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Abstract

We study the average performance of a simple greedy algorithm for finding a matching
in a sparse random graph G, ./,, where ¢ > 0 is constant. The algorithm was first
proposed by Karp and Sipser [12]. We give significantly improved estimates of the
errors made by the algorithm. For the sub-critical case where ¢ < e we show that the
algorithm finds a maximum matching with high probability. If ¢ > e then with high
probability the algorithm produces a matching which is within n'/5t°M) of maximum
size.

1 Introduction

A matching in a graph G = (V, E) is a set of edges in E which are vertex disjoint. A
standard problem in algorithmic graph theory is to find the largest possible matching in a
graph. The first polynomial time algorithm to solve this problem was devised by Edmonds
in 1965 and runs in time O(|V|*) [10]. Over the years, many improvements have been made.
Currently the fastest such algorithm is that of Micali and Vazirani which dates back to 1980.
Its running time is O(|E|y/[V]) [16]. These algorithms are rather complicated and there is a
natural interest in the performance of simpler heuristic algorithms which should find large,
but not necessarily maximum matchings. One well studied class of heuristics goes under the
general title of the GREEDY heuristic.

GREEDY

begin
M « 0;
while E(G) # § do
begin
A: Choosee={z,y} € E
G« G\ {z,y}
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M+ M U{e}
end;
Output M
end

(G\ {z,y} is the graph obtained from G by deleting the vertices z,y and all incident edges.)

There are many variations on this theme which depend on the exact choice of edge in Step A.
There is also the issue of whether to study the worst-case or the average-case. In this paper we
study the average case — for work on the worst-case see Korte and Hausmann [13], Dyer and
Frieze [8] or Aronson, Dyer, Frieze and Suen [1]. For the average case we need a model of a
random graph. We will use the standard model G, s which has vertex set [n] and M random
edges. We will consider the sparse case where M = |cn/2| and ¢ > 0 is an absolute constant.
(The average vertex degree then is ¢ + O(n~!).) The simplest method of choosing an edge
in Step A is to choose e uniformly at random from all remaining edges. This algorithm was
analysed by Dyer, Frieze and Pittel [9]. They proved (among other things) that X (n, M), the
size of the matching produced when GREEDY is aplied to G, i, is asymptotically normal
with mean n¢(c) and variance n(c); here

c
o) = 37

A (c+3)
Y() = m-

As one should expect, ¢(oo0) = 1/2 which corresponds to a (near) perfect matching.

One can deduce from earlier results of Frieze [11] that this version of GREEDY is not asymp-
totically optimal i.e. as n — oo the ratio of the size of the matching produced to the size of
the maximum matching does not tend to one. On the other hand in an earlier remarkable
paper, Karp and Sipser [12] describe a modification which gives a “remarkable” improvement
in average performance over GREEDY. We refer to their algorithm as KSGREEDY:

KSGREEDY

begin
M + 0;
while E(G) # 0 do
begin
A1: If G has a vertex of degree one, choose one, x say, randomly.
Let e = {x,y} be the unique edge of G incident with z;
A2: Otherwise, (no vertices of degree one) choose
e ={z,y} € E randomly

G« G\ {z,y}
M« M U{e}
end;
Output M
end

The idea here is that while there are vertices of degree one it is correct to choose edges
incident with such vertices. By correct we mean that there will be a maximum size matching
containing edges chosen in this way. Let Phase 1 of the algorithm end, and Phase 2 begin,
at the first instance when G has minimum degree at least two. Then



Fact 1 No mistakes are made by KSGREEDY in Phase 1.

To describe the results of Karp and Sipser requires a little notation. Initially G = G is
likely to have a large number = nce™ ¢ of vertices of degree one.

Let R(n, M) denote the number of vertices remaining in the graph at the start of Phase 2.
Let L(n, M) denote the number of vertices in the graph at the start of Phase 2 which are not
covered by the final matching. Note that Fact 1 implies that the final matching produced
is within L(n, M) /2 of optimal in size. Karp and Sipser found a function r(c) such that the
following is true:

Theorem 1 Let M = |en/2] and let € > 0 be arbitrary. Then
(a) limy— o Pr HM - r(c)‘ > e] =0.
(b) limg o0 Pr [ 2020 > ] = 0,

(c) If ¢ < e (the basis of natural logarithms) then

lim Pr [M

n—oo

>e]=0.
n

Part (b) means that KSGREEDY is whp (with high probability i.e. with probability 1-o(1))
asymptotically optimal! The surprising threshold result described in (c) is referred to as the
e-phenomenon. The main aim of this paper is provide more detail on the size of the error
terms. We prove the following theorems:

Theorem 2 If ¢ < e then R(n, M) converges in distribution to the sum R of a sequence
of independent random variables kPo(v* /2k), k > 3 where vy is the solution to the equation
c=~ve". In particular

3

e Pr(R=0) = ((1—~)e7™7"/2)1/2,
e KSGREEDY finds a maximum matching whp.
Thus in this case, instead of concluding that R(n, M) = o(n) whp, we can conclude the much

stronger result that R(n, M) is bounded in probability and that whp KSGREEDY finds a
maximum matching.

Theorem 3 If ¢ > e then whp

Qn'/?/(logn)™/?) < E(L(n, M)) < O(n'/*(logn)'°).

Remark: There is a gap of order (logn)°/? between the upper and lower bound here. We
have not been particularly careful in reducing the exponent of logn, but on the other hand
we do not know how to remove it completely.

Conjecture: E(L(n, M))/n'/® = £(c) as n — oo for some function £(c).



As a corollary of our work, we obtain the following tight estimate for the size u(n, M) of the
largest matching in G, ar. This result was already obtained by Karp and Sipser (in different
notation), but we repeat it here because of its importance.

Theorem 4 Let € > 0 be fixed. Then

p(n, M) (1_7 Tty 7)‘ Ze} _o

2c

lim Pr [
n

n— o0

Here 7, is the smallest root of the equation x = cexp(—ce™ %) and v* = ce™7+.

For ¢ < 1, when v, = v* = ~, Pittel [18] proved that p(n, M) is asymptotically Gaussian
with mean n[l — (2 + 7?)/(2¢)], and variance no?(c). It seems plausible that p(n, M) is
Gaussian in the limit for every c.

Among the techniques used in this paper, we derive two systems of differential equations
whose solutions provide a deterministic approximation for the dynamics of the deletion pro-
cess. These seemingly complicated equations have unexpectedly simple integrals which lead
to an alternative proof of the e-phenomenon. We use the integrals to construct certain
supermartingales, and to provide the probabilistic bounds for the deviations of the actual
realizations of the process from those solutions. The notion of differential equations as an
approximation tool in random processes has long been known, of course, but their first se-
rious use in the random graph setting seems to have been Karp and Sipser’s use of Kurtz’s
Theorem [14].

We should also mention a recent work by Bolloba$ and Brightwell [6] on the independence
number of a sparse bipartite graph. Their approach is technically quite different since it is
based on analysis of an algorithm that deletes, at each step, all the vertices of degree one.
This was the approach used in Aronson [2]

2 Random Sequence Model

A slight change of model will simplify the analysis. Given a sequence X = Z1,%2,...,ZoM
of integers between 1 and n we can define a (multi)-graph Gx with vertex set [n] and edge
set {(z2i—1,72;) : 1 < i < M}. If x is chosen randomly from [n]?* then Gy is close in
distribution to G, p. Indeed,

Lemma 1 (a) Conditional on being simple, Gx is distributed as Gp .

(b) lim,_ o Pr(Gx is simple) = exp {—% - 04—2} , if M = |en/2].

Proof (a) If Gy is simple then it has vertex set [n] and M edges. Also, there are M!2M
distinct equally likely values of x which yield the same graph.

(b) Let N = (%). Then

1\ M M-t .
Pr(Gx is simple) = (1 - —) 1- %)



O

Given the above lemma, we will be able to analyse the likely evolution of KSGREEDY on
Gn,m by changing the input to x. (We will show later how to translate our results back
to Gpm). As the algorithm progresses it produces some conditioning. Consider the first
iteration. When an edge is removed we will replace it in x by a pair of *’s. This goes for all
of the edges removed at an iteration, not just the matching edge {z,y}. Thus at the end of
this and subsequent iterations we will have a sequence in Z = ([n] U {x})* where for all 1,
T9;—1 = x if and only if z2; = x. We call such sequences proper.

For a proper z € Z and vertex j € [n] we let its degree sequence d,(j) be the number
of occurrences of j in z. We denote d, = {d;(j)};¢[n), and call d, the degree of z. Let
V(z) ={j : dz(§) > 0} and S(z) = {i : 22;—1 = 2z2; = x}. For a tuple v = (vg, v1,v,2m) with
vo+vi+v=mnand m < M we let Z, denote the set of proper z € Z with vy vertices of
degree 0, vy vertices of degree 1, v vertices of degree at least 2 and 2m non-x entries. This
corresponds to a multi-graph G, with m edges.

Given z € Z, and a permutation 7 of [2M] let zx = Zr(1), Zr(2)s---»2r(2m)- We call 7
proper if the x entries of z are fixed under . For a proper w, z; is certainly proper. Let
Ay(z) = {2z : 7 is proper}. The sets A = {A,(z)} partition Z, into the equivalence classes.
If two proper sequences z’' and z" are equivalent then d,» = d,», and {25, 1,25} = {*,*}
iff {24, 1,25} = {*,*}. So the z from the same class have the starred pairs at the same
locations. Clearly, the size of an equivalence class with a common degree d = {d(j)} ¢ is
(2m)!/[11; d(5)]- The following simple fact, and its immediate Corollary will be instrumental.

Fact 2 For a given v, let A be a fized equivalence class from A. If z is a random member of
Zy, then conditional on z € A, z is a random member of A. In other words, the conditional
probability of each feasible value of z is the same, namely [(2m)!/ ], d(j)! 1, where d is the
degree of the sequences from A.

Corollary 1 Given A, let t = {t; < ... < t.} be such that all {2t, — 1,2t,} are non-
starred. Let is, js € [n] be given, s € [r]. Denote by P(t;1,]) the conditional probability that
(22t, -1, 22¢,) = (is,Js), s € [r]. Then

[iepmd(F)]
P(t;i, okeln)T AT P
(651, b @)
e = p(,0) 0 = [{s:is =k} + [{s:4s = K},

([z]lg: = z(z=1)---(z—a+1)).
We now study the random sequence z(0) = x,z(1),z(2),..., of sequences produced by KS-
GREEDY and the corresponding sequence v(0),v(1),v(2),..., where z(t) € Zy (.
We let A(t) be the equivalence class of z(t) for ¢t > 0 and G(t) = G)-
Lemma 2 Given v(0),v(1),...,v(t), the vector z(t) is a random member of Z,) for all

t > 0, that is, the conditional distribution of z(t) is uniform.

Proof We prove this by induction on t. It is trivially true for ¢t = 0. Fix t > 0, v =
v(t), v/ = v(t + 1). We start by proving



Claim: Each z' € Z, arises by a transition of KSGREEDY from the same number D(v,v')
of z € Z,. Suppose for example that v; > 0, so an edge incident to a pendant vertex is to be
deleted, together with other incident edges. To recover z € Z, from z' € Z,/, we are

1. choosing a subset J C S(z') of cardinality m —m/.
2. choosing element z € V¢(z').

choosing element y € V¢(z') \ {z}.

choosing 7 € J and assigning {z9; 1, 22:} = {z,y}.

choosing ¢ = v} — vy — 2 vertices uy, ua, . . ., ue from V¢(z') \ {z,y}.

o ot ke W

choosing m" : £ <m"” <m —m' —1, (unless £ = 0, in which case m" = 0).

