in a standard
(Chernoff-type) way, we obtain that gs

1/2 1/2

|mx —nel <n/“logn, |my —ncl<n/“logn. (72)

Analogously, or using the Chernoff tail bounds for the binomial distribution, we obtain also that
qs

1/2

|mx 3 — ny| < nl/? logn, |mys—ny| <n’/*logn. (73)
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Suppose now the conditions (72)) and (73) hold simultaneously, which we call the event . Then
&1 holds gs. It follows from (68) that

E(W | &) =0n+ O0(n'/?logn), 6:=c 4> (74)

We can now use the Azuma-Hoeffding inequality to show concentration of W on the event &;.
Transposing any two elements of ox and any two elements of oy may change W by at most 2.
So, for every u > 0,

Pr([W —E(W | &)| > u| &) < 2e¥/Oen),

Removing the conditioning on £ we obtain
Pr([W —E(W | &) > u) < Pr(£) + 2+ /(8en),
So, substituting u = n'/?logn and using (74), we see that gs
|W — 6n| < An/?logn,

if a constant A is sufficiently large. Recalling that W = E- (H) on the event &, and that Pr(&)
is of order n~!, we have proved the part (b). O

Now let B be the set of H € Bi%ﬁ satisfying the conditions of the above lemma i.e.
e The number of edges joining two vertices of degree > 3 is in the range 6n + An'/2logn
for some constant A > 0.

e The maximum degree A(H) < logn.

According to the lemma
B2\ B| < |Bln" ¥, VK >o0. (75)

Note next that

Lemma 8.

HeB implies

(6n — An'/? log‘n — 2w logn)¥ < dp(H) < <9n + An'/?log n) ‘
w! w
Proof The upper bound is obvious. As in Lemma 6, for the LHS let us bound from below
the number of ordered sequences e1,ea, ... ,e, of w edges which are contained in E~ (H) and
form a matching. Observe that after choosing ey, es,... ,e; we rule out at most 2iA choices for
e;+1. Thus there are always at least On — An'/?logn — 2wA choices for e; ;. Dividing by w!
accounts for removing the the ordering. m|
So for H,H' € B,
dr(H) 2Awlogn
-1 < =—2= 76
dr(H'") - Gnl/2 (76)
Finally, for H € BJ22\ B, H' € B,
dr(H m 2¢\“
1"( ) < . 2(:..:) < “C , (77)
d]"(H’) (6n—Ant/ log'n72w log n)« 0
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as the total number of ways to delete a matching of size w from H € B‘5>2 (Z’) at most.
Let Gy € sz,zl o be fixed. By (66), if H € B332 then
Q(H) = Pr(saMPLE chooses H)
1 1
= jgis2 X Z
Buim-ul  (6,mesm w(©)
1+ O0(w?/n) dr(H)
= . . 78
B2 G =
From this relation, (76), and (77), it follows that
5 . . Q(H) 3Awlogn
!
H,H € B implies Q) -1 < oz (79)
5>2 / . . Q(H) < % w
HeB22\B,H ¢ B implies o S\a) - (80)
Furthermore, invoking also
> d(@)= ) dr(H),
GeBl>2_ HeB)2?
and picking H' € B, we obtain (see (66), (76)):
’ Bo22
dr(H") < 3Awlogn | nym— w|‘ (81)
dr(Gy) fnl/2 |B|
Combining (75), (78), (80), and (81), we get: for every K > 0,
6>2 1 3C n—2K|B
Q(BZ2\B) < QH') |B|
_ 1+0(w2/n) i dF(HI) % wn72K|l§|
 IBrmul  dr(Go)
= O((3¢c/8)“n~?K)
< n K (82)
Since Q(B%22) = 1, from (82) and (79) we deduce that, for H € B,
1 4Awlogn 1 1 5Awlogn
‘Q( ) |B6>2| — |B¢5>2| x 0n1/2 x 1—TL_L — |Bg’213| x 0n1/2 (83)

This means that on the graph set B the probability measure Q is almost uniform. It is worth
repeating that Q is induced by picking a random G € Bfl,z,s_w, and adding to G a random
matching M of cardinality w which is disjoint from E(G).

Now let Prjs denote probability w.r.t. a graph chosen uniformly from Bfl,zf,[ and let p*(G)
denote the size of the largest matching in G. We want to prove, using the near uniformity of Q,
that Pr,,(u*(G) =n) > 1,if m =cn and ¢ > 2.

From the previous part we know that there exists & = a(c) such that

Pro(IN(S)| 2 |S]: ¥S Cn), 0 < |S| Sam) >1- 1 (84)
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for some v = y(c). (Here S is a set rows, or a set of columns.)

Now, given G € Bff,,zl_w such that p*(G) € [n — t,n) and the event in (84), fix some matching

M of size n — t and let « be a row vertex and y be a column vertex not covered by M.

Suppose G does not contain a matching of size n — ¢t + 1, i.e. p*(G) =n —t. Let A be the set
of row vertices reachable from z by an alternating path w.r.t. M, and let B, the set of column
vertices, be defined analogously for y. (Of course, the sets A and B depend on the choice of
a maximum matching M. To achieve uniqueness, we assume that M is the lexicographically
first among all maximum matchings.) Each such path is of even length, and we include z into
A, and y into B, as corresponding to the paths of zero length. There does not exist an edge
connecting A and B, since otherwise we could use the resulting path between = and y to get, in
a standard way, a larger matching. (Therefore if any of the w edges added to G in SAMPLE join
A to B, p*(G') > p*(G) for the new graph G'.) Furthermore, for every row vertex in A, all its
column neighbors must be covered by M, since otherwise there would exist an alternating path
connecting = and an uncovered column vertex, and there would exist a larger matching M'. This
implies that N(A) consists of all column vertices on the paths from z, so that |[N(4)| = |A4|—1,
as z is the only vertex in A not covered by M. Similarly, |N(B)| = |B| — 1. Then necessarily
|A| > an, |B| > an. So if G is such that the event in (84) holds, then—conditioned on G—the
probability that none of the w added edges of SAMPLE join A to B is at most

R
n? - 2 ~n’
if we pick K in w = [K logn] sufficiently large. Therefore, if H € Bg?,,% then

Q' H)<n—-t+1) < Prm_w(u*(G)<n—t)+%+(1—az/2)“’Se(m—w,t)—i—%y;
em—w,t): = Prp_ (" (G)<n—-1t)=1—Prp_,(u"(G)>n-t).
So ) %
Q{p*(H)<n—t+1}A{H € B}) <e(m—w,t)+ .
and then, using (83),

Pr,({p*(H) <n—t+1}A{H € B}) < <e(m —w,t) + 27) (1 T 5“1“’1(’8;”)

n Onl/2
and
i 2~ 5Awlogn oL
Pr,(u*(H)<n-t+1) < (e(m—w,t)+n) <1+9n1/2) +n
6Awlogn
< e(m—w,t)+ “oniz

(where n~=2 bounds Pr,,(H ¢ B)).

To summarise, using the notation Prjs for the probability distribution of the graph chosen
randomly from Bi?ﬂzl and
Pry(p*(G) <n—71)=¢€¢M,71),
we have
6Awlogn

oni/z
provided that m = c¢n and ¢ > 2. So, shifting m and iterating this ¢ times,

7Atwlogn
nl/2

e(m,t—1) < e(m—w,t) +

e(m,0) < e(m — tw,t) +

Thus it only remains to show that whp G,,_o(n1/2) has a matching of size at least n — nl/2.
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4.3 Proof of Lemma 5

We first describe the graph model we use for our analysis. It is a bipartite version of the “random
sequence model” considered in Section 2 of [14]. Let u > 1 and the disjoint sets R, C be given.
R and C have meaning of a row set and a column set respectively, and p a number of edges. For
x € R* and y € C*, we define a multi-bipartite graph G,y as having a vertex set R + C, and
the edge set E(Gx,y) = {(@¢,y¢); 1 < £ < p}. Then the degree of i € R (j € C resp.) in Gx,y
equals dx (i) = |[{€ € [u] : e =1}| (dx(j) =|{€ € 1] : ye = j}| resp.). Define

Rglz{xeR”: dx(?) > 1,1 € R}, Cglz{yEC’”: dy(j) > 1, j € C}.
That is RY,, say, is a set of all x such that every ¢ € R has positive degree in x. For v =
(Ul,Ra’Ul,CaURa/UCa/J'a C)a let

Br,o(v) ={(x,y) € RS, x C%, :
there are vy, 5 indices of degree 1 in R
there are vg indices of degree > 2 in R
there are v; ¢ indices of degree 1 in C

there are vc indices of degree > 2 in C}

Thus Bg,c(v) is the set of all multi-bipartite graphs G,y without isolated vertices, and with
the specified numbers of (light) vertices of degree 1, and of (heavy) vertices of degree 2 at least,
separately among the row vertices and the column vertices. Clearly the total degree of v, (vc
resp.) heavy vertices is u — v1,» (4 — v1,c resp.). We will also use

VU1 = V1, +V1,c and v = Vg + Vo.