[m'" is the number of edges joining y to vertices other than z which become isolated by
the step.]

7. choosing @ > 0 such that £’ = v} —v1 + @+ 1+ X{m=m/41} = 0.

[« is the number of of uy,us,...,up which are of degree one in z]

[¢' is the number of vertices which are of degree 1 in z’, but of degree > 1 in z.]
8. choosing a surjection ¢ : [m"] = [£] such that a = |{u | e s.t. #(e) = u}|.

9. choosing indices K = {ki1, k2, ..., km»} C J\ {i} and assigning pairs {zor,—1, 22k, } =
{ug(ry,y} for 1 <r <m".

10. choosing vertices wy,ws,...,we of degree 1 in z’.

11. choosing m"" : £/ <m'"' <m —m' —m/ — 1 (unless ' = 0, in which case m"' = 0) and
a surjection ¢ : [m"'] = [¢'].

12. choosing ¢ indices hy, ha, ..., he in J\ ({i} U K) and assigning pairs {z2p, 1, 228, } =
{wy(s),y} for 1 < s < 2.

13. assigning to each of the remaining m —m' —m"” — m'" — 1 pairs of *’s a set {y,y} or
{w,y} where each w is of degree at least 2 in z'.

In each step, the number of options is the same for all z' € Z,,. The statement (for v; > 0)
follows since the total number of ways to recover z € Z,, equals the product of those numbers.
The exact value D(v,v') of the product will not be important to us.

A similar accounting is possible when v; = 0 which we leave to the reader. This completes
the proof of our claim.

If ' € Zy(441) then the inductive assumption and the Markov property of the process {z(t)}
implies — via conditioning on v(t) — that

Pr(z(t +1) =2 | v(0),v(1),...,v(t)) = 1 Z Pr(z(t +1) =2' | z(t) = z).

|Zv| Py

Now, let N(v) denote the number of choices of transition T' available for KSGREEDY on
sequence z € Zy. The notation underscores the fact that this number depends on v only.



Indeed, it equals v; if v; > 0 and m otherwise. Hence, if T refers to the ¢-th choice of
transition

1
Pr(z(t +1) =2’ | z(t) = 2z) = W Z 1{z'arises from z,7}-
T

Using our claim, we obtain

Pr(z(t+1) = z' | v(0),v(1),...,v(t) = %

This probability is independent of z’ € Zy.. But then so is
Pr(z(t+1) =2z' | v(0),v(1),...,v(t + 1)), since it equals the ratio of the above probability
and Pr(z(t +1) € Zy | v(0),v(1),...,v(t)). O

As a consequence
Lemma 3 The random sequence v(t), t =0,1,2,..., is a Markov chain.

Proof Slightly abusing notation,

Pr(v(t+1) | v(0),v(1),...,v(t)) = Z Pr(z' | v(0),v(1),...,v(t))

2'€Zy(1+1)

= Z Z Pr(z',z | v(0),v(1),...,v(t))

Z'EZv(t+1) ZEZ‘,(i)

= z Z Pr(z' | v(0),v(1),...,v(t —1),2)

2'€Zy(141) ZE2v (1)
xPr(z | v(0),v(1),...,v(¢))

= Y Y P |24l

2' €2y (141) ZE€EZy (1)
which depends only on v(t),v(t + 1). m|

We will also need the following corollary of Lemma 2 and Lemma 4.

Corollary 2 Let T be a stopping time adapted to {v(t)}. Conditioned on v(T), the sequence
z(T) is distributed uniformly on Zy (1.

The proof of this intuitively clear statement is simple, and we omit it for brevity. O

3 Transition Probabilities

In the light of Lemma 2, we will discuss the following problem: let tuple v be given. Suppose
z is chosen randomly from Z, and one iteration of KSGREEDY is carried out. This will
yield z' € Z,,. What can we say about v'? As a preparation we discuss the degree sequence
of z.

Lemma 4 Let z be chosen randomly from Zy,. Let J = J(z) = {j € [n] : dz(§) > 2} and let
X, (j € J) denote the degrees of vertices from J. Let Z; (j € J) be independent copies of a



truncated Poisson random variable Z, where

ok
Pr(Z =K) = iy k=23,
Here f(z) = e* — 1 — z and z satisfies
2(e*—1)
e ®
where s
C:E, s::2m—’u1 (4)

being the total degree of vertices from J. Then {X;}jcs is distributed as {Z;};ecs conditional
on Yy ey Zj=s.

Proof Note first that the value of z in (3) is chosen so that
E(Z)=¢.

Assume without loss of generality that J = [v]. Let

Z z; = s and Vj, z; 22}.

1<j<0

S = {fe [s]°

Fix £ € S. Then, by the definition of z and {X;};c[u,

_, s! s!
Pr(X =) = (gl!&!...gv!) / <Z xl!le...xv!) ‘

€s
On the other hand,

&5
( 15120 J S> (1511_'[9(6 —1-2)¢ (mze;glllv _1_33;'
B (e —1—2)7"z® (e# —1—2)7"2°
B ( &l6!...8)! )/(Z z1lza!. . xy) )

ZeS
= pr(X =9

O

To use Lemma 4 in the proof of the next lemma, we need to have sharp estimates of
Pr(} <<, Zj = s) and Pr(}_5.;<, Z; = s — k), for k = o(v). The well known local
limit theorem (Durrett [2], Theorern 5. 2,p 113) is not sufficient, since we need to cover the
case 02 := Var(Z) = o(1). Fortunately, using the special properties of Z, we can refine a
standard argument to show (Appendix 1) that for vo? — oo

v

Pr(3 7 =5 U\/I%(H()(v—la—?)) (5)

Jj=1

and



oV 2mv

Pr (E Zj=5— k) = L (1+O0((k* + v 'o7?)), (6)
j=2

if, in addition, k = O(v'/?¢). The above condition, which is assumed from now, is equivalent
to vz — oo since 02 = 2/3 as z — 0 (see (39) below).

Lemma 4, (5) and (6) plus a standard tail estimate for the binomial distribution shows that
the following event D(t) occurs gs': let vy = vy (t) denote the number of vertices of degree k
in G(t): uniformly for 2 < k < logw,

D(t) = {

vz

or — Wk)‘ =0 (14 /ot /k17 ) ) togn ) | ™)

Lemma 5 (a) Assume that logn = O((vz)'/?). For every j € J and 2 < k <logn,

Pr(X, =k|v)=#lzz) <1+0 (ki;’l)).

Furthermore, for all j1,j2 € J, j1 # j2, and 2 < k1, k2 < loguv,

k1

; ke log® v
PriX =k X =k [V) = £ 5 7 @) (1 o ( vz >> '

(b) For all k> 2

Pr(X;=Fk|v)=0 ((vz)1/2 M;’Zz)) .

Proof Assume that J = [v] and j = 1. Then
Pr(Zi=kand > [ , Z;=s)
Pr(>0 2z =s)
Zk Pr (E::z Zi =8 — k)
Kf(z) Pr(>;_,Zi=s)

Pr(X;=k|v) =

Likewise, with j; = 1, js = 2,
k1

z 2k Pr(Y . Zi=5—k — ko)
Pr(Xi = ki, Xo = ks | v) = i=3 7
Ko =k Xe =k [ V) = L BIFG) Pr(Yo, Z; =)
The statements (a),(b) now follow immediately from (5) and (6). m|
Our aim now is to use this lemma to compute E(v' — v | v) for both Step Al and Step A2
of KSGREEDY.

Lemma 6 Assuming that logn = O((vz)'/?) and 0 < v; = O(v),

2,4,z 2,z 2
U1 vezte VIV2°€e log™ v
E[v, — = —-1-— - ol —=—
[ —ulv] 2m+(2mf)2 (2m)2f+ ( vz )’
24e% log? v
E[v' — - 14 _TEC L8
[ = olv] +2m (2mf)2+ vz )’
vz2e? log® v
E[m' — = —1- .
[m' —m|v] omf +O< o )

LAn event £ = £(n) occurs gs if Pr(€) = 1 — O(n~XK) for any constant K > 0.



Ul—]. ' V1
Q( — >§E[vo—v0—2|v]§O(E),

where the lower bound assumes v1 < m.

Proof

Let z,y be as in Step Al of KSGREEDY. Introduce the parameters d,, (1 < r < 3); they
are the total number of neighbors of y in the multigraph G, that have degree 1, 2, and at
least 3 respectively. Set d := dy + da + d3. Let ¢, § denote the number of loops and multlple
edges incident with y, and let d = 2£ + 8. Then d + d is the degree of y.

Ed|v)=0 (%) : (8)

Let A be the equivalence class that contains z, and let d = {d(j)};¢[n) denote the corre-
sponding degree. Using Corollary 1, we compute

EQ2(| A) = 2m[§;’: 2) Z[d

We show first that

1
:<m—mmfagwm3

(Here 2m(m — 1) counts the number of ways to pair a fixed vertex of degree one and a fixed
vertex k, and to form a pair {k,k} in the sequence z.) Likewise

E@M)smelﬁzw
1 .
= 20 En - gEn 5 LRk

gk

(The number of multiple edges joining j and k is at most the number of ways to sample—
without order and replacement—two pairs among {221, 22:} = {4, k}.) Combining the last
two estimates with Lemma 5 we obtain

Ed|v) = 0(%E(XE)E(Xf))

- 0 (%) . )

The estimate (8) will allow us to handle easily the annoying complexity of possible neigbor-
hoods of y due to loops and multiple edges incident with it.

Consider two possible alternatives.

Case (a) d > 2. Then the deletion of all the edges incident with y leads to the new state
v = (v§,v1,v',2m’), where

’Ui = v —dy+dy+ O( ), (10)
v = v—(1+dy)+0(d),
2m' = 2m —2d+ O(d).

10



Case (b) d =1. Then

v = v —2, (11)
o= v,
2m' = 2m-—2.