Clearly as well, the total degree of all v heavy vertices is 2u — v;. We first discuss the degree
sequence of Gxy. Fix x,y and let Ry = {i € R: dy(i) =1}, C1 ={j € C: dy(j) =1}.

Lemma 9. Suppose that (x,y) is chosen uniformly at random from By c(v). Then {dx(i): i €
R\ R:},{dy(j) : j € C} is distributed as

(Z,Z') = ({Zi: i € R\Ri},{Z}: j € C\C1}).

Here Z; are independent copies of Po(\; > 2) conditioned on EiER\Rl Z; = p — V1,n, Z; are
independent copies of Po(\'; > 2) conditioned on EjEC\Cl Z}; = p—v1,c, and Z, Z' are mutually
independent. The parameters A > 0, X' are arbitrary.

Proof Since x, y are mutually independent, it suffices to consider x only. Assume without
loss of generality that R\ R; = [vg]. Let s = p — vy 5 and

S:{fe[s]v*‘: Z xi:sandVi,zi22}.

1<i<vg

Fix £ € S. Then, by the definition of x and Z = {Zi}icton]s

- s! s!
Pr(x=¢) = (51!62!...@!) / (; a:llwg!...a:v!) '
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On the other hand,

L 26 2%
Priz=¢) > Zi=s) = | Il G / > I i a

1<i<vgp 1<i<vp zeS 1<j<vgr
B ((ez ~1- z)vazs> / (Z (e —1— z)”z3>
116! &y ! oyt zilza! . zyy!
= Pr(x=¢).

O

To make the most out of this underlying independence, we set—Ilike on other similar occasions
in this paper—\ = 2z, X' = 2., where
H—Vi,r ZR(ezR - 1) M —Vic Zc(ezc - 1)
= k) = k)
Ur fr Ve fe

where f(z) = fa(z) = e®* — 1 — = and we have abbreviated fr = f(2zr), fo = f2(2c)- We will
also use z, the root of

p—v1 2(ef—1)

v f(2)
In our analysis below we will only need to consider graphs for which
v1 <p n3% < n® < g, ve < n. (85)
Zry2c < 3c. (86)

Lemma 10. Suppose that vgzy — 0o and a is such that a®(vgzg)~! — 0. Then

_ 14+ O((1+ a?)(vrzr)™t)

3 Zi=p—vin—
r| 2 Zi=u-via-a (2mvpVar(Z))1/2

i€ER\Ry

where Z = Po(zg; > 2). Analogous estimate holds for the column set C.

Proof This follows immediately from Lemma 1. a

Notice that Var(Z) = ©(z5). Using Lemma 10 with a = 0, we see that the probability of the
conditioning event is of order (vgzz)~'/2 > ©(n~'/2). So, a gs event expressed in terms of Z
remains a qs event when Z is replaced by Z. The same relation holds between Z' and 3. In

particular, since
Pr(Po(zz; > 2) > logn) = O(n~teslosn))

we have that for (x,y) chosen uniformly from By (), with probability 1 — O(n~%(leglogn)),
max{Ax, Ay} <logn, (87)
where A, = max;jcr{dx(j)} and Ay = max;cc{dy(j)}.

We next look at the expected number of vertices of a given degree in G ;. We use the notation
Vi, x, X = R, C to denote the set of vertices of degree of degree k in X and v, x = Vi, x|-

Lemma 11. For verticesi € R\ Ry,j € C\ C1, and 2 < k,l <logn,

Pr(de(i) = k) = - <1+0<M>) (88)

k'fs VrZr
koL 2 2
Pr(dx(i) = kydy(j) =) = kf}‘-ag,% (1 +0 <(1§f;: + (Tcg,:c) )) ' (89)
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Proof Since x,y are independent, it is enough to prove (88). Using Lemma 10,

Pr (Y; =k and E]-#Yj =Ur —V1,r — k)
Pr(di(i) =k) =

Pr (Y} =kand Y, =v, —Ul,a)

zﬁ 1+0(k*(vrzr) 1)
frE! 27 (vg—1)Var(Y))1/2
1+O0((vrzr)~')
(2mvg Var(Y))1/2

2k (logv)?
M <1+O< UrZr >)

0
Thus we can write that for 2 < k < logn,
k 2
VxZh (logv)
E = O|—— 90
) = g ro () 0
ke 2 2

VRV Zez v(logv)?  v(logv)
E 2C +0 91
R TT % ( 2w | o1

Lemma 12. Suppose (x,y) is chosen randomly from By o(v) where R = C = [n],v1 = 0,v =
2n, m = cn.

BJZZ

n,cen*

(a) Conditional on being simple, Gy is distributed as

. . eP 1
(b) lim,,_, Pr(Gx,y is simple)=exp (—1—_%) where 55_1_; =c.
Proof

(a) If Gx,y is simple then it has vertex set [n] + [n] and m edges. Also, there are (m!)? distinct
equally likely values of (x,y) which yield the same graph.

(b) If we condition on the degree sequence dyx,dy then the probability that Gy y is simple is
F(x,y) of (5). Using (6) and (87) we see that

Pr(Gy,y is simple) ~ e~ Adx)A(dy)/2
where

E(n)(dx)) = E(n(dy)) ~ n _”e_p.

Now the random variable nA(dx) is the sum of independent (truncated) Poissons and so is
concentrated around its mean. Thus Pr(|nl(dx) — ni—2=;| > n?/3) < n° for any constant

a > 0 and the lemma follows. O

We prove Lemma 5 by considering the following algorithm for finding a matching in a graph
G. Tt is a technical modification of one described first by Karp and Sipser [14]. We apply the
algorithm to the bipartite multigraph G = Gy where (x,y) is chosen randomly from By o(v)
where R = C = [n],v1 = 0,v = 2n,m = cn. In the light of Lemma 12, we need only show that
the following algorithm KSGREEDY finds a matching of size n — O(n'*°) with sufficiently high
probability.

KSGREEDY
begin
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M « 0
while E(G) # 0 do
begin
A1: If G has vertices of degree one in R and C, choose one, x say, randomly
from R if vy < vo and randomly from C otherwise.
If v1,, =0 or v1,c = 0 and v; > 0 choose z randomly from the set with
vertices of degree 1.
Let e = {z, y} be the unique edge of G incident with z;
A2: Otherwise, (no vertices of degree one) choose
e = {z,y} € E randomly

G+ G\ {z,y};
M+ MU {e}
end;
Output M
end

The reason for choosing a vertex of R when v, < v in Step Al is that we must try to ensure that
|vr — vc| does not grow too large. This is because |vg — v¢| is a lower bound on the number of
isolated vertices that will be created from now on. The choice of R in this case reduces |vy —vc|,
in expectation.

KSGREEDY is defined on graphs. Formally, we need to define its action on pairs of sequences
X,y. Asin [2] we use x’s to denote deleted edges i.e. if z; = a,y; = b and the algorithm requires
the removal of edge (a,b) then we make the assignments z; = y; = . Thus at a general step of
the algorithm we are left with a pair of sequences x,y from ([n] U {x})™ which satisfy z; = %
iff y; = % for ¢ € [m]. The sets R,C are defined by R = {j € [n] : i such that z; = j} and
C = {j € [n] : Ti such that y; = j}. The edges of this extended definition of Gxy are simply
{(zs,yi) : z; # *}. The next step in analogy to the argument from [2] is relate the evolution of
Gx,y to a Markov chain on v. So let ©(0) = (0,0, n,n,cn) and let v(t),t > 0 be the sequence of
states seen during KSGREEDY. The following lemma can be justified by arguments similar to
those used for Lemma 3 of [2].

Lemma 13. The random sequence v(t), t =0,1,2,..., is a Markov chain.

Proof See Appendix B. a

We shall for convenenience introduce a stopping time S where

T {min{t >0: |v(t) —v(t—1)] >logn) if such ¢ exist
0 =

otherwise
Note that
Pr(3t: |v(t) — v(t—1)| > logn) = O(n ¥) (92)

for any constant K > 0. This follows from (87).
Note that ¢ < S implies that

e+ 1) - (0] =0 (“E7). (93)

v

S is our generic stopping time for the first occurrence of one of some unlikely events. As we
proceed, we will find other unlikely events and we will update ¢S accordingly, with just a remark.
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4.3.1 One step parameter changes

We now consider the the expected change in v due to one step of KSGREEDY.

Notice that
2;1, — V1

bl

z <

v

the fraction being the average degree of a heavy vertex. Now a simple calculation shows that
with probabilty 1 — O(n~*%)

5>2
n,m

no vertex subset of B;7" has average degree more than 3m/n. (94)

Given d, the property P = {G : no vertex subset of G has average degree more than d} is mono-
tone increasing. Let two states v and v’ be such that the transition probability p(v’|v) is positive.
Let G be chosen uniformly among all Gy y such that v(x,y) = v. One step of KSGREEDY ap-
plied to G produces a subgraph G' = Gy’ 5. We know that Pr(v(G’) = v'|G) = p(¥'|v) > 0, and
that, conditioned on »(G') = v/, the graph G’ is distributed unformly. Thus, for p(¢'|v) > 0,
we can couple two random graphs G and G’, distributed uniformly on the set of all graphs
with v(x,y) = v and v(x,y) = v’ respectively, and such that G' C G. This means that
Pr(G(t) € P) > Pr(G(t+1) € P), t > 0. Using (94)), we get: for every ¢t > 0, with probability
1—-0(n™*)
no vertex subset of G(¢) has average degree more than 3m/n.

Hence, with probability 1 — O(n~3) the last event holds for all ¢ simultaneously. So we will
proceed assuming that

z < 3e. (95)

Next let ~
v =~(v) = |vg —ve| +v1 and 0, = v

A simple estimation, under the assumption that 6, = o(1), yields

9m — _ _
M= _MZUe|_ ‘m(“ﬂ Vo) _ UL Vs < 8ch,.
v Vg VUg v Vg
Let g(z) = Zﬁe_ml__li We know that g assumes values (u — v1,x)/vx at zx, X = R,C, and

(2 — v1)/v at z. Then calculations yield that ¢'(z) = % € [1,3]. It follows
immediately that there exists a constant c¢; such that

|zr — 2|, |2ze — 2| < €16,

Thus we can replace (90) and (91) by

k 1 2
E(ve,x) = ;I;f +0 (’UGU logv + @) (96)
v2zktt v(log v)?
E(’Uk’R’Ug,C) = W +0 (vZOv logv + %) (97)

In the following we will abbreviate the error terms to

2
=0 <0vlogv+ (log v) ) .

vz

30



In the analysis we will be able to concentrate on cases where
z2>n"1 v =Q(nz?) and v = O(n2(log n)®). (98)
Thus
0 = o(2®) throughout. (99)

Now we go through the steps of the algorithm and compute the expected changes in the param-
eters.

Case 1: Deleting a vertex z of degree 1 and its neighbour y. Assume that 2 € X and X =
{R,C}\ X.

Let v/ refer to the state after one step.

Lemma 14. Assume that logn = O((vz)'/?), v1,, > 0, and the conditions (85), (86) hold. Let
T be the event that KSGREEDY removes an isolated edge in this step. Then qs

E(W,  |v) = 142 Le
V1,x = Ux (e —1)2
vix = vUix—lz (100)
, 22e?
, 2%e?
E(’UX | V) = VUx — W + (€] (102)
E@Wye|v) = vx—1+06 (103)
, 22e?
E(’U | V) = v — 1-— W + @
22e*
By — v |¥) = ox—vx+l- T+ 0 (104
E(y _ g ze?
(W1v) = p-1-2"-+0
v1 + (logn)?
o - o241

E(vox |v) = 0.

Here vo,x is the number of isolated vertices in X that are created by the step and we will let
Vg = Vo,r + Vo,c-

Furthermore, if |lux — vx| > logn then

vy > vx implies v = v — vp. (105)

vy < vx implies ¥ = v+ 2(v} —v1) + vo (106)
2,2

vy <vx impliess E(y' |v) =~ —2 (1 - ﬁ) + 0. (107)

Proof Assume that X = R. We begin by conditioning on the degree sequence of x,y,
assuming that it meets the conditions (85), (86). As we know, under these conditions, gs the
maximum degree is at most logn, (87). So we proceed assuming that this maximum degree
condition holds. Now x,y are just mutually independent random permutations of the multi-sets
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1T i%(® and H]-ec j% () respectively. Suppose we delete z € R of degree 1 and its neighbour
i€R
yeC.

If 7 occurs, i.e. y € C7 then U'1,X =v;,x — 1,v% =vx X = R,C and m’ = m — 1. We note that
V1,c
Pr(ye Cy | x,y) = = o,

so this case only contributes to the error term. Note also that (106) holds in this case.

Now for 2 < k < logn we have

kvk,c

Pr(dy(y) =k |x,y) = (108)

Add the event {dy(y) = k} to the conditioning on x,y, denoting the resulting conditioning by
. Suppose y has k; ; neighbours (excluding ) of degree i that are joined to y by j edges. Then

W= n—k (109)
Ve = Vic (110)
Ve = via—l—kii+Y ki (111)
i>2
v, = we—1 (112)
Vp = Up-— Zki,i—l - Zk” (113)
i>2 i>2
Vo = D kij (114)
j>1
'Ué],c =0 (115)
Then we have
vp = Z ki
i>1
and
vi—vy = —1—ki1+ Zki,ifl
i>2
Y -7 = vi-v-— 1+Zki,i71 +Zki,i
i>2 i>2

and (106) follows.
Note next that

(k= 1)(vra—1)

E(k1,1 | H) = 1

(116)

Further, for max(2,j) <1i < logn,

. . (k—1)iv;, (logn)? .
Ek : | H) = v E—1\(@)j(p—1—d)p_1_5 m R(1+O( m )) j=1
N e Py

pi—1

(117)
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Thus from (108), (111) and (117) we get

E(vn|%y) = v, —1-E(k1|xy)+E Zki,ifl | x,y
i>2
k k—1)2
= a1 ) Be (2120 g
= w 1

Removing the conditioning on vertex degrees we get

kzkv 22v
E(W,|v) = v, —1+E cC . (k-1)- 22 10
Le " k>2 kl'fop frit
2222y v.e%
= v ,—14ZRICTETCE 9
b fRfCll’z
z4v2e?
= vypg—1+—-——-+06
Lr 4f2,2
22e?
= Ul,R_1+W+®-

The remaining quantities can now be filled in the same way using (108) and (109) — (113).

E(wic|v) = vic+©
E(vg |v) = va— (B(ve|v)— (12— 1)) +©
22e?
G
E@,|v) = v.—1+0
kE(vk,c | v
B, |v) = Y Bl S g0
k>2 K i>1
_ Z kE(vg,c | V) <(k - 1)(111,1,2 —1) 40 ((logn)2>)
k>2 H n—= o
- o<_”1+(10gn)2)
J7;
'U(l),c =0
kE
Em'|v) = m—-1- j{: FE(vkc | v) +0
k>2 m —Vi,¢c
kzEv
= m—1-— € (k-1
m ji: M fom (k-1)+06
k>2
— m_l_M+@
mfc
22ve?
= —1—
m omf + 06
= m-—1- =€ +@
e —1

Now note that since |v' — v| = o(logn) gs, we see that if v — vg| > logn then v, — v}, has the
same sign as ve — vy and we can use the equations (101) — (104) to get (107).
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Finally (105) follows from

’Y"’Y:—Zki,i-

i>1
O
Note that
2,2 2
A S
(ez _ 1)2 e?/2 — g—2/2
) 2
> i>0 277 (2;+1)!
21
Z min{z_sai}a (118)
cf. Corollary 3 of [2].
So in Case 1, for v(t) € Wi, we have
21 21
E(v'l|V)<v1—min{z—8,§}+®<vl—min{§—0,§}, (119)

on using (99).

Remark 1. In what follows there is a proliferation of large related constants and the reader may
find it difficult to check where these constants come from. We will adopt the convention that the
subscript of such constants is defined by the equation number where they are first used. In this
spirit Cllg = 50.