Let xa, xb be the indicator of the event Case (a) and of the event Case (b) respectively.
Let us compute E(d,xa | V), (r =1,2,3). We start with the conditional expectations, given
the equivalence class A. Let d = d(A) be the degree of z’s from A. By (2), the (conditional)
probability that a vertex ¢ with degree 1 is incident to a vertex j is

2m . d(j)
——d(j) = ——. 12
o 10) = 3 (12)
This formula implies directly that
E(xal4) = 1-E(xs|4)
_ 1_v1—1:2m—vl. (13)

2m —1 2m — 1

Furthermore, the probability that a vertex i of degree 1 and a vertex £ are neighbors of a
vertex j, (d(j) > 2), is

d()[d(j)]2 _ 0 ( [(0)]2]d(5)]s )
(2m —1)(2m — 3) (2m —1)(2m — 3)(2m — 5)
o Ofm (e d(i) (14)
We have used

> Pr(B,)— > Pr(B,, NB,,) <Pr(U,B,) < ZPr (15)

So, using (12) and the last relation with d(¢) =1,

B |4) = 5og ¥ A0+ G gy o 0k
3:d(4)>2 ] d(j)>2

- 227:1__1)11 T @m _Ui)zzin — gy 20, (16)

within an error O(m =2 > d®(j)). Thus, by Lemma 5,

Bldia|v) = o=ttt o U B + O

- St mrmen e (0 (%)

+0(m™1)
_ v vivzle? log® v
= 1ot Gy O (—m ) . (17)

11



Next, using (14) with d(¢) = 2,

2 .
E(dZXa | A) - (2m 1)(2m 3) j#l:d(f)zzz’d(j)zz[d(.y)h

- 1)2(2m —3) %:(”2 = X{a()=21)[d(5)]2;

(2m

w

within an error O(m~? )", d*(j)); here vy is the total number of vertices of degree 2. So, by
Lemma 5 again,

0?2?22 log® v .
E(dQXa | V) - WWE[XI]Q (1 + (0] ( vz )) +O(m )
vizte? log? v

= @aor o () (18)

Indeed,
v2 =) X{d(j)=2}
J

and, for j # k,

E(x{a(j)=23[d(k)]2 | V)

(o () |75 % 4]

1/2 s 2
O | (v2) Z d 70

d>|logn]
_ 2%[22%7 (log2 v>
@@ PO\ e )

+

Likewise, summing the right hand side of (14) over £ # j such that d(j) > 2 and d(¢) > 3,

E(dsxa | A) = - Y a0EG): (19)

(2m —1)(2m - 3) £#£5:d(£)>3,d(5)>2

T @m- 1)1<2m -3) jzd%»@m — o1 = 20 = d(j)xqa(2apld()]2,

within an error O[m > 3=, d?(€) 3=, d*(j)]. Then, as twice before,

s = g -] (100 (359)

+0(m™)
_ v2z3e” @
= G o) 20)

after using (4).

12



We use (8), (10), (13), and (17)—(20) to compute E[(v] — v1)xa | V] Then we combine (8),
(11), and (13) for a very simple computation of E[(v; — v1)xb | V], and complete the proof
for vy via

Efv; —vi | vl = E[(v} — vi)Xa | V] + E[(v] —vi)xe | V].
The same holds for computing E[v' — v | v] and E[m' —m | v].

We now turn to v§ — vo. Notice first that

d=0= v, —vo=di +1. (21)
Then,
E(wy—vo |v) < E()—uvp|v,d=0)+uvPr(d#0)
= E(v(’)—vo|v,cl:0)—}—0(1;n—1)7
by (9)-

It follows from (9) and (21) that
E(vy —vo | v,d =0) = (1+O0(1/m))(1 + E(d; | v)).

Now, by (16),

m

B(dixa|4) S1- - +0 (m— Z[d(j)]g) .

It follows from (7) that gs >_,[d(j)]> = O(m) and so

E(d |v) = E(dixa|v)+E(xs|v)
_ v — 1 U1 v — 1
=1 mn—1+0(m)+2m—1
_ v
- 1+0(m).

On the other hand,

]ﬂ)k (k — 1)(1}1 — 1)
2m —1 2m — 3

E((di —Dxal4) =

k>2
(’Ul - 1)(2m - Ul)
~ o(taone
- Q v — 1
m )
provided v; < m. O

Corollary 3 Under the assumptions of Lemma 6

L | (logn)?
E(@, — ;) < —min{ 20—, —— :
(v —wr) < mm{mymm}+0< vz )

13



Proof We observe first that (3) and (4) imply

vz f
— <
2m — e —1 (22)
and then that for z >0 ,
d zee?
— =) <0. 23
dz ((ez—l)2> - (23)

From Lemma 6

2,4,z 2
EW —o |v) < _14 YA Jf_O<(logn)>

(2mf)? vz
< -1+ (652_621)2 +0 ((105:)2> by (22) (24)
< —;—;) +0 (%) (25)
for z < 1/10. For z > 1/10 we use (23) and (24). m|

We now compute the conditional expected changes in v for Step A2 of KSGREEDY, that is
for the case v; = 0.

Lemma 7 Assuming that logn = O((vz)'/?) and v; =0,

1
E[v) —wolv] = 2+O(E>’
2,4,z 2
, _wvizte log” v
E[U1—1)1|V] = W+O( vz )7
v2zte? log® v
E[UI—’U|V] = —2—W+0( vz ),
2,z 1 2
E[m' —m|v] = 1= e —|—O(Og v)_
mf vz

Proof In Step A2, KSGREEDY chooses a random edge {y1,y2} of the multigraph G,
and deletes it together with all other edges incident to y; or ys, including loops at yi, y2 and
other edges that join y; and ys, if any are present.

First consider the case where y; # ya; we refer to it as Case (c). Introduce the parameters
da, d3; they are the total number of neighbors of y1 or ys2, or both, in G, that have degree
2 and at least 3 respectively. Let d’ denote the total number of loops and multiple edges
incident to y1 or y» and of the common neighbors of y; and y>. The new state v’ is then
given by

vy = dp+0(d"), (26)
v = v—2-—dy+0(d"),
m = m—l—dz—d3+0(d”).

14



Analogously to (8),
Ed'|v)=0 (i> . (27)

m

So it remains to compute E(d,xc | v), (r = 2,3). We use again (2) and (15). Conditional
on the equivalence class A, the probability that two vertices ji, j2 are joined by an edge and
that a vertex i # j1,j2 is a neighbor of j; or js is (cf. (14))

Pr(i; {j1,2}) @m f)(gm 3)([d(j1)]2d(j2)+d(j1)[d(j2)]2)
+  O(m~*d*(i)d" (j1)d" (j2))- (28)
So
Bldxe |4) = > Pi; {j1,2))
i, (1o }:d() =2, 1 2.1 7
- %Uzz[d@)th(h)+0[mf3<zd4<j)>2]. (29)
g j2 j

Consequently (cf. (17)), with the help of Lemma 5,

E(dxe | v) = 2:;?7;6() (1 +0 (1°g2”>> +0(m™)

vz
v?zte? log® v
= 0 . 30
w0 (%) 0
Analogously, we also obtain from (28)

E(dyxe |4) = 2220 DLW

4m3

+ 74Zd2 zd4

Therefore (cf. (20))

2m — 27555 /2 vz2e? log? v
Bl 1) = =5 (10 (252)) +om ™)

2,3

_ vze)+0<log2v>‘ (31)

2m2 f( vz

Here we have used ( D 5
z(e? — m
= =2 32
ER: 32)

when v; = 0.
The explicit formulas for E[(v' — v)xc | v] follow immediately from (26), (27), (30) and (31).
They are the right-hand side expressions in the statement of the lemma and it can be easily

proved that
E[(V' = V)Xe: | V] = O(m™).

15



To handle vj — vgp — 2 observe that z # z,y becomes isolated after the deletion of z,y only
if z,y, 2 is a triangle in G(0). The expected number of triangles in G(0) is O(1) and so the
probability that z,y lie in one is O(1/m). m|

To handle the technical problem of the (unlikely) existence of ¢t with |v(¢t 4+ 1) — v(t)| > logn
we define the event

£(t) = {Iv(t +1) = ()] <logn}.
Now |v(t + 1) — v(t)| = O(A(G(0))) and Lemma 5 implies that A(G(0)) = o(logn) gs and
so [, L(t) occurs gs.

It is also convenient to introduce a stopping time

T — min{¢ : |[v(t + 1) — v(t)| > logn or D(¢t) does not hold if such 7 exist,
=1 n otherwise.

Note. We choose 7;, = n when the unlikely events do not occur simply because T}, the total
number of steps is at most [n/2]. If not otherwise stipulated, n will be the “closing”value
for other stopping times in the sequel. It is also convenient to define v(t) = v(T,) for
t € [T, [n/2]]-

As a bit of notation, whenever we write v, m etc. without specifying an argument, we will
mean by default v(t), m(t) etc..

4 Approximation by Differential Equations

Lemma 6 suggests that, for Phase 1, the random sequence {v(t)} must be close to the solution
of the following system of differential equations.

@ - _1_ UL + v2zte? _ vyvz2e?

dt 2m  (2mf)2  (2m)2f’

dv vy v2zte?

= = - 33
dt tom T @mp? (33)
d_m . vz2e?

at 2mf

We need to integrate these equations subject to the initial conditions
v1(0) = ce™°n, v(0) =p(c)n, m(0) =cn/2, =2(0)=c, (34)

where p(y) = e ¥ f(y). (Indeed, the degree of a vertex in G, ,m, M = ¢en/2, is in the limit
Poisson with the parameter ¢.)

Lemma 8 The solution to equations (33) is:

2m = ﬁz2,
v = np(2)B(2), (35)
u o= [ - zeBx) 1),
n 1. 5
to= Zle(l-B() - 5log? A(2) |



where

Be? = e*. (36)
So, the solution is given in a parametric form, as functions of z, the hidden parameter.
Proof First observe that
_ z2f'(2)
Blze) = T2
Var[Z(2)] = E[Z(2)(Z(z) - 1)] +E[Z(2)] - E*[Z(2)]
L 2oL (20) .
7@ e e ) G
and
(zf'(z))’ _ @) (f’(Z)>2
f(z) f(z)  f(z) f(z)
_ %Var[Z(z)]. (38)
Explicitly
_z(ef —1)? — 23e*
Var[Z(z)] = 20 (39)
Consequently
d (2m — v 1 dz
On the other hand, using the differential equations (33),
d (2m — v 2m — vy 1 U1 v2zte?
E( v ) R (‘ +%‘(mnf)?)
1 vz2e? U1 v2zte? vivz2e?
2= 5a7) 1 o g T
1 om—uv\> 2m—uv 2%e*
T 2m ( v ) B v ST
+@m - v) de2 . (_ 22e* . vlz2ez> B vzte?
T T\ omf T @mpf) T @mf)?
. 2f! vzte? 2f! vzle? vzte?
= T T G T epr T @mp?
_ 1 vz2e* z%e* — z(e* — 1)?
- —%Var[Z] + om)f 7
1 2,2
= —%Var[Z] - %Var[Z]
Comparing this with (40) we obtain
ldz 1 ( vz2ez)
zdt ~ ' omf
1 dm



see the third equation in (33). Integrating,

22
— = constant,
2m

so by (34)
2’n
Zn_ 42
o = € (42)
Next, we rewrite the second equation in (33):
dv v ozf  vP2te”

dt— 2m f  (2mf)?
Here, using the third equation in (33) and (41),

dv _ v dm
dt dm dt

_ d_v _l_vz2ez
- dm 2mf

_ zdv( | v
T 2mdz 2mf )’

So the equation for v becomes

i (-5r) (1) 50
The form of this equation suggests a substitution
v=mnp(2)B(2), p(z) = e f(2). (44)
Then (see (34))
Blc) = 1. (45)

Plugging this formula into (43) and using (42) and p'(z) = ze™*, we obtain, after cancelling
—%(e~*2°n/2m) on both sides,

ag

d
—e ‘28— P~ cpPB 4

EZ

—B(1—e7).

Since

1l—e?—ze"=e % —1—2)=p(z),

the equation for 8 simplifies to

Bdz 4z T

Integrating and using (45) we obtain

148, 9,

BeP = e*. (46)
Next, using

2f'(z) _ 2m—wu;

f) v

18



we obtain from (43), (46)

v = %z2 —nz(1l—e ?)B(2).