Furthermore, introduce M = 2y — v;. Lemma 14 implies that

z 2 z
E(M — M 1+ 2285 4 2<y
(M = M|v) _ L e (120)
E(’U —’U|V) 1+ e —1)2

Case 2: Deleting a random edge when v; = 0.
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Lemma 15. Assume that logn = O((vz)*/?) and v; = 0. Then

ZZez
E(vll,n | V) = m + @
2,2
, _ z%e
E’Ul’c | V) = m + @
22e?
E(v} = 2——
(v1 | V) (e* — 1)? +0
2%e?
E(U;|V) = ’Ua—l—m-f-@
2%e?
E(’UIC|V) = Uc—l—m+®
2,z
E(v' = v-2-2°% 1@
@) = v-2-2 75
E(v,—v,|v) = vg—v:+0© (121)
, _ ze?
EW |v) = u—l—Zez_l—i-@
log2n
E(vwr|v) = O (122)
7
1 2
E(we|v) = O ( Oi n) (123)
Furthermore
Pr(v,,>0|v) = ezz_l @zl—%—i—O(zZ)—i—@. (124)
2 2
Pr(vi,>0o0rv;,>0|v) = 1— (1— ezz_1> +0=1- %—%—O(zs)—i-@. (125)
Pr(vi,>0andvi,=0|v) = z 1- +®:E+O(z2)+® (126)
’ ' e* —1 e —1 2
Proof We again condition on the degree sequence x,y. Choosing a random edge means

choosing a random z from x, and then an z’s random neighbour y from y. Given ke2, £ > 2,
let us add the event {dy(y) = k,dx(z) = £} to the conditioning on x,y, denoting the resulting
conditioning by #. Besides the numbers {k; ;} (see the proof of Lemma 14), let let = have ¢; ;
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neighbours (excluding y) of degree i that are joined to z by j < i edges. Then

W= p—k—£+1 (127)
Ve = D b (128)
i>2
Ve = Z kiji—1 (129)
i>2
’Ué = Vo — 1-— Zgi’i_l — Zei’i (130)
i>2 i>2
’U;{ = Vg — 1-— Z ki,i—l - Z ki,i (131)
i>2 i>2
vor = D ki (132)
21
voo = D i (133)
j21

Now (117) still holds and there is an analogous expression for the ¢; ;.

The rest of proof of the lemma follows the same pattern as that for Lemma 14 and is left to the
reader, who should notice how close the claim is to two applications of the previous case. O

Observe that (120) holds in this case too.

Note also that in both cases

E(UMV):O(M).

(134)

Remarkably, the equations involving v1, v}, v,v’, i, 1’ are up to the error terms, identical to those
given in Lemmas 6 and 7 of [2].

4.3.2 Multi-step parameter changes

At this point let us try to summarise the (conditional) expected changes in the parameters
v1,7,71 as the algorithm proceeds. Here

1= |'UR - 'Uc|-

‘We need to show that v; does not grow large as v; determines the rate at which isolated vertices
are created. We also need to show that y; does not grow large so that we can for one thing
approximate zgz, zc by z.

Let us first consider the case where v; > 0. There is a preferred side from which to choose
the vertex = of degree 1. This is the side with fewest vertices of degree 2 or more. v; is well
behaved. When v; > 0 the expected change in v; is negative and so it is relatively easy to show
that it is unlikely to get too large. ~; is not so well behaved. It has a positive expected change
when we are forced to choose x on the less preferred side. However, this expected increase is
compensated by the expected decrease in v;. This is why we introduce the parameter v which
is much better behaved than 7;. Indeed, if z is chosen on the preferred side then the expected
change in + is negative and if z is chosen on the less prefered side then the change is non-positive
(deterministically).
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Now consider what happens if v; = 0. There is only a small chance that v{ = 0 too and the
expected increase in 7; while v; remains zero turns out to be negligible. If v] > 0 then we see a
rise in y (due to the rise in v;). One more step will show an expected decrease i ;. The rise in
vy is handled by looking forward to the next time that v; = 0, see Lemma 19.

The main analysis of the chain (v(t)) is restricted to the times when v(t) € Wy or v(t) € Ws.
where for o =0, 1,

Wo={v: z>n"% v> Aqzsnz?, v < B135n2°“'(10g n)3, v < Ciasn?ee (log n)g} (135)
Here ag = .14, a; = .17, £ = and A;35, B13s, C135 are large constants and Wy C Wy.

Note that (98) holds for v(t) € W;.

For 0 = 0,1 we introduce stopping times

_ {min{t<8: v (1) ¢ W,}

T n if no such ¢ exist

Now it follows from (125) that we can find K > 0 such that with probability 1 — O(n~°) there
is no sequence ¢t,t +1,...,t + Klogn < n such that v;(7) = 0 for ¢ € [¢t,t + K logn]|. So we
introduce another stopping time

S — min{t <8: vi(r) =0,7 € [t — Klogn,t|}
e n if no such t exist

and then
S :=min{S, 51 }.

Lemma 16. Lett be such that

v(t) € Wi and v1(t) =0

and
71(t) = v (t) — va(t) > (logn)®.
Let
o min{t <7 <77 : v1(7) >0} if such 7 exist
n otherwise
Then
E(n(t' +1) —m(t) [ v(t) < —B(t)
where
2
B(t) = —min{zcgfze,%}. (136)

where 0136 = 30119

Proof We first observe that either §; < ¢+ Klogn or t' < t + Klogn and then vs(7) —
va(1) > (logn)® for t <7 < ¢ + 1.

We next assemble the following facts: Assume that 0 < 7 — ¢t < K logn.

37



Claim 1

2
Pr(t':‘r|t'>7'—1,u(7'—1)):1—<1— i 1) +0 % 1 1o

ez —
This follows from (125). Here we can take z = z(t) since z changes by O (M) in
O(logn) steps (see (93)) and this quantity is o(z3).

Claim 2
p2 =En(7) —n(r - Dlpz, [v(r - 1))) = ©.
This follows from (121).

Claim 3
Pr(via(t) > 0| vi(t—1) =0,01(t) > O,v(r—1) = —L1 10
1— (1 _ eil)
déf 7T3+@
= 1-240(.

This follows from (124) and (125).

Claim 4
/ ’ ze” def
E(nv(t+1)—m(r) |t =1,v1,-() >0,v(r)) = -1+ @) +0 = pug+ 6.
This follows from (104).
Claim 5
ze?
E(vi(t)—m(r=1) | ' = 1,v1,-(t') = 0,v(7)) =1 — -1 +0 =—us+06.
This follows from (104).
Putting these facts together we get
1
E(n(t'+1) =m(®) | v(t)) = -0 +mspa + (m = 75)(—pa) + ©. (137)

Explanation of (137): The first term accounts for the expected increase in v; between ¢ and
t'. The term m3us accounts for the expected increase in y; when vy (') > 0 (this is negative)
and the term (m; —73)(—pa) accounts for the expected increase in ; when vy 5(¢') = 0. Included
in here is a negligible O(n - n=%) for the case of 7; < t.

It can be shown that 27w, — w3 > % and so

B(n(t' +1) —m(®) | (6) < L < ‘mi“{%m’ é} (138)

The lemma follows. O

We put these ideas to work in the next few sections.
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5 Number of vertices left isolated

Let oy, Wy, 75,4 = 0,1 be as in (135).

The analysis is in two parts, t =1... ,Tpand t = Tg+1...7T;. The reason for this split will not
become apparant until the middle of proof of Lemma 20 and so the reader will have to take the
need for a split on trust.

Note that if v € Wi then vz? > Aj3snz* > (logv)? and so the conclusions of Lemmas 14 and
15 are valid.

Fix 0 = 0 or 1 Now let X;, ¢t = 0,1,...,7, — 1 be the number of isolated vertices created at
time ¢ and let X; = 0 for ¢ > 7,. Let also set v(t) = v(7, — 1) for ¢ > 7,. Then the random
variables X, satisfy

Bi35C134n%% (log n)®
u(t) ’

where | - denotes conditioning with respect to {v/(7)}o<r<¢, and Ci34 is the hidden constant in
(134). Putting A = (logn)~2 and using AX; < (logn)~!, e® <1+ 1.5z, = | 0, we see that

X; > 0; Xy <logn; E(X;|-) <

E(eMt | ) <1+ 1.5AE(X, | ) < e!SABXel),

Therefore, introducing X = »,.,X;, and using the bound for E(X; | -) together with
>, E(m™1(t)) <logn, we have

E(e)‘X) < exp(2B135C134n>* (log n)?).
Applying the Markov inequality, we obtain
Pr(X > 3B135C134n2% (logn)*) < ¢~3B135C13an**7 (logn) AR AX < o= B1asC1aan®* (logn)® (139)
This proves:
Lemma 17.
At most Cr49n?®- (logn)* isolated vertices are created up to time T, qs (140)
where C140 = 3B135C134.
Our next task is to get a good estimate of (7, ) at the stopping time 7.
Lemma 18. With probability 1 — O(n=2)
v1(t) < Crq1n**e (logn)? vt € [1,T5], (141)

where C141 = 8C119 (and hence we can take Biss = 8C119).

Proof Let A, = C141n?@(logn)®. First of all, by (87), gs the conditions v;(t — 1) =
0, v1(¢) > 0 and ¢ > 1 imply that v;(t) < logn. In view of this, for ¢; < ts, define the event

81(t1,t2) = {’Ul(tz) - ’Ul(tl) > Cl4ln2a°(logn)3} n {\V/t € [tl,tz), ’Ul(t) > 0}

Clearly then it suffices to prove that

Pr U gl(tl,tg) = 0(”72).

t1<t2<To
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Define
v — { vi(t+1)—v(t) ifvy(t) >0and t < T,,
=

—B1a2 otherwise,
where,
Fy— (142)
M2 Orignes
We notice upfront that, for ¢; < t2 < 7, and v1(t) > 0 for ¢ € [t1,t2),
ta—1
’Ul(tz) — ’Ul(tl) = Z Y;
t=t;
Now, by the definition of T, |Y;| < logn for all t. Furthermore, if A = 2(1ogn)2 then
(1
E( |v(r),7<t+u) < 1+EQY.)+Y. ﬂ
i>2
< 1—ABg2 + A’(logn)®
< 1. (143)

For t < T, (143) follows from the definition of ¥, B142, (119), and the definition of the stopping
time 7,. For t > T,, (143) holds trivially. Thus, the occurrence of the event & (¢1,t3)N{ta < T, }
implies

12
Y V> A, (144)

t=t1

Now from (143),

ta 12
Pr (Z Y: > A, | v(r), T < t1> < e ME <H et | v(r),T < tl)
t=t;1 t=t;
< e M, (145)
Since the number of pairs (t1,2) is (5) = O(n?), the statement follows. O

To account for the unlikely failure of (141) we introduce a stopping time

S, — min{t S 71 : ’Ul(t) > C’141n2°‘° (log n)3}
2T n if no such ¢ exist

and let
S := min{S, S2}.

Now to deal with ~.
Lemma 19. With probability 1 — O(n=2)
7(t) < 2C140n** (logn)*  Vte [1,T5]. (146)

(Thus we can take Ci35 = 2C149)-
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Proof For ty <ty let

Ex(to, t2) = {7(t2) — 7(to) > 2C149n** (logn)*}

and also for tg < t; < tg let

gg(t(),tl,tz) = {’)’(tl) — ’)’(t()) < Cl4on2°‘" (10g ’I’L)3 and
v(t) — v(to) > Claon?ee (log n)3, t; <t <ty and y(tz) — y(to) > 2C14912% (log n)4}.

Note that if t3 < T, and Ey(to,t2) occurs then E3(to, t1,t2) occurs for some t; > tg.

Pr U 83(t0,t1,t2) == O(TL72). (147)

0<to<t1<t2<To,

Fix ty > t1 > to. If E3(to, t1,t2) occurs for some ty < 7, then the sign of vg —ve does not change
between t; and t2. (If vg — vc drops to zero then we will have v = vy < C141n2%7 (logn)?). We
will assume that vg(¢1) — vo(¢1) < 0 and introduce the stopping time

_Jmin{t; <t <ty: vr(t) > vo(t)
T ta if no such t exist

We define a sequence of times 79 = t; <7 < ... < 7 < Tpy1 = tr as follows: 7, = min{¢; <
7 < min{ts, T3} : v1(7) = 0}. If such a 7 does not exist then we take 7, = ¢;. Assume that we
have defined 7; with v1(r;) = 0. Define 7/ = 1 + min{r; < 7 <t;: v1(r) > 0}. If 7] does not
exist then » = 4. If 7/ does exist then let 7} = min{r; < 7 < {7 : vi(r) = 0}. If 7/ exists then
Ti+1 = T, , otherwise » = 7. We now bound the change in v over these intervals.

(a) We first consider y(71) — y(70). This is zero if 71 = 79 and so assume that vy (o) > 0. If
v1,r(t1) = 0 then (100) implies that v1 z(7) = 0 for ¢ < 7 < ¢;} and then (105) implies that
v(71) < 7(70)-

So assume that vy z(t1) > 0. For 1 < u < n define

t — t —-1) ¢ <
Y, = y1(t1 +u) —y1(t1 + u ) 0+U,‘T1 (148)
— a9 otherwise
where
Brio = ———— (149)
149 = Cragn?®s’

Now we have |Y,| < logn and (136) implies that
E(Y, | v(7),T < t1 +u) < —P1ag.

So with A = % we can argue as in (143) that

E(e |v(r), 7 <t; +u) < 1.
We then argue as in (145) that for all 0 < T' < m,

T
Pr (Z Y, > 10(log n)3,8;&,> <n7o.

u=1
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It follows that

Pr(y(r1) — 7(1) > 10(logn)*Brge) < m . (150)

(b) We now consider the random variables y(7;41) — (%) fori > 1. Fix 1 <7 <r. (Wheni=r
parts of the argument may have to be omitted or modified in a trivial way). It follows from
Lemma 16 that

1

E(vi (7)) —m(m) [v(7),7 <)) < —Pis1 = " CraonZar

(151)

Suppose that vy z(7]) = k and vy, (7}) = £. Thus

Y() = (1) = (7)) = n(m) +k+ L (152)
Next let 7} = min{r > 7] : v1 = 0}. It follows from (106) that

=2k =20 <(7]') = (7)) < —2k + Z;

where

-
i

Z; = Z vo(T).

This is because vg < v¢ and v1,(7}") = 0 and v, C( ") < wv1,0(7) (by (100)).

Now (105) implies that
V(1ig1) = () — Z;

where
Tit+1
Zz/ = Z ’U()(T).
So if
Ui = y(Tit1) — (1) — Zi + Z;
then
I <7(7) —71(7i) + £ — k and |T;| < 5logn.
So
E(; | v(ri)) < —Bis1 + O < —P151/2.
Putting A = W we can argue as in (143) that E(e* | v(r;)) < 1. Putting I'; = 0 for
i=7r+2,...,n we see that

r4+1 n
Pr (Z T; > 125(log n)3,81_511> =Pr (Z T; > 125(log n)3,81_511) < e~ 125Mlogn)’Bigh _ =5

=1 =1
(153)
But
r+1 r+1 r+1 r+1
Y(Tr41) — (1) ZF + Z(Z Z)) < ZF + Z Z;
and (140) implies that Y77 Z; < Ci4on?*> (logn)* gs. Therefore,
Pr(y(7r41) = 7(71) > 2C10n**" (log n)*) = O(n ™). (154)
The lemma follows from (150) and (154). O
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We now check the second condition of W, v > Aj35n22.

Going back to (120), we are left to consider the differential equation,

dM 14 % ; + 21:2;2
dv 1+ Zj,f:;:

The solution of this was obtained in [2]: Here z* is the value of z at ¢ = 0 and M* = 2m* = 2cn.

_ M*(ef —1)z = gef

Then (up to a v; error term)

 2mf()
z(er — 1)
2m* f(2) = £ef
42:*(81*—1) exp{—/z 765(1+§)_1d§}. (156)

So we define

B v = et
ho= n_f(Z)eXp{/z ef(1+£>—1d§}

m # et
P = mexp{/z de}.

Lemma 20. Let T_1 = 0. Then for o =0,1,

and

Pr ( max _ |[L(w(r) = Hi(w(To_1)| > n_o‘"/4) oY, i=1,2
T€[To—1,T5]

Proof Now fix i = 1 or 2 and let J(¢) = J;(v(t)). Let now K = (logn)? and define
Q(t) = exp{K(J(t) — J(T5-1))} for Ty—1) <t < T5. Let Q(t) = 0 for ¢t > T,,.

We consider only 7 = 1 since the other case is very similar. For ¢ > 7,, we obviously have
Q) =Q(t—1)=0. For T,_1) <t <7, we can write

E(Q(t) | {v(8)}s<t) < Qt = DE{L(s)—ss—1)|<logn exp [K (J () — J (¢t — 1))]| w(t — 1)}(i57)

Since v(t — 1) € W,, each of m(t — 1) and v(t — 1) is of order n'~2® at least. The same holds
then for v(t) € B(v(t —1),logn) = {v : |v —v(t —1)| < logn}. Consequently v(t)z(t) is of
order n'—3% at least. Moreover, it can be easily verified that, uniformly for such v and i = 1, 2,

w’y:/v7m,
aJ 1
3 = 0<W>, (158)
0%J 1
ety O(—uw)' (159)
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Let © = (v,m) i.e. drop all other parameters. Assuming v(t) € B(v(t — 1),logn), expanding
the exponential function, and viewing J(¢) as a function of v, m only,

exp{K(J(t) = J(t— 1))} = [L + KVJ($)T(0(t) - &(t - 1)) + O(K*(logn)*/ (v2)*)],

(160)
Klogn = o(vz). (161)
Consequently, equation (157) becomes
EQ®{r(9)}s<t) < Q(—1){1+KVIO)TER() - o(t - 1)|w(t - 1)]}
+0(Q(t — 1)K?*(logn)?/(v2)?). (162)
Putting .
[ 14 vy
F(D) = 1+ij§;: f ]
and using Lemmas 14 and 15,
VI®)TED({) - o(t-1)|v(t-1)] = VJE-1)T[F@(E-1))+0]
= O(IvJ(t—1)e)
= 0 (%@) . (163)

(VJ(P) L F(¥) since J(#) is constant along the trajectory of div/dt = F()!)
Therefore, for t — 1 < 7, and hence for all £t > T, 1,

E(Q(t) [ {v(s)}s<t) < Q(t = 1)(1 + O(K (logn)®/(v2))) = Q(t — 1)(1 + O(n"**~>(log n)*).
So for any positive €, the random sequence

{R(®)} = {1 +n"2)7Q(t)}

is a supermartingale.