Finally, from the third equation in (33), and (44), (41), (46),

d
1+ 2m f
_ (2m/2)dzx
e
n zdz
= —= . 47
cl+cep (47)
Here, denoting y = ¢, and using (46),
1
dz =d(=logec+logy +y) = %dy,
so that ) |
gt — " (Floge +logy +y)dy_
c )
Integrating, and using the initial condition y(c) = ¢f(c) = ¢, we arrive at
n 1. 5
t=—lc(1-08)—=1 .
o1 ) — 3 log* 0
O

Let us see for which values of ¢ the solution v(t) reaches a point such that v; = 0, but v, z
are still positive. At this moment, call it t*, by the formula for v; and (36), we can write

=Y
7= B, (48)
Vo o= c/Be_z*.
Observe that
Ye=ce TV, AT =ce . (49)
Indeed
ce™ = ce P =cBe =n,,
e = cef ~P =cB=n"

Since 7, < ~*, the equation (49) can be satisfied iff ¢ > e. Indeed, y*e ™" = ~.e
which implies 7. < 1 < v* and v*y. < 1. Thinking of ~*,¢ as functions of . we get
de/dy. = (1 = v*v.)e? /(1 —=~*) < 0. ¢ > e then follows from ¢(1) = e. See also Lemmas 9
and 10 below. The formula for ¢* determines the total number of matched pairs in Phase 1,
and using v«,7*, we can write it as follows:

*_n * ]'2
t" = [c ¥ 27*]- (50)

In this case (see 49) ~. and v* are the smallest root and the largest root among the three

roots of
x = cexp(—ce™™). (51)
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The middle root, denote it -y, is the only root of

x=ce ”. (52)

For ¢ < e, v1(t) remains positive until z(¢) (whence v(t) and m(t)) reaches the zero value.
According to (36), the terminal value 3 satisfies 3 = e~°?, so that

p="1.
c

So, by (35), the likely number of matched pairs in Phase 1 (whence the likely maximum
matching number) is given by

n 1
t'=—lc—y—-279%). 53
. (c =57 ) (53)
If ¢ > e then Phase 1 ends with v of order n, so Phase 2 should be expected to deliver
many more matched pairs. Let us “derive” the differential equations that should provide an
accurate approximation of the actual Markov chain. To this end, we observe first that, for
the moments ¢ such that v; (t) = 0, we apparently have to use the equations

dvi  _ vPte? (54)
dt 2m2 f2(z)’

dv vZzte?

a7 2m2f2(z)

dm vz2e?

@ = T e

suggested by Lemma 6. Since dvy/dt > 0, the representing point v(t) is pushed back into the
region {v : v; > 0}, so instantly we have to switch to the equations (33) with v; set equal 0:

dvy v2zte?
ke T DT A A
dt * emi (55)
d_v - _1_ v2zte?
dt 2mf(2))*’
d_m 4 vz2e?
dt 2mf(z)
Here, by (32),
duv, 22e*
hab S .
dt + (e —1)2
z/2 \°

which  means  that  v(t) moves back  toward the  boundary  set
B = {v : v; = 0}. These instantaneously alternating attractions to, and repulsions from B
strongly suggest that a proper system of differential equations is obtained by mixing the right
hand expressions of (54) and (55) with “weights” (relative time frequences) 1 — w(t), w(t).
Here w(t) has to be such that the resulting equations admit a solution v(¢) with v (¢) = 0,
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that is dvy /dt = 0. (In the language of dynamic systems control theory, we have encountered
here a so-called sliding mode (trajectory)). Explicitly, see the first equations in (54), (55),

v2zte? v2zie?
w(t) |-14+ ———5| + (1 —w(t 750,
O Gmper) T Wanapg
so that -
w(t) = 2 (57)
L+ e
Using w(t) to mix the remaining equations in (54) with their counterparts in (55), we obtain
dv
= - _9 58
a , (58)
vz2e?
dm ____ miG
dt 1+ s

The first equation is strikingly simple; it means that, on average, we lose —one way or
another— exactly two heavy vertices (i.e. of degree two or more) per step of Phase 2. Since
at each step two vertices get matched, we can see that the total number of matched pairs
delivered by Phase 2 must be asymptotic to v(t*)/2. That is, almost all vertices present
at the moment ¢* get matched. Combining the second equation in (35) with (49)-(50), we
obtain that for ¢ > e the maximum matching number of G, .,,/2 is asymptotic to

n<1_w)_
2c

Of course, this argument is too superficiall The actual analysis of Phase 2 is much more
technical, and revealing. Curiously our proof does not require justification of the first equation
n (58), nor have we tried to prove it as the limit property, using our analysis.

Let us use the equations (58) to determine the parametric solution analogous to (35). We
have (cf. Phase 1 computation): by (40),

2 =z
dz d [(2m 2m 2 T
_Var( )% = Z|l—)=-"F "2+ |-1- i(z)%z
dt di \ v v v 1+ Am2f2(z)
1 o2m\> 2m  22e*
- om [\ v f()
2 =z
L 2 e

ze*  z(e® —1)2 — 2%¢?

m mf(z) 2% + (e — 1)?
ze* f?(z)Var(2)

mf(z) z2e* + (e* — 1)2

1dz _l 1+ z€e* f(2)
z dt m 22e* + (e* —1)2 )’
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Invoking the second equation in (58), we exclude ¢ and obtain

dz  2%e* + (e —1)° +2z(e* —1)e* _ dm
z 22+ (e —1)2+ze*(e* —1—2) m’

1 4 e* ze* d dm
— — 2z = —.
z ef—1 e*—1+4 ze? m

Integrating from 2* := z(t*), m* := m(¢*) to z, m, we obtain

log [z(ezm_ D + Gl 1)] = /: 7&6 dg. (59)

or, after simple algebra,

m* «ef(1+¢6) -1

The last relation and (32) provide the desired parametric description of the sliding trajectory

{v(®) }eee -

Note. To avoid confusion with the random process, we should have used a special notation
for the deterministic trajectory. We will refer to the latter as v(¢) and ¥* will stand for v (¢*).

5 Analysis of Phase 1

We wish to show that random variables, m,v; and v, tend to stay close to the solution of
differential equations (33).

As we showed in Section 4, along the trajectory (35) the following four functions remain
constant.

v = o

v
2O = EEE
Js(v) = nh(z)’
Bt = - (),

where
M) = 2l eBE)(1-e )/,
o) = 1= f(2) = 5 log B,
e = e~

Initially whp z ~ ¢ and we expect v(t) to follow the trajectory (35) and so we expect v(t)
to lie well within the set V' of v satisfying

X < m < o2m,
2w(2)B(z) < v < 2mp(2)B(2),
32h(2) < v < 2ZA(2).

Before proving that v(t) stays within these bounds whp, let us look at the behavior of the
deterministic approximation v(t) as t increases. Let z* be the largest nonnegative root of
h(z) = 0. [Observe that h(0) = 0.]
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Lemma 9 Forc <e, h(z) >0 for z >0 and so z* = 0. Also ¢'(0) = 0.

Proof If h(z) = 0 then 1 —¢B(1 — e ?)/z = 0. Since Be® = e* we get r(8) =
exp (—ce= %) — B = 0. Clearly the solution to 8 = e °? is a root of r(8) = 0. This
corresponds to e = 1 i.e. z = 0. For a positive root to exist we must have some root of
r'(8) = 0. This is not possible as c?e~P exp (—ce~%F) < 1. To see this let z = e~%4. By
simple calculus ¢*ze~*" < £ < 1. Finally

g:) = -2,

yielding ¢'(0) = 0. O
Lemma 10 If ¢ > e then z* > 0.

Proof Clearly r(1) < 0 and r(22¢) = 1 —I2¢ > _ (See Karp and Sipser). A root must

e
exist for some 3 € (2¢,1). This corresponds to z* € (Inlnc,c). O

Note for future reference that z* is the z of (48) and (49).

We will be able to show that v(t) provides whp a sharp approximation for the actual process
at least as long as the hidden parameter z exceeds z* + n~® where a > 0 is a constant, such
that a < 1/6 if c < e, and a < 1/4if ¢ > e. When ¢ < e we have m,v,v; = O(n2?) as z — 2*.
For ¢ > e we will have m,v = ©(n) as z — 2*. The variable v; is another story, we will need
to use h(z) = h(2*) + (z — 2*)h'(2*) + O((z — 2*)2R""(2*)). Using ' = —£— we have

143
oy e —1 B er-1 1
h(z)=2z—cf " _Czl—l—cﬂ " —czﬂe—z.
At z = z* we can use j:fi = ¢f3 to get
*[(e2" — 1)2 — p*2p2"
Wty = 2UE D =2 ] (60)

(e# —1)(z*e*" +e*" — 1)
To see that this is strictly positive just compare the Taylor series of e*” — 1 and z*e* /2.
Therefore

v = O(n(z — 2%)). (61)
Note that h'(z) > 0 is associated with 2 < 0, at least along the trajectory (35), (cf. (47)).

Turn now to the random sequence {v(t)}. Set a € (0,1/6), ag = (1 —6a)/2 if ¢ < e, and
a€(0,1/4), a0 =(1—4a)/2ifc>e.

Let
W={veV:z>z"+n"%,

and introduce

{ min{t < 77, : v(t) ¢ W} if such 7 exist,
Tw = .
n otherwise.

Lemma 11 Assume v(0) € W. If 0 < a < ag then gs,

max | Ji(v(t) = i(v(0) Sn7% i=1,2,3, (62)

Consequently, if v(t) ever leaves W, it happens qs only because z(t) falls below z* +n~°.
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Proof To prove this we will use a technique from Pittel, Spencer and Wormald [19]. Tt
is based on showing that {Q;(v(t)) }+>0, where

Qz(v) = exp{L(J,(v) - JI(V(O)))}a P = 172737

is almost a supermartingale for L = n® , o' € (a, o), basically because J;(v(t)) is constant
along the deterministic trajectory.

Suppose ¢ < e. We consider only @), since the two other cases are very similar.
We define Q(t) = Q2(v(?)) if t < Tw, and Q(¢) = 0if t > Tw. We also let J(t) = Ja2(v(t)).
For t — 1 > Tw, we obviously have Q(¢t) = Q(t — 1) = 0. For t — 1 < Tw we can write

E@Q) [ {v(s)}s<t) < Qt = DE {1z exp [L(J(t) — J(t—1))]| v(t - 1)}. (63)

Since v(t — 1) € W, each of m(t — 1) and v(t — 1) is of order n'~2?/logn at least. The same
holds then for v(t) € B(v(t —1),logn) = {v: |v—v(t —1)| <logn}. Consequently v(t)z(t)
is of order n'=3%/logn at least. Moreover, it can be easily verified that, uniformly for such

vand:=1,2,3, z,y = vg,v1,v, M,
0J; 1
= 0= 64
oz (vz) ’ (64)

02 J; 1
dzdy O(W) (65)

So, assuming v(t) € B(v(t — 1),logn) and expanding the exponential function,

exp{L(J(t) = J(t = 1))} = [1 + LVJ ()" (v(t) — v(t — 1)) + O(L*(log n)* / (v2)*)],

(66)
since
Llogn = o(vz). (67)
Consequently, equation (63) becomes
EQOv(s)}et) < Q= 1) {1+ LVIE Elv() - vit - Dlv(t - 1]}
+0(Q(t — 1) L*(logn)?/ (v2)?). (68)

Here, denoting the vector-valued right-hand side of (33) by F(v), and using Lemma 6,

VJ@) E[V(¢) — v(t — 1)|v(t — 1)]

VJ(t —1)*[F(v(t — 1)) + O((logn)?/v2)]
= O(|VJ(t - 1)||(logn)*/vz)

o(e)

(VJ(v) L F(v) since J(v) is constant along the trajectory (35) of dv/dt = F(v)!)

Therefore, for ¢ — 1 < Tw and hence for all ¢,

EQ(t) | {v(s)}s<t) < Q(t = 1) (1+ O(L*(logn)*/(v2)?)) -
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So we can find 1 < w < 2 — 6a — 2¢/ such that the random sequence

{R®)} = {1 +n"9)"'Q()}
is a supermartingale.

Introduce a stopping time

, _f min{t <Tw: J(t)— J(0) >n"*/2}, if such ¢ exist,
W Tw, otherwise.

Now, applying the Optional Sampling Theorem (Durrett [3]) to the supermartingale {R(¢)}
and the stopping time 7Ty, and going back to {Q(t)}, we get

E[Q(Tw)] < (1+n7*)"-E[Q(0)] (70)
= (1+n™“)"
= 0(1), asn — oco.

Since obviously
E[Q(Ty)] > e™ “/2.Pr{T}, < Tw},

we have then

Pr{max [J(t) — J(0)] >n */2} = Pr{Ty <Tw}

t<Tw
= 0@ ).
Analogously,
Pr{min [J(t) — J(0)] < —n~%/2} = O(e—"“ _“/2)‘
t<Tw
So gs

t) — <n~%/2.
ax |(0) — J0)] </
It remains to notice that on Ty < Tz,

J(Tw) — J(Tw — 1) = O(n~ =340y = (=),
The case ¢ > e is essentially similar. The real difference is that the first order derivatives and
the second order derivatives of .J3 in the ball B(v(t — 1),logn) are O(n~!122), O(n~2+42),
respectively. (This comes from h(z*) = 0, h'(2*) > 0.) For each of J;, Jo, the orders are even

better, O(n~!) and O(n~?). These better estimates result in (62) for a < ag = (1 — 4a)/2.
O

We now turn to J; and prove that gs it also stays close to its initial value.

Lemma 12 Assume v(0) € V. If 0 < a < ay, then gs
|Ja(v,t) = Ja(v(0))] <n™%, (¢ < Tw).

7

Proof We consider ¢ < e only. We start by choosing o' € (@, ap) and defining (L =n®)

Qut) = exp{La(v,0} =exp {Z [ £~ g0 }
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if t < Tw, and setting Q4(t) = 0 for £ > Ty . Then, for t < Ty,

_@Qa() exp{L %—[g(z(t))—g(z(t—l))])}

Qa(t —1) (
— e {L (- L6 - 5- 1)+ 00 - 2~ 1) |
= oo fn (G- e o= vo (455}
— +L(% - Z_fz’(z(t) _A(t-1)40 ((1052")2» +0 (W) :
(1)

with dg/dz computed at z = z(t — 1). Here the estimate (71) follows from v = Q(nz?) =
o),

dg z
dz 1+ c¢p) (72)
= 0(1),
and
|2(t) = 2(t = 1)] = O(logn/v(t —1)), (73)
as |[v(t) — v(t — 1)| < logn.
Hence, analogously to (63), for t — 1 < Tw,
E[Q4(t){v(s)}s<i]
< Qut-1) [1 +IE (% - %(z(t) — At = D)t — 1)) +0 (L(lvoif”)ﬂ .
(74)

We proceed to find an estimate for the expectation in the RHS of (74). Write v = v(t—1),v' =
v(t),z = z(t — 1) and 2’ = 2(¢) and

2f'(2)  2m—wv;  2'f'(2)) _ 2m/ —wv)

f(2) v f)
It follows from (38) and (73) that

AP D g g logn)?
& i) 2 @ ”0( ” )

On the other hand

2m'—v;  2m - _ 2(m'—=m) vi-wu _(U,_U)2m—vl L0 (log n)? ‘
v v v v v2 v2

Taking expectations conditioned on v, using Lemma 6 and then simplifying, we obtain

B(&' — ) Var{Z(2) = —p-VarlZ(2)] - s Varlz()] +0 (220
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Thus

E(2 — z|v) = —% (1 + %) 40 ((105;)2) , (75)

Now along the trajectory (35) (see (47))
dz _ c(1+ch)
dt nz
and so using (72) we expect to find that

Z—ZE(z(t) —2(t—1)) | v(t—1)) ~

S|+

Indeed, by (75),

%E[z(t) — At — DVt —1)] = % +0 (% + (1052")2) : (76)

provided that |J;(v(t)) — J;(v(0))| < z,i = 1,2,3. We let z = n=2 for some & € (o, ap).
Applying (76) in (74), we obtain: for t — 1 < Ty,

2 n2
PIOOHvO)e] < Qule-1)[1+0 (i + S|

= awenfieo (L)),

w1 +min{a@ —a',1 —4a—2a' +0o(1)} > 1.

here

The last estimate certainly holds for ¢ — 1 > Ty because Q4(t) = Q4(t — 1) = 0 in this case.
Introduce the stopping time

T — min{t < Tw : maxi<i<3 |J;(v(t)) — Ji(v(0))| > n~% if such ¢ exists,
T Tw, otherwise.
Define
T min{t < Tw- : [Ja(v(t),t)] > n=%/2}, if such ¢ exists,
L Twes otherwise.
The above estimate for E[Q4(t) | {v(s)}s<¢] means that {(1+n~)~*Q4(t)} is a supermartin-
gale for ¢ < Ty. Then (by the optional stopping theorem)

BlQs(T")] < (1+n~*)"E[Qu(0)
= L+n)"=0(),

whence

PI‘(T” < TW*) — O (e_na’_a/Q) .
Therefore gs, for t < Ty, the process {v(t)} satisfies
|Ji(v(t)) — Ji(v(0))] <n™%, i=1,2,3, (77)

and
(0,01 = loe(0) = | <n7/2 (78)
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(To be sure, we have proved only the upper bound for g(z(t)) — t/n, but the lower bound is
handled in exactly the same way.) It follows then, as in the proof of Lemma 11, that

‘Q(Z(TW))

Tw

- Wl<pe
n

5.1 The subcritical case: c<e

We set a = .1,a = .2 — ¢, (e < .1, say), in Lemma 11. Then 2(7w — 1) > n~!, and whp ,

for t < Tw, v(t) satisfies:

U1

m 1

and

n(z® — z¢f(2)(1 — e7%))

w _ 2_C S TL_'2+€. (79)
v —.24€
m —1| < n%Fe (80)
% < n—.2+e7 (81)
Iv(t) = v(t —1)| < logn. (82)

This implies that v(7w) > nz?/logn and so on exit 2(7Tw) < n~"! whp. Assume that (79)-
(82) hold. We see from (79), (82), and z(Tw — 1) > n—! that Ty # n. It follows from (80)
that v(Tw — 1) = Q(n-®) and then applying 2(Tw) < n~! and (82) we see that

2(Tw)
B(Tw)

m(Tw)
v(Tw)

v1(Tw)
Tw

here, and in the immediate sequel, z

n~l4+0m%), (83)
% +0(2), (84)
"2—2;2 +0(n?2%), (85)
””2’52 +O0(n%22), (86)
M2 omes), (87)
ng(2(Tw)) + O(n¥+¢). (88)

2(Tw),v = v(Tw) etc..

From Corollary 2 we know that z(7w), conditioned v(Tw ), is distributed uniformly on
Zy(Tyw)- It follows then from (7) that qgs

> X

J:X;2>2

> X

§:X;>3

2€Z

% + O@?logn)
20+ 0(n?2%), (89)
vai(e” —1) + 0% logn)
f(2)
O(n?2%). (90)
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We use these formulas to show that whp G, has no heavy cycles i.e. cycles containing
vertices of degree 3 or more. Indeed let C, be the number of heavy cycles of size r in GS,.
According to (89) and (90), it suffices to show that lim, o Y, ~3 E(Cy|A) = 0 uniformly for
the equivalence classes A such that the degree sequence d = d(A) satisfies

> G = 20402, (91)
J:d(3)>2
Y A = 0m2?). (92)
J:d(5)>3
Using (2)

B seB
where the sum is over all B € [n] such that |B| = r and maxscp d(s) > 3.

Let us explain the numerator. We choose a set I of r indices such that, for every ¢ € I, the
location {2i — 1,2i} is not starred, which can be done in (T) ways. Next we choose a cyclic
ordering of the set B, in (r — 1)!/2 ways. Finally we assign the edges of the cycle to the r
chosen locations {2i — 1,2i}ier, in 277! ways.

The sum is bounded as follows:

Y Il < 0 Wil Y lde)k:

B se€B j:d(5)>3 B:|B|=r—1s€B
> [d(j)]z-< ) [d(s)]z) / (r—1)!
J:d(j)>3 s:d(s)>2

= 0(n?2%(v+0n°22) 1271 /(r —1)!
by (89) and (90).
So, combining this inequality with (5.1), we obtain

47 [m],
[2m]2r

By (85) and (86), v and m are both of order nz? and

E(C,|4) =0 ( (v + O(n'9z2))r_1n'9z2> _

v
— = O(n=1).
—=7+0(n™")
Since v < 1, we easily obtain

Y E(C/|4) = 0 (v/m)*) = O(n ™),

>3

so that
Pr(G, contains a heavy cycle|A) = o(1),

for a likely class A. We can now remove the conditioning on the class A to obtain

Pr(G, contains a heavy cycle) = o(1).
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So whp at this point the graph consists of isolated trees and cycles. KSGREEDY has not
made any mistakes and cannot do so from now on.

Now lets us consider (isolated) cycles without heavy vertices. Let ¢, denote the number of

such cycles of size r, r > 3. Then,
= "\ (=1 27
E)ZqA) z()
<r=3 r=3 r 2 (zm)r
"1 ug\T
2
< 2 ()

< logn. (94)

So whp there are fewer than (logn)? isolated cycles.

We want to show, in addition, that almost all of m edges belong to isolated paths without
multiple edges. Let D denote the total number of those edges. Then

1 2]r—2 Tl 2T_1 - 1! —92
T Y e (99
r>2 2(r—1

where va = |{j : d(j) = 2}|. (To construct a path of length r, we (a) choose two endvertices,
in (%) ways; (b) select and order 7 — 2 intermediate vertices of degree 2, in [v2],—2 ways; (c)
select r — 1 non-starred locations {2i — 1,2}, in (™) ways; and (d) assign each of r — 1
edges of the path to one of the selected r — 1 locations, in (r — 1)! ways. Needless to say, the

factor 272 /[2m]y(,_1) comes from (2).

By (7) we see that for a likely class A
vy = v+ 0(n°22).

After simple computations based on (83)-(87), the above sum for E(D | A) simplifies then to

2
nz 9

ne 9.2y o 9.2
2c—}—O(n 2y =m—0(n"z2%).

So we obtain
Pr(m — D > n'9'2%|4) = o(1),

and unconditioning
Pr(m — D > n"2%) = o(1).

Now in general G, is a multigraph and we are interested in simple graphs. But applying
Lemma 1 to the input graph Gx we see also that

Pr(G, contains a heavy cycle or m — D > n9'2% | G, is simple) = o(1).