Introduce a stopping time

g _ [ min {To 1 <t <Tp: J(t) — J(To_1) >n~%/%/2}, if such t exist,
1 7o, otherwise.

For the reminder of the proof of the lemma, we take o = 0. We will continue to use the subscript
o because we will return and finish the case o = 1 later. Let n, = T, — To_1.

Now, applying the Optional Sampling Theorem (Durrett [7]) to the supermartingale {R(t)} and
the stopping time 7; we get

E[Q(T;)] E(1+n/**"2)" - E[Q(T;1)] (164)
E(1+nt=2)" - E[Q(T;-1)]
(1 +n7aa+e—2)n

= 14o0(1), as n — oo, (165)

VANVAN

for € sufficiently small.
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Remark 2. Note that in the case o0 = 1 we have Ta; — 2 > —1 and we cannot argue that
(1 +n'@te=2)n = 1 4 o(1). We will have to argue instead that whp n; = O(n!=2%) and then
all we need is that Tay — 2 < 209 — 1.

Since P
E[Q(T))] > e /2. Pr{T] < T,},
we have
_ —aa/4 _ ! _ _nao'/4/2
Pr{_max [J(t) = J(To-1)] > n/4/2} = Pr{T; < T,} = O(e™""""/2).
Analogously,
. _ a0 /4 _ —n°‘°/4/2
Pr{?;}lnsl?d}['](t) J(To—1)] < —n /2} =0O(e ).
So gs

_ < 7&6/4 .
pomax  J() = I(To-1)l Sn7%e/%)2

It only remains to note the equation (92).

This completes the proof of the lemma for o = 0. a
At time Ty either (i) z < n=%, (ii) 2 > 3¢, (iii) v < Ai3sn2? or (iv) vy > Bizsn2®°(logn)? or
(V) v > 6’135n2°‘°(10g n)4.

Possibility (ii) is ruled out by (94). (156) and Lemma 20 show that for ¢ € [0, Tg], v(t) ~ Aanz?
where

*

m* # get
A= ——— - ————d¢ ;.
nz*(ez*—l)e"p{ | g g}
This rules out possibility (iii) if we take
Apas = A)2. (166)

Possibility (iv) is ruled out by Lemma 18 and possibility (v) is ruled out by Lemma 19. So we
can assume that at time 7,

z & n % (167)
v ~ Anz? (168)
m ~ Anz? (169)
(7o) — 2(To — 1) = O((log ) /v) (170)

is the justification for (167), m ~ v comes from z = o(1) and
2 < 2m—v _ z(e* = 1)

v f(2)
So if we condition on (167)—(169) then we can go back to the proof of Lemma 20 at equation

(164) and take n; = O(n'~2* and now find that (165) holds. We have fulfilled the condition
laid out in Remark 2 and finish the proof of the lemma.

=2(1+ % +0(2%)). (171)

We can therefore argue that at time 77, (167,168,167) hold with oy replaced by ;. The number
of isolated vertices that are created from 7; onwards is bounded by the sum of (i) >, 5 kvi(71)
and (ii) the number ; of components of G(71) which are paths of odd length. Now gs

D kur(T1) mv(T1)2(T)/3 = O(n'~**7) = O(n*).

k>3
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The number of paths of odd length is bounded by the number of vertices of degree 1 which is
O(n2a1+o(1))_

This completes the proof of Lemma 5.

6 Proof of Theorem 3

Our proof will follow the lines of the proof of Theorem 2. We will prove in Lemma 22 that
adding a few random edges is likely to increase the size of a maximum matching. We then state
a lemma for Gflz,,% which corresponds to Lemma 4. The final piece, the analogy to Lemma 5 can

now be claimed from 2]

Lemma 21. Let G = (V,E) be a graph with |V| even, 6(G) > 2, with no isolated odd cycles
and which does not have a perfect matching. For every x which is not covered by every perfect
matching, there exists K = K(z), L = L(z) such that

(i) ¢ KUL, and (z,y) ¢ E for everyy € K.

(i) |K|=|L|+1.

(iii) Ng(K) = L. (Neg(K)={w¢ K : I(v,w) € Eg,ve K}).

(iv) |E¢(KUL)| > |K|+|L|+1.

(v) Each v € L has at least 2 neighbours in K.

(vi) For every y € K there ezxists a mazimum matching that does not cover y.

(vii) Adding any (z,y), y € K(z), to E increases the size of a mazimum matching.

Proof Let z € V and let M be a maximum matching which does not cover z. Since |V| is
even, there exists s # ¢ which is also left isolated by M. Now let T be a tree of maximal size
which is rooted at s and such that for each v € T, the path from s to v in T is alternating with
respect to M. Let K, L be the set of vertices at even and odd distance respectively from s in
T. For every y € K, we can switch edges on the even path from the root to y to obtain another
maximum matching that does not cover y. Furthermore, by maximality of 7', all the leaves of T’
are in K, so that all the vertices of T, except s, are covered by M. Furthermore, if a neighbor u
of a vertex from K is not in K U L, then v must be covered by M, which contradicts maximality
of T. Therefore the pair (K, L) meets all the conditions, except possibly (iv). Using §(G) > 2,
we can only assert that |Eg(K U L)| > |K|+ |L|. But if |[Eq(KUL)| = |K|+ |L| then K UL
induces an odd cycle and s is of degree 2 in GG. Since there are no isolated odd cycles in G, there
must be some edge (v,w), v € L, w ¢ K U L. Since v is covered by M, (v,w) ¢ M and we can
alter M solely on K U L to obtain a maximum matching M’ in which v is isolated. Now the
degree of v is at least 3 and so if we re-compute 7" with v in place of s, T will have at least 3
leaves and (iv) will be satisfied. O

So now let A, (€) denote the event that there exist K, L satisfying (ii)—(v), and such that | K| < en.
Lemma 22. There ezists an € > 0 such that Pr(A,(e)) = O(n™1).

Proof First of all, [19], N(n,m) the total number of graphs with minimum degree at least
2 is asymptotic to
_em-1 £

NO(n7m) - \/m p2m exp(—ﬁ/2 _ﬁ2/4)’ (172)
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where p, p satisfy

pfilp) _2m . pfolp)

—m s , 173
£ - om0 "7 A 47
and Z is Poisson(p), conditioned on Z > 2. In fact, for all a,b,z > 0,
26— 1)1 a
N(ab) <+ 2= D fol@) (174)

Jne x2

where ¢* does not depend on a,b,z. (The attentive reader certainly notices direct analogy be-
tween these formulas and their counterparts for the bipartite case in Section 2.) The independent
copies Z1,...,Z, of Z provide an approximation to deg(T"), the degree sequence of the random
graph T', in the following sense:

Pr(deg(T') € B) = O(n'/?*Pr(Z € B)), (175)

uniformly for all sets B of n-tuples. Consequently, if B is such that Pr(Z € B) is O(n?) for
some b > 1/2, then Pr(deg(T') € B) = O(n~(*~1/2)), which goes to zero, too! A particular event
B which will come in handy is defined as follows. Let d(j) = d(j,T') denotes the j-th largest
degree of T'. Pick a > e5*?(h(p) + 1)? where h(p) = fzi(p) and define 4(n, j) = [log eaT"] Let us
show that

Pr(3j € [1,n] : d(j) > £(n, ) = O(n™1). (176)
To prove this, consider first Z(j), the j-th largest among Z1,...,Z, . Clearly

Pr(Z(j) > £(n,j)) < <;L) Pr?(Z, > £(n,)) < exp (j log ej—,n + jlogPr(Z; > E(n,j))) ,

and, using the definition of 4(n, j) and a,

ptnd)
£(n, j)!

(- F)
< exp|—alog—|.
J

Pr(2(j) > £(n,)) < exp ( ja—1)log —)

Pr( > tn,i)) < hp) L < exp (loghlp) — en, ) og ) )

ep

Consequently

so that

n

Pr(3j € [1,n]: Z(j) Z Pr(Z(j) > £(n, j)) = O(n™?),

whence the probability in (176) is O(n~3/2). Now, for a given vertex subset S,

S|
D d; < Zd
jES
and on the event in (176)
- n
[log — log —.
;d(j g og 2+4a)s+s 0g



‘We conclude that

Pr(3S C [n] : Zdj > (24 a)|S| + |S|log(n/|S])) = O(n™1). (177)

JjES

Now, with k as a hidden parameter, let T}, ,,,, denote the total number of pairs (K, L) consisting
of disjoint subsets K, L C [n] such that |K| =k, |L| = k — 1, (ii)—(v) hold and y, v, v, are given
by

|E(K)| + |E(L)| = g,
{(u,w) € E(T):u € K,w € L}| = v,
{(u,w) € E(T'):u € Lyw € (K UL)°} = .