Thus, for the algorithm applied to the random graph, whp at time Ty the graph consists of
a set of vertex disjoint cycles C plus a forest of trees that are almost all paths, with all other
trees and cycles containing fewer than n°! edges. By the end of Phase 1 the only remaining
vertices will be those of C. Denote by G the subgraph of G, which is a union of those cycles
and paths. We know that whp

nz?

m*: = m(Gy) = o0 +0(n?2%),
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nyz?
2c

_ 2
n(l C’Y)z _*_O(n.QZQ),

v* = u(G)) = + O(n'9z2),

v = un(Gy) =

and that L(") the total length of the cycles, satisfies L(™ < n9122. Denote the latter event
B. Also denote (m*,v*,v;) = v*. Observe that, conditioned on v* and the event B, the
graph G} is distributed uniformly on the set of all graphs G, of the structure in question,
such that v(G) = v* and L(G) < n'?'22. We may and shall assume that the vertices of
degree 1 and 2 are specified, and moreover that vy vertices of degree 1 are paired in a fixed
way as the endvertices of v; /2 paths in the graph G.

Let Yk(”) =Y, (G}), k > 3, denote the number of cycles in G} of length k. Given a (finitary)
sequence j = {ji}r>3 of nonnegative integers such that r := 3", kjr < (logn)?, introduce
N(v*,j) the total number of those graphs G such that Y3 (G) = jg, k > 3. Then

von= (eIl )" oG

Here is why. (”:) is the number of ways to choose r vertices for the cycles. The second factor
is the number of ways to partition an r-element set into j3 (undirected) cycles of length 3. ..,
jr cycles of length k, etc . The last two factors account for the number of ways to use the
remaining v* — r vertices of degree 2 to build v; /2 paths. (The last binomial coefficient is

the number of nonnegative integer solutions of Z:lz/f s =v* —r.)

Since v* = v, m* ~ m, v* +v}/2 = m* and r? = o(v*),r = o(v}), the formula for N(v*,j)

becomes N
.o (v+v1/2-1)! vNT*F T
NE5j) =0+ 0(1))W 1;[ (ﬂ) /ch!-

This easily implies that for every fixed j, conditioned on v* and the event B, whence uncon-
ditionally, we have
Pr(y(™ =j) = [Te /2 (* 2k /i,
k
that is the components of Y (™ are asymptotically independent, with Yk(") close in distribution
to Poisson Yj with parameter v*/2k. By the Borel-Cantelli lemma, almost surely ¥ =
{Yr}r>3 € J, the countable set of all finitary sequences j. Therefore we have

lim Pr(Y™ € B)=Pr(Y € B), VBel.
n—0o0

Consequently, the total number of cycles, ;5 Yk(") converges —in distribution—to ), ., Yj.
In particular, - -

’Yk
Pr(V;\" =0,k>3) — exp|- 5% (96)
k>3
= (1—y)'"?exp(v/2+7°/4). (97)

The total length of the cycles, > k>3 kYk(") converges to L = Ek23 kYy, with
3

_ Y
B(L) = 57—y

31



This proves Theorem 2.

Note. The limiting distribution of Y (") is the same as for the random graph G, = G (v, yv/2),
v — 00, ([4]). However the latter graph whp contains plenty of tree components that are
not paths.

Now consider the size of the matching p; produced. From Lemma 12, (86) and Lemma 9 we
see that whp

= ng(z(Tw)) + On*) + O(n2*(Tw))
= nlg(0) + O (Tw))] + O(n*+) = ng(0) + O(n**),

2
_ _ z _ ’Y_ .8+¢€
= n (1 - 20) +O0(n°*e),

since when z =0, 8 = v/c and log ¢/ = «y. This proves Theorem 4 for the case ¢ < e.

5.2 The supercritical case: ¢ > e

This time we take a = 1/6 and o < 1/6 — ¢, € < .01. We see that whp (79) — (82) hold with
n~1/6+¢ on the right, and so we assume this for the remainder of the section. Then Ty # n
by (79) and, since v = Q(n) here,

2(Tw) = 2* +n 5 + O(n=%), (98)
where z* is the root of h(z) = 0 (see (48)). v(Tw) < nz(Tw)?/logn is again ruled out by
(79) — (82). Using (98) and Lemma 12, we assert that whp

Tw = ng(2(Tw)) + O(n* ) = ng(z*) + O(n|2(Tw) — 2| +n®/**<)
= ng(z*) + O(n®/5+).
Now (81) (see (61)) then implies that
v = O(n?/6%¢). (99)

We complete the analysis of this section by showing that whp Phase 1 terminates in at
most n'”® further steps. The proof combines the ideas of Section 5 and the well known
techniques around Azuma type tail inequalities for martingales with bounded differences —
see for example Bollobés [5] or McDiarmid [15].

Let 7* be the first time t > Ty when either (i) v1(t) = 0, or (ii) t > Ty + n%/7, or (iii) &
occurs.

But then gs
{v1(T*) = 0} or {T* > Ty +n®"}.

Furthermore, for Ty <t < T*, we deduce from (79) — (82) (with RHS’s suitably amended)
that

2(t) = 2*+0(m™h, (100)
m(t) = %:)Zoms/ﬁﬂ), (101)
v(t) = np(z")B(z") + O(n*/oF), (102)
vi(t) = On/%Fe). (103)
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Introduce

01(t) =1 (Tw) + i Ady (7)

T=Tw
Aty (T) = ['Ul (T + ]-) — U (7—)]1{|v1 (74+1)—v1(7)|<log n}-
Clearly gs
01(t) = v (t), t € [Tw, TF].
Applying Lemma 6 and (100)-(103), we see that, for 7 € [Ty, T*),

n’p(z*)2B(z*)*(2*)"e*

n?(z*)tc=2 f(2*)?
—1+4 B(z*)* e +o(1)
e? (Z*)2

(From h(z*) = 0 it follows that c¢8(z*) = 2*(1 — e *")~1.) Consequently, using (60) and
assuming T* < Tr, for 7 in question we have

E(wi(t+1)—v(r)|v(r)) = -1+

+0(1)

= —1+ +o(1). (104)

E(At (7)) < —d,
where d > 0 is an absolute constant. So, using a classic inequality

E(e*X) < X’/2 (105)
if EX <0, X € [-1,1] a.s., we estimate

E(6A51(7—+1) | {V(j)}TWSjST) < pe/\ﬁl(‘r)a
p = exp{—XAd + X2 log® n}. (106)
We deduce that the sequence (Z; = e*"(®) /p!=Tw),5 - is a supermartingale. The factor p

attains its minimum value of exp [—d?/(2logn)?] for A = d/(2(logn)?), which we now impose.
By the optional stopping theorem we obtain

XUl(T)
(5

(TW)) < e/\171(TW) — e/\vl(TW)_

So, given (103),

E(Zr | T* > T + 087, v(Tw))Pr(T* > T + 057 | v(Tw)) < 2™+ (107)

Now
E(Zr | T* > Tw + 0%, v(Tw)) > exp{d®nS/" /(2logn)?}. (108)

So from (107) and (108) with € small, we deduce that
Pr(T* > Tw + 0" | v(Tw)) = o(1)
and consequently

Pr(vi(T*) > 0| v(Tw)) = o(1).
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That is, whp at time 7* < Ty +n8/7+¢, v;, the current number of pendant vertices, becomes
zero, which signals the end of Phase 1.

We can now prove Theorem 3, assuming the truth of Theorem 4. It follows from (99) and
Fact 1 that whp the size pu; of the matching produced by Phase 1 satisfies

p = Tw + 0(”'75) — ng(z*)) + nB/6+¢.

According to Theorem 4 whp the size us of the matching produced in Phase 2 satisfies

pr = v(T*)/2+0M*F) =v(Tw)/2+ O(n®™)
np(2*)B(z%) /2 + O(n8/7+e).

Now if G(Tw) denotes the graph remaining at time 7w then

w(G(n, M) =+ u(G(Tw)) (109)
< +o(Tw)/2.

Equation (109) is well known and follows from the fact that if u is a vertex of degree one in
a graph H and v is adjacent to w in H, then pu(H) = 1+ p(H \ {u,v}). Thus whp

w(G(n, M)) = n(g(z") +p(z*)B(=*)/2) + O(n®/7*).

Now use the substitutions z* = v* — 7., 8(2*) = v* /¢, log B(z*) = 2* — ¢f(2*) = —v, and
e*" =~*/7, (see (48) and (49)) to obtain the expression given in Theorem 4.

6 Analysis of Phase 2

For simplicity we split the ensuing analysis into three stages. First of all let
W, = {v 22 >n Y10 4> Anz? v <m, v < nl/s(logn)ﬁ} .

The positive constant A will be revealed later — see (126), but it will be small enough so that
(102) implies v(7*) € Wy.
Then let

T = min{t < Tz : v(t) € W1} if such 7 exist,
L otherwise.
Let 76,7 = min{t : vz < (logn)?}. The conclusions of Lemmas 6 and 7 are valid for ¢ < Tg.7.

Let Zy = vo(t + 1) — vo(t) — 2 denote the number of unmatched vertices which are created at
time ¢. Then by Lemmas 6 and 7, if ¢t < T¢,7,

v +1
E(Z =0 110
@ 1v)=0(22) (110
Consequently,
Te,7 Te,7 vy + 1
E = !
Nz |=0|E| > - (111)
t=T* t=T*
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The upper bound in the theorem is demonstrated by showing that
Pr(3t < Te7: v > 2n'/%(logn)'?) = O(n"?),

and then (111) implies

n/2 Te,7 1
_ 1/5 9 =
E Z Zy = O | n/(logn) Z —
t=T* t=T*
= O(n'’®(logn)'). (112)

The analysis below shows that the expected number of isolated vertices created from the time
vz drops below n'/?(logn)? until the end of the process is O(n'/®(logn)?). Thus, (112) will
be good enough for our theorem.

We first prove below that

Pr(37* <t < Ti : w(t) > 8000/ (logn)®) < n~2. (113)

We prove (113) by proving the following lemma. Let £(t1,t2) denote the event

{vi1(t1) = 0,v1(t) > 0 for t; < t < t5 and vy (t2) > 2000n "/ (logn)?}.

Lemma 13
PI'(E'T* <ti1 <ty < Ti: g(tl,tz)) = 0(”74). (].].4)

Proof Let a = n~1/50/200. Fix t; € [T*,7i] and t5 > t; where vi(t;) = 0. Let
Xi =01 (t+1) — v (t) for t; <t < min{ts, 7;}. Define

| min{r <min{ts, T} : vi(r) =0} if such 7 exist,
n= min{ts, 71} otherwise.

Fort; <t <7 weletY; = X; and for ; <t <tz welet ¥; = —a. Note that || < logn
for t; <t < ty. From Corollary 3 and v(t) € Wi for 1 <t < 7; we see that E(Y; | v(7),7 <
t) = —ay where a; > a for t; <t < ta. The occurrence of E(t1,t2) N {ta < 71} implies that

= t2 and
ta

Z Y; > 800n'/*(log n)® (115)
t=t:

By (105) applied to (Y; + a)/(logn + a), A; = e*Yt satisfies
E(A; | v(r),7 <t) < eXlosm* e yy >

Hence, for L > 0 and A = (L/a +aT)/(2(logn)?), (T =ty — t1),

tz t2
Pr (Z Y, > Lja|v(r),T < t1> < e M/og (H A | v(t),t < t1> (116)
t=t1 t=t1
to
= e M T EA | v({t),t <t)

t=t1
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IA

exp{—AL/a — XaT + X*T(logn)?}  (117)

exp{—m (g +aT>2}

Putting L = 4(logn)® proves the Lemma. ]
Similarly, if T = [16(logn)®/a?] then

Lemma 14

PI‘(E'T* <t < T —-T: ’Ul(tl) =0, ’Ul(t) >0 fOT t1<t< t+T) = O(’I'L_4).

Proof Putting L = 0 and A = a/(2(logn)?) in (116) and (117) we obtain

t1+T
Pr<z Y; >0

t=t1

V(T);TSh) < e~ T/(4(log n)”)

= O(n™).
O

Our next task is to find the likely shape of v when v first leaves W;. We follow the ideas of
Lemma 11. Let M = 2m — v;. From Lemma 6, if v; > 0, v € Wy and T* <t < 71, then

. e RSP g (s
= —1_%—%+0(%+%> (118)
EW —v]|v) = —1—%+;—;+0(%)
- —1—%+0<;—1+%). (119)
Similary, from Lemma 7, when v; = 0,
EM -M|v) = -2— QZ?Z - ;’:3;2 0 <%) (120)
E@W —v|v) = -2- ;i:;;; +0 ((1055)2) ) (121)

The important thing to observe here is that E(M' — M | v)/E(v' —v | v) is the same in both
cases, up to error terms. We are therefore left to consider the differential equation,

2z 2 4 =z
M _ 1+ T g
dv 1+ Zi,f;;;

The solution of this was obtained in (59) — see (58) (M = 2m (up to error v;) accounts for a

factor 2 here):
*( 2 _ z &
o M€ -1z exp {_/ §e d{} 7 (122)

*

z*(e*” —1) es(1+&)—1
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where M* = M(T*) = 2m* etc.. Then (up to a v; error term)

L~ 2mi()
z(e* — 1)
_ 2w f(2) T e
= e D exp{—/z e§(1+§)—1d§}' (123)

So we define

B v z et
T = nf(z)exp{/z Wdﬁ}

B m z et
o = mxp{/ Wdf}-

Lemma 15 Assume v(T*) € W1. Then

and

Pr (T*rél?f}g(ﬂ |J;(v(T)) = Ji(v(T*))| > nl/ﬁ) =o(l), i=25,6.

Proof We follow the proof of Lemma 11. Observe first that equations (64) and (65) can
be extended to include i = 5,6. Now fix i = 5 or 6 and let J(t) = J;(v(t)). Let L = n'/3 and
define Q(t) = exp{L(J(t) — J(T{*))} for T* <t < T1. Let Q(t) = 0 for ¢t > 7;. Equations
(66) and (67) are still valid, as is (68). In place of (69) we obtain

VI Blv(©) - v(e - Divie— 1] =0 (- (2 + (B2
since we use (118) — (121) in place of Lemma 6.
So
_ 5 [ (logn)? +v12
PQO) | ve) = Q-1 (140 (22 (FELIEN)) aa)
= Q(t—1)(1+0(n"2/2)). (125)
The proof of the lemma is completed as in Lemma 11. m|

At time 7; either (i) z < n=1/100 (ii) v < Anz?, (iii) v; > min{m,n'/?(logn)*} or (iv)
T1 > T (iv) is unlikely and (123) shows that v(7; — 1) & Cnz? where

__m T
C—mexp{‘/o mdﬁ}-

This rules out (ii) and (iii) if we take

A = min {g 21;27;;2 } : (126)
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and so we can assume that at time 77,

z ~ n /100 (127)

v ~ Cnz® (128)

m ~ Cnz’ (129)

2(Th) = 2(Th — 1) = O((log n) /v) (130)

is the justification for (127) (Now assuming 71 < 7). m = v comes from z = o(1) and
2m—v;  z(ef —1) z 9
< - = z ‘
2< o =2 (1 +240(6 )) (131)

Now let 7{ = max{t < 71 : v1(t) = 0}. It follows from Lemma 14 that whp
Ti = Ti = O(n'/*(logn)®).
This and Lemma 13 implies that whp (127) — (129) also hold at time 7. Indeed,

m(T{) —m(T1)

IA

(71 = T{)logn
O(n'/*(logn)*)
o(m(T1)),

and so m(7{) =~ m(7T1). Similarly, v(7{) =~ v(71). Furthermore, applying (130) we see that
whp

2(T)) = 2(Th)

0 -1 logn)

I
Q

<n1/25 logn )

1,97/100
= 2(71
and so z(7{) = 2(71) holds at time 77'.

It will be useful in what follows to know that once z gets “small”, it is unlikely to ever grow
“large” again. We make this precise with the following lemma:

Lemma 16 Let 2o, = n~ *(logn)” for 1/100 < a < 1/5 and —100 < v < 100. Suppose that
at time tg we have
Zan/2 < 20 = 2(t0) < 22q,4-

Let
W ={v: vz >n'5(logn)'2, v; < 2n'/5(logn)°}.

Then
Pr(3t > to: v(t) €W, 2(t) > Oz | v(ty) € W) = o(n™2), (132)

where © is a sufficiently large absolute constant.

Proof We prove the lemma by showing that for ¢ > g,

Pr(z(t) > Oz | v(1) € W, 2(7) < Oz, tg < T < t) = 0(n™3). (133)
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Lemma 5 shows that if tg < ¢ then
Pr(A(G(t) > Ay = [4/a] | v(to) € W) = o(n™®). (134)

We let Gy = G(to),and assume from now on that A(Gy) < A,. We wish to probabilistically
bound 2(t) from above for ¢ > to. Since G(t) is a subgraph of Gy we can do this by bounding
z(K) for all vertez induced subgraphs K of G (which are suitably large).

Here we have

2m(K) —vi(K)  2(K)(eH) —1)
v(K) (K —1— 2(K) (135)
2(K)
> 2 (1 + 6 ) .
[ (e -1) 9 4 (EkZS kk;z2zk_3>]
e —1—2z2 Zk22 Z';C_f )
% (05(K) + 204(K) + -+ (A — 2)oa, (K))
3(v3(K) + 204(K) + -+ + (Aq — 2)va (K
2K S = )+ 0s(E) T 0a ) £ T va (K) (136)
If 2(K) > ©z/2, then (136) implies that
Co/2(K) > 0. (137)

where
CG(K) =3A4(v(K) — v2(K)) — azoua(K).

We deal first with subgraphs K which are connected. Let K* denote the vertices of K which
are of degree at least 3 in Go. Let k = |K*| and let H = H(K™*) be the (multi)-graph with
vertex set K* and an edge joining (z,y) for every path P joining x € K to y € K all of whose
internal vertices are of degree 2 in Gy. The connectedness of K implies that H is connected.

Let T be a spanning tree of H. Let the edges of T be {ey,ea,...,er_1} and let w(e;) be the
number of vertices of degree 2 on the corresponding path joining the end points of e; in K.
If (o/2(K) > 0 then, from (137),

k—1

— 6ALk
w(e;) <va(K) < ———. (138)
i=1 0z
So now let us consider the following event Aj; (k): there exists a set K* = {uy,us,...,ux} of

vertices of degree at least three in Gy, plus a set L of at most A = 6A,k/(Oz) vertices of
degree two in Gy which together induce a tree. Condition on the equivalence class A (as in
Fact 2). Then

Pr(A(k) | 4) < 323 (walt))x (m)xuer 22X A% /@m)ssnyy (139)

The second sum isover 1 + -+ -+ xp—1 < Aand X =x1 + 22 +--- + Tp_1.

Explanation: We sum over sets K™ of vertices of degree at least three. For a fixed K* we
choose a labelled tree T on k vertices. We take a canonical ordering e, es,...,er—1 of the
edges of T' and then decide on the number of degree 2 vertices x1,Z2,...,Tr—1 of the paths
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corresponding to these edges. We then choose a set L of X vertices and place them on the
edges, z; vertices to edge e;. This can be done in at most (v2(tg))x ways. This defines the
sets K*, L and the tree T containing them. We now have to estimate the probability that T"
exists in Gg. (m)x+r—1 counts the ways of choosing positions in z for the edges of T'. There
are 2X %=1 choices for ordering the corresponding entries in z and then if d;,¢; denote the
degrees of vertex j in Go, T, Corollary 1 gives

TI (@) /@m)ax -1y < 2% AZE/(2m)5(x 451y
jEK

for the probability that these edges all exist.
Now (see (7))

gs there are fewer than vz /2 vertices of degree at least 3 in Gy. (140)

Assume A satisfies this condition. In which case

where € = 4A, /0O can be made arbitrarily small. It follows after simple estimations that

22Xk () () x (M) x 411 AZF A2
(2m)a(x+r-1) = 2k1((1 - e)m)k-1
A2k
k1
The number of choices for z1,zs,...,Tr_1 is at most (Aﬁl_l) and the number of choices for

K* is at most (”"‘,‘;/2). Hence,

+k =1\ [v20/2\ kF-2AZk

Pr(Ai(k) | 4) < )( o/ )T
vzoe)k kE—2 A2k
2k mk-1

(A
< (k
B (08)

Thus if K = 4/ log(©/(6e2A2)) then we have, after removing the conditioning on A,

Z Pr(A;(k)) = o(n™3). (141)
k>klogn
So now let us condition on the non-occurrence of [y, 1og 5 A1 (k). Let C1, 02, ...,C, be the

components of G(t) with |Cf| < [C5]| < --- < |CF] < klogn < |CF | < -+ < |Cy] which
are not paths or cycles. Let Cyy1,Cyuqa,-- C be the components which are paths or cycles.
Now if 2(K) > Oz then

0<¢e(@ Zce
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< B ICF+ D Copa(Ci) + Y (ColCi) = Coya(Ci))
i=1 i=r+1 i=r+1
< 3Agkrlogn + i Co 2(0')_% s v2(C5)
> a ' / i 2 i
i=r+1 i=r+1
620 £
< 3Aqkrlogn — ~ v2(Cj). (142)
i=r+1

Let I' denote the length of the longest path in G(t) whose interior vertices are of degree 2 in
G(t). We show that if v(t) € W then either z(t) < Oz (and we are done) or with probability
1—o(n=?)

T <20(logn)/(©z). (143)

Now |C;| < A,T'|C}| and hence

s

Z v2(C;) > va(G(t)) — 20kr AL (logn)?/(Oz).

i=r+1

Substituting in (142) we obtain

21k(logn)?Ayr > Ozoua(G(1))
2 2(t—1)(v2(G(t - 1)) — Aa)) (144)
> n'/%(logn)*?/2
since v(t —1) € W.
Thus
r = Qn'/5(logn)'?). (145)

Let » = r' + r" where ' is the number of C;, i < r which contain a vertex of degree one in
G(t) and r" is the number of C;, i < r with minimum degree at least two in G(t). Now

' <o (t) vt —1) + Ay < 303(logn)? < r/2. (146)

Let v = [logn] and suppose r"" > vklogn. Then there exists k¥ < klogn and v indices i < r
each with |C}| = k and C; having minimum degree at least two. No C; is a cycle and so each
contains at least 2 cycles. In which case we see that C; spans at least |C;| + 1 edges in Gy.
We let As (k) denote the event: G contains v disjoint sets of vertices K; with |K}| = k, and
each H(K}) spanning at least k + 1 edges.

Condition on the equivalence class A. Arguing as in (139) we see that

v 22X+V(k+1)A'(21V(k+1)

k
Pr<A2<k)|A)sZ(k(fl) S ato))x ()i

147
2M) (X 4v(k+1)) (147)

The first sum is over K{,K3,...,K}. The second sum is over zy,...,Z,(x41) and X =
1+ 22+ Ty(kt1)-

Explanation: We sum over disjoint sets K, K3,..., K} of vertices of degree at least three.
For a fixed K7, K;,..., K, we choose fixed graphs H;, Hs, ..., H,, each with k vertices and
k + 1 edges. We take a canonical ordering ey, esz,...,e,41) of the edges of Hy U Hy U
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--U H, and then decide on the number of degree 2 vertices 1,2, ..., Z,(x41) of the paths
corresponding to these edges. The rest is as before. We estimate

(v2(t0))x (1) x 1o (1) 22X HVHD AT D < (2(to)
(2m)2(x+v(k+1)) T\ m 2v(k+1) ((1 — €)m)v(k+1)”
where € = (X + vk)/(2m) = o(1) using (143) and X = O(v(logn)*/z) = o(m), since
V(to) ew.