Note that by (iii)
v+ u > 2k. (178)
‘We want to show that
Pr Z Z Tyyp, >0 = O(n_l)a
2<k<en {mvi}

provided that € > 0 is sufficiently small. By the above discussion we may and will confine
ourselves to u, v, v; such that

wv,m < A(k+ klogn/k), (179)

for a large enough constant A. All we need to show is that

Z Z By, = O(n_l)’ Epvu, = E(T, 7'/,1/1)' (180)
k<en H,V,V1:
=" (179) nolds

By symmetry,

n
E v,vy — P v 181
K,V,V1 (k,k—l,n—Qk—i—l) H,V,V1) ( )

where P, , ., is the probability that the subsets K* = {1,...,k} and L* = {k +1,...,2k — 1}
form such a pair. To bound this probability we need to bound N, ,,, the total number of
graphs in question in which the pair {K*, L*} has the prescribed properties.

Let (0;)jex=, (0;)jer~ and (J;)je(x-uL~) be the degree sequences for subgraphs G(K*), G(L*)
and G((K* U L*)¢) respectively. For j € K* (j € L* resp.) let A; denote the total number of
neighbors of j in L* (in K* resp.). For j € L* (j € (K* U L*)¢ resp.) let 0; denote the total
number of neighbors of j in (K* U L*)¢ (in L* resp.). Then

Z d; = 2p, Z dj=2(m—p—v—u),

jEK*UL* JE(K*UL*)e
Y A=Y Ay Yo=Y g-un (182
JEK* jeL* jeL* JE(K*UL*)e

In addition,
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0 +A;>2, jeK UL",
(5]' —1—6]- >2, je€ (K* UL*)C. (183)

It is worth noticing that (183) is a relaxed version of the actual restrictions. Also, lumping
together §; for j € K* and j € L*, we effectively ignore the fact that the graphs G(K™*) and
G(L*) are disjoint.

Denoting the total number of graphs with the given D = (4, A, 8) by N(D), and using the
degree-dependent bounds for the counts of graphs, both general and bipartite, we obtain

N(D) <

(2p — 1N % x | v! H i‘ x | ! H %I_LIBi

]EK*UL* J* jEK*UL* J° JE(K*UL*)e

( ;
1
((2(m p—v—u)—1)N H 5')

FE(K*UL*)e J
e —DMWn!2(m —p—v—rv) = 1)1 B(D);

1 1 1
°@)= ] 514, HW' 11 9;16;1" (184)

jEK*UL* J° jeL* J° JE(K*UL*)e

Our task now is to evaluate S, . ,,, the sum of ®(D), for all D that meet (182) and (183). To
do so, let us first determine a multivariate generating function of (D), for D satisfying (183)
only:

> jEK*UL* d; > jEK*UL* A > jeL* 9; Eje(K*UL*)C 0; Eje(K*UL*)C ‘sj
E (7 (7 (73 Ysu Ys -®(D)
D satisfies (183)
2k—1 k—1 n—2k-+1

Z y1 yz Z y3 %

§+A>2 dlA! 8>0 o! 8+6>2
= fo(yr + y2)2* L fo(ys)*  falya +y5)" 2 (185)

2u 21/( 2(m—p—v—v1)

So now Sy, ., is the coefficient of y;"y
of (185). Using

Yaya)" ys in the function on the right hand

[ztlllzgz]F(zl +Zz) _ <a1:a2>[za1+a2]F(z)’
1

and fo(ys) = e¥®, we obtain then:

A (20‘ + V)> (2(m —p-v)- 1/1) (k—1"

2u 2 vy!
x [22E ) fo ()L (23R T fa () L. (186)
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Here -
[mf(uﬂ/)]h(wl)%q < fa(z1)*"~

S W, \V/$1 >0,

and we will see that a sufficiently small z; will do the job. We can write an analogous bound for
the last factor in (186), and (in the light of (172) and the relative smallness of our parameters
W,v,v1) Ty = p is a natural choice. In fact, we can do a bit better and get an extra factor n=1/2,
by applying the Cauchy (circular) contour formula, cf. (14), in combination with (15). Using

Nll'yl’:l’l

L,V,v1 —Wa
' > N(D),
D satisfies (182),(183)
(172),(184), and an inequality
u—v (2u —1)!
2u—v) - < >—0—
(") 2w -y < IR,

we obtain then

fa(z)®* 1 p*etv) (p(k —1))"
DR A SRR

(187)

Then since 5
Z (p(k - 1)) _ eP(h=1) < gk

!
130 14
we get the bound (call it Q) for Y, Py v, which is (187) with the last factor replaced by
erk.

Next, for v > vy = vo(p) := max{2(k — 1),2k — p}, using (179),

Quovir _ P2 p2+ 02
iy
Qu, — 2 vm
2 (k2 4+ k2log’(n/k) v
<2 L), )
x] km m
.02 2
<o 25+ (e + log(1/¢))
1
<1/2,

if k < en and 0 < € < €;(;) is chosen sufficiently small. For this choice of e,

Z Q,u,u = O(Qy,uo(p))' (188)

v2>vo (k)
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Furthermore, if ¢ > 2 then vy = vo(x) = 2(k — 1) and we have

Qu+1,v0(ut1) < N L
Zetlrolptl) o F 7 T2

Quwow) 21 pm

2

p k k 9 k
<. - _1 -
<2 (m+ og (n/k)>”

2

p 2 k
<p— - (e+e€log”(1/e)) - —

o 1/9)-
<1/2,

if u > €'/2k, and 0 < € < ez(z1) < €1(1) is chosen sufficiently small. If so,

§ :QWJ <p kmax{Q, ., : 2 < p < ke'/?}. (189)
13
p2>2

To make the last bound explicit, we use (2a — 1)!! = (2a)!/(2%a!) and the Stirling formula for
factorials to bound, for v = vy and 2 < u < €'/2k, the combinatorial factors in (187) as follows:

2u\* 2
Qu—1I <, k2 (—”) ;

(2(#2-; VO)) <s exp(O(ke'/*loge 1));
) o),

Using these bounds and k%vy! < (2k)!, we obtain: for 2 < u < €*/2k and z; < A,

Q < n1/2(2k)'(2m)_2k fa(21) N i N et (£ e ex (O(k61/2 loge™))
Kr,vp b - CL’% f2 (p) I P g .
(190)

If 4 = 0 then vy = 2k, and if p = 1 then vy = 2k — 1. The direct computation shows that the
bound (190) holds in these two remaining cases as well. So, collecting the pieces and using

(2k)! 2%k
— 7 < k2
Rk —1)1 =27
we get
Z Epvu <b 77,_1/2q2’c exp(O(kel/2 log e_l)), (191)
TR 78 7]
where

—9. ™ . fa(z1) . P’ ePl?.

om 2l falp)

(192)

Using (173), we transform (192) into

B p 2f3(z1)
7= eP/2 — e*P/2 :1,'% )
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The first fraction is strictly less than 1, while the second fraction approaches 1 from above
when z; | 0. So we can pick z; small enough to make p < 1. For this choice of z;, and the
corresponding € = €(z1) < ez(z1), we have

1+ ¢?

¢* exp(O(e"/*loge™")) < g1 := —

<1

Then (191) implies that

Z Z Epvv, <o n~1/2 ZQf = O(n71/2).

k<en p,v,v1 k>0
Thus (180) is completely proved, and so is Lemma 22. ad

Introduce OF, the set of non-edges (z,y) such that adding (z,y) to E, the edge set of the random
graph, increases the maximum matching number.

Lemma 23.
Pr(0 < |0E| < €n/2) = O(n™%).

Proof Suppose the event {|0E| > 0}N.A,(€)¢ happens. Then, by Lemma 21, for every vertex
z not covered by at least one maximum matching there exists a vertex set K of cardinality en or
more, such that (1) z ¢ K, ¢ ¢ Ng(K); (2) adding any (z,y), y € K, to the edge set increases
the maximum matching number; (3) for every vertex y € K there exists a maximum matching
that does not cover y. This implies existence of the vertices z1,...,2,,_, (v, := [en]), such that
for every x; there is a corresponding vertex subset Y; satisfying (1) z; ¢ Y;, z; ¢ Ng(Y;); (2)
for every y € Y}, adding (z;,y) to the edge set increases the maximum matching number; (3)
|Y;| > vp,. Consequently the edge set of the graph is missing at least

Un(Un +1) S €2n?

Z(V"_J+1): 2 2
j=1

pairs (z, y) such that adding any such pair to the edge set would increase the maximum matching.
Therefore
{0 < |0E| < €2n?/2} C A,(e),

and the claim follows from Lemma 22. O

The next ingredient is

Lemma 24. Let P, denote the probability that the random graph has no isolated odd cycles.
Then

n(l-o 1/4
nlglgo P, =¢ <1 n a') , (193)
where
_ P
er —1’
and p satisfies
p_
pef=1) o,
ef—1—p
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Proof Let X, , denote the total number of isolated cycles of length £ > 3. Then, given
L >3,

n L—1)!N(n—4£4m—{
E ZXM :Z<4)'( 2) (N(n,m) ). (194)

£>L >L

Using (172) and (174) with z = p, and

1 n ¢
I1 I < ,
2(m—3j) -1 2m —1

=0

we see that the generic term in the sum is of order at most

1 n n p? ¢ 1 n )

—_ _ . _ e .

20\ n—t \2m fa(p) 20 \\n—¢
Since o < 1, it easily follows then that E (EDL Xn’e) — 0if L = L(n) — oo however slowly.
Consequently, whp there are no isolated cycles of length exceeding L = L(n). Introduce

Xo= Y Xne

£<L(n)
7 odd

Then, for every fixed k > 1,

B = YR X T

e<kL €1, £k €[3,L] j=1
Ny
£1,. 8, 0dd
N\ K
2
= Y Ruym(t)-[2"] > 2|
e<kL j€3.0),j odd <7
Rom(f) = nIN(n—£4,m —{)
[ " (n—0)!N(n,m)

For £ < L(n) and L(n) — oo sufficiently slowly, N(n — £, m — £) is asymptotic the RHS in (172),
with n and m replaced by n — £ and m — £. (The point here is that the difference between p
and p(¢) corresponding to n — £, m — £ is of order O(L/n), and this difference leads to an extra
factor exp(O(L?/n)) — 1, provided that L = o(n'/2).) Consequently R, ,(£) ~ of, uniformly
for £ < L. Therefore, using o < 1,

k
E[(X7)k] ~ EzgkL ot [2f] Z 27
§€[3,L],5 odd J
) k
- oy ¥
<kl J€[3,L],j odd 2
) k
~ ¢ (oz)’
S,
J€[3,L],j odd
k
> 2
jJ€[3,L],j odd2‘]
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Thus X, is in the limit Poisson with parameter

ol 1 l1+0 o
— =1 - = 1
Z 2~ 1%81—, 2 T
J€[3,L],j odd

so that

1—0 1/4
lim Pr(X, = 0) = /2 ( ) .
n—00 ]. + g

We can now quickly finish the proof of Theorem 3. First of all, Lemma 24 implies that

1_ o\ M4
Pr(G2>2 has no perfect matching) > 1 — ¢”/2 (1 n J) —o(1).
' o
. 1e /2 (1-0o 1/4 6>2 :
With probability > e (H_—U) — o(1) the random graph G, n_ni/a has no odd isolalated
cycles. It follows from the analysis in [2] that with probability 1 — O(n™2), G2

n,m—nl/4
matching of size n/2 — n'/5(logn)°(), Lemma 4 can easily be extended to Gfl?,,% So with the
aid of Lemmas 22, 23 we see that

has a

6> .
Pr(Gn,—,i has a perfect matching) >

Pr(GfL,ZrZ—nl/4 has a matching of size n/2 — n'/?(logn)°™) and no odd isolated cycles) — o(1)
l1—0 1/4
= ¢7/2 —o(1).
e (152) o)
O
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Proof of Lemma 1

Let W =)_,Y,. As usual, we start with the inversion formula

1 4 . .
Pc(W=r7) = — e "R (e“c Z:ZYl) dz
2r J_,
1 [7 A
_ —iTT ixYyp\v
= /. [[E(e=Y)" de, (195)
£=1
where 7 = y + a. Let
P1
3 = =0
1 o o+ 1 (vip1)
5/12

and consider first |z| > X,

. Using inequality (15) we estimate

1
2 |z|>x /12

1
27 |m|>21—5/12

—iTT A fcl(eizpl))
¢ H(fq(m) d

=1

H epl(cos z—1)/(ce+1) dr
=1

e B0/, (196)

IN
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For |z| < %7 °/*%, putting 1 = p1e*® and using Y, p1£,,(p1)/ fe, (1) = i, d/dz = ind/dn we
expand as a Taylor series around = 0 to obtain

2

e S (HER) 0 ()]

z* ZD?’ ("ff” )‘ ; (197)
el n=7

=P1

here 7 = p;e'®, with # being between 0 and z, and D = n(d/dn). Now, the coefficients of
z2/2, 3 /3! and z* are Var(W), O (Var(W)), O (Var(W)) respectively, and Var(W) is of order

%;. So the second and the third terms in (197) are o(1) uniformly for |z| < 2_5/12

[ [+ a9
le|<m /12 1 J2 Js

1 ina 2
- e taz Var(W)z*/2 de
1 27 J i) <n75/12

1 a?+1
. S, ¥ (it I 199
2nVar(W) ( 23/2 > (199)
/ _ ZD2 (Plfcl(/’l))/ g3 Var(W)z?/2 4o
2 f(p1) le|<3, /12
= 0% / e Var(W)e™/2 g
|z|221—5/12

— 0(e™"), (200)

Therefore

where

(o > 0 is an absolute constant), and

/ - 0 21/ x467Var(W)z2/2dx
3 le|<z5/*2
- o(l) (201)
»3/2

Using (195)-(201), we arrive at

Pr(W:'r):mx [1+0(“2£:1>].

B Proof of Lemma 13
For v = (v1,r, V1,0, Vr, Vo, m) let Z, = {(x,y) € ([n] U {x})®**" with m pairs z;,y; # * etc..

56



Lemma 25. Each (x',y') € Z,+ arises by a transition of KSGREEDY from the same number
D(v,v') of (x',y') € Z,.

Proof Case 1: v; > 0 and an R-vertex x of degree 1 is selected and its neighbour y is of
degree at least 2.

Let y be the C-neighbour of = in G« y and suppose y has k; ; neighbours of degree ¢ that are
incident j < i times with y (multiple edges). Then

m’ = m-—1- Z]kz,]
2%}

,Ul,C = Ul,C
!
Vg = vl,R_l_kl,l+E kii1
i>2
v, = wvo—1
!
UV, = Ur— E kii-1— E ki
i>2 i>2

Given x',y’, our choices for x,y are determined as follows: Observe that always the number of
choices depends only on v,v'. Also let ny = n — v} , — V5, nc =n — V] o — v, be the number
of vertex labels missing from x’,y’. Each quantity below should be multlphed by the number of
choices of where to replace *’s by vertex labels.

e Choose z,y in nzns ways.

Choose the sequence k; ; such that the above equations hold.

Choose the labels for the Y, k; ; new isolated R vertices in (k1 ?7@: ) ways.

Choose the labels for the )., k; ;_1 vertices which become degree 1 in (k2 lvi,saz ) ways.

Now let

H= Z]k,] Zkzz Zkzz 1=m — m_l_ZZkzz Z(z_l)kzz 1

i>1 i>2 i>1 i>2

be the number of unaccounted for edges. These edges join y to vertices which remain of
degree at least 2. Assign labels to these edges in (v})* ways.
Case 2: v; > 0 and an R-vertex x of degree 1 is selected and its neighbour y is of degree 1.
Here there are nyn. times the number of choices of where to replace x’s by vertex labels.
Case 3: v1 =0

We add the parameters ¢; ; for the number of neighbours of z, other than y, which are of degree
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7 and are incident j < ¢ times with z. We then have
m’ = m-1- Z]kl’]
i,J

r
Ve = Efi,i—l

i>2
!
Vip = E kii—1
i>2
!
vV, = UC_E Zi,i—l_g L
i>2 i>2
I
vy = ve— Y kiii1— Y ki
i>2 i>2

The number of choices for x,y can now be enumerated:

e Choose z,y in nync ways.
e Choose the sequences k; ;, ¢; ; such that the above equations hold.

e Choose the labels for the ). k; ; new isolated R vertices in (k1 ?’,‘c: ) ways.

e Choose the labels for the )", £; ; new isolated C vertices in (k1 ?Ckz_i ) ways.

e Choose the labels for the 3,5, ki;—1 R vertices which become degree 1 in ( vie )

k2,1,k3,2,...
ways.
e Choose the labels for the Eizz £; ;—1 C vertices which become degree 1 in (k%:}c’:%__) ways.
o Now let
p=m—m —p= iki; = (i— ki1 — D ilii— > (-1l

i>2 i>2 i>2 i>2

be the number of unaccounted for edges. Let puy = Zj<i_2 Jkij and pe = p— pgr. Assign
labels to these edges in (v),)*®(v])*C ways. -

The rest of the proof of Lemma 13 is essentially identical to that of Lemma 3 of [2]. 0
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