Now (see (7)) we can assume that v2(tg)/m < 1 — zp/4. Indeed, assume vy (tg)/m > 1 — 29/4
and hence that v & m. Then from (7) at t = #o,

AZV(k—i—l)

vy S
m — 2m
= ﬁ—i—O(\/vzlo n/m)
~ amf(2) g
z
> e
- 4
contradiction.
Thus,

AZu(k+1)

v(k+1)
vzoe\k” (ke X+Vk+1) 1
Pr(Ax(k) | A) < (2—) (7) k1) (1 — e)m)»*+D) Z ( 1 ) (
k+1 A2k+2 4\ 1
2H1((1 — eym)*+1 (%)

E

2
_ A2ke \’
- 21—e (1 —€)mzo

( ve? A2 ’“ 2A2 ke® )”

U

2(1—€e)m n1/5(log n)12

For the last inequality follow (144). Thus after removing the conditioning on A and choosing
k sufficiently small (i.e. © is sufficiently large),

Y. Pr(A(k) =0(n""),
k<klogn
for any constant K > 0. Thus gs r" < logn and the lemma follows from this and (145),
(146).
Proof of (143)

Let Ay denote the number of induced paths of length & in G(t). Condition on the equivalence
class A. Then

E(Ar | 4) < (;) (kv_Zl) (m)k22(k+1)A§

(2m)2k
2U2Ai V2 k-1
< == ()
202 A2 £\ 1
< %(1—%) . (148)



Now either z(t) < @29 and we are done already or z(t) > Oz and the RHS of (148) is o(n~3)
when k > 20(logn)/(©z).

This completes the proof of Lemma 16. m|

So now let

T = { min{t > 77 : v(t) € W and 37; <t <t such that 2(t) > ©z(t')} if such T exist,
n otherwise.

Let

Wy={v: 2z(t)>n""%(logn)?, vz >n'/5(logn)'?, vz® > (logn)?
v1 <n'/5(logn)?,m < 3v, Anz® < m,v < 2Cn2?}.

Note that W, C W. Let

T — min{7; <t < T AT, :v(t) € Wa} if such 7 exist,
S ) otherwise.

We now repeat the analyses for v € Wy, but we take greater care with estimating the size of
V1.

Lemma 17 Suppose T; <t < T5 and v1(t) > 0. Thus whp z(t) = O(n~'/19). Let B(t) be
the event {m(t +1) =m(t) — 2, v(t+ 1) =v(t) — 2, v1(t + 1) = v1(t)}. Then fort e W,

Pr(B(t) | v(t) =1 — 2 + o(2).

Proof B(t) occurs when y is of degree 2 and its neighbour other than z is also of degree
2. Then

Pr(B(1) | AD) = 5o 22— ),

[Recall that A(t) denotes the degree sequence at time ¢.]

Now D(t) (see (7)) occurs by assumption in which case

2
_ vz 1/2
vy = 37 (2) +O(w'*logn)

= o(1-2/3+0(z?)) + O0@w?logn)
v(l —2/3+ o(2)).

Thus
v 2z

Pr(B(t) | A(t),D(t)) = (—)2 (1 -5+ o(z)> .

m

Now (131) shows
m z
> = 1+ 6 + O(2% + vy Jv)

1+ g +o(2),

when v € W>. Hence,
Pr(B(t) | A(t),D(t)) =1—z+ o(2).

The lemma follows on removing the conditioning on A(t), D(t). |
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Lemma 18 Suppose that T <t < T2 and that v1(t) =0 eg. t =7T/. Let T = T(t) =
K(logn)3/z(t), for some large positive constant K. Then

Pr(t+T <75 and vi(7) >0 fort <7 <t +T | v(t)) =O(n "), (149)
and

Pr(3r € [t,min{T5,t + T} : vi(r) >n'Plogn | v(t)) = O(n™*). (150)
Proof Fix t' > t. Let b = b(t') denote the number of non-occurrences of event B(7) in

the interval [t,t']. Note that if ¢’ < 75 then

|m(t) —m(t') —2(t' —t)| <blogn. (151)
lv(t) —v(t') = 2(t' —t)| <blogn. (152)
Hence,
2m(t) —ui(¥)  2m(t) —vi(t) _ w(®)  wu(t) | 4@ =) (m(t) —v(t)) + O(bv(t) logn)
v(t) v(t) () () v(t)(v(t) — 2(t' —t) + O(blog n)2153)

We observe next that

since t < 7T5. Thus

vi(t)| |vi(t) ‘ 2n'/5(logn)®2(t)
v(t!) o(t) | ~ v(t)z(t)
22(t)
< (logn)? (154)
since t < t' < 73. Similarly,
4
2(t' —t) + O(blogn) = O <(1;’(gt;13) ) =0 (%) :
Thus the absolute value of the RHS of (153) — denoted |(153)] — is at most
z(t) 5(t" — t)(m(t) — v(t)) blogn
0 (Tmeny) + o (5
Now z(t) < ©On~1/100 (154), (131) and v(t) € W> imply that
m(t) —v(t) < v(t)z(t).
So,
z(t) 5t —t)z(t) blogn
as) < o (il) + X vo (L)
2(t) 2(t)(logn)? blogn
< 0 ((gar) +0 (e )+ ()
2(t) blogn
< 0 ((gnr) o (i) (159



If (#' —t)z(t)? < (logn)? then

blogn _ (t' —t)logn _ (logn)®z(t) 2(t)
o S o) S w07 = (ogn)®’ (156)
and then (155) gives
|(153) = O ( (1522)3) : (157)

which is what we are after. For (t' —t)z(t)2 > (logn)? we prove that (156) holds gs.

Let X, 7 € [t,72] be the indicator random variable for the event B(7) and let X, = 0 for
TE€[T2+1,t+T]. Let Sy = Xy +--- + X,. It follows from Lemma 17 that if 73 < 7, then

E(X, |v(r), 7 < 7) <20z(t).
So, see (105), for any A > 0,
E(e)\XT |v(T’),7-’ <7< e}\2+2®z(t)/\’

and hence
E(eAb—(t’—t)(A2+2®>\z)) < 1.

Then by the Markov inequality, with A = ©z/2,

e(t'—t)()\2—/\®z)

IA

Pr(b > 302(t' — t))

e—(t’—t)®2z2/4

e—GZ(IOgn)Z/zl’ (158)

IA

and so (157) holds gs. In which case

2 (1 + % + O(z(t')Q)) -2 (1 + ? + O(z(t)2)) =0 ((1(;(2)2)

and
2(1) = (1 + 0(1))z(t) for T € [t,min{t + T, T2}]. (159)

So we introduce yet another stopping time

{ min{7 > t: z(7) < 2(t)/2} if such 7 exist,
Te = ;
n otherwise.

Nextlet Y; = vi(7+1)—vi (1) for t <7 < min{7s, T¢,t+T}. For min{75, T¢,t+T} < 7 < t+T

we let Y, = 0 with probability 1 — 2z(¢) and equal —z(¢)/400 with probability 2z(¢). Then
using Corollary 3 and Lemma 17 we see that the random variables (Y} ) satisfy

o |V | <logn.

o Pr(Y, #0 | {v(0)}oer) < 22(t).
o E(Y; | {v(0)}o<r, Yy # 0) < —2(t)/400.
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So, for § = 2(t)/400 and A = §/(2(logn)?),

1- 2z)e>\5 + 9 5\’ (logn)?
M1+ 22(6/\2(103 n)* -2 _ 1))
= M(1 4 2z(e %/ (Blogm)Y) _ 1)

e* (1 — 26%/(3(logn)?)
e/\67z62/(3(10g n)?) .

E( ) [ {v(0)}s<r)

IAN A

Now in order that t + T' < T3 and vy (7) > 0 for t < 7 < ¢+ T, we must have

t+T

> (Y +6) > T

7=t

But, then using the Markov inequality

t+T 2
Pr (Z(YT +6)>Té v(t)) < exp{—%}

= O(n™).

This proves (149). To prove (150) we let Z; = 0 and Z, = Vi +---+ Y, fort < 7 <
min{7s,T¢,t + T}, where Y;,Y;44,. .., are as defined above.. The above analysis shows that
the sequence

S, = exp{\Z, + (1 — t)z6%/(3(logn)*)}

is a supermartingale. By the maximum inequality, see for example Chung [7] Theorem 9.4.1
(2), for any v > 0, we have,

max S >~) <E(S,) = 1.
t<7<min{72,7¢,t+71} - 7) - ( t)

7Pr(
Putting v = n® we see that
Pr(37: AZ, > 5logn + Tz6%/(3(logn)?)) < n~°.

Equation (150) follows as v1(7) = Z, under the assumption v1(t) = 0 and v (') > 0 for
t<t' <. |

We must now check that (128), (129) are still valid when v first exits from W,. With J5, Jg
as defined prior to Lemma 11,

Lemma 19
Pr( _max_ |Ji(v(t)) — Ji(v(0))| > n /%) = 0(1), i=25,6.

T/ <t<Ts

Proof We follow the proof of Lemma 15 with L = n'/2? and obtain (see (124)) that for

t>T! 2
BIOW | (v()heed = Qe - 1) (140 (22 (1B 02) )
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where v, v, z are evaluated at t — 1. Hence,

T2 2 2
BQT) < B[] (1+o (L (enz £ (og ) )))> (160)
=T,
| o (Pl | o
T!
T2 nl/212 2 2
< E {Z T/nsI;QUI + L (1(7)5311) n) }) (162)
T!

1/2L211 L2(10gn)2n
ol ) o

- (164)

IA
=

We use m < 3v for v € Wy to go from (160) to (161). We use Anz? < m < 2Cnz? for
v € Ws to go from (161) to (162). We use the fact that m(75) =~ m(T5 — 1) = Q(n3/5-°(1)
and v; < n/5+t°() to go from (163) to (164). The proof can then be completed as in Lemma
11. O

At time 75 either (i) z < n~'/®(logn)?, or (i) vz < n'/5(logn)'?, or (iii) vz® < (logn)7, or
(iv) v1 > n'/5(logn)?, or (v) m > 3v, or (vi) m ¢ [Anz?,2Cnz2>] or T, A T, < n (unlikely).

Now Lemma 19 shows that whp (128) and (129) hold at time 75 —1. In which case (assuming
To < T1) v(T2) > v(Tz — 1) —logn ~ Cnz(Tz — 1)? = Q(n3/5(logn)*). Similarly for m(7z).
Also, 2(T3) = 2(Tz — 1) + O(logn/v) = 2(Ts — 1) = Q(n~"'/%(logn)?. Hence whp (128) and
(129) hold at time 73. Furthermore, v(72)2(73)® = Q((logn)'°) and then (iii) will not hold
on exit. (128) and (129) rule out (v),(vi) and (150) rules out (iv). So we are left with two
possible exit cases having a significant probability.

Case 1: vz < n'/5(logn)*?

The number of isolated vertices that are created from 73 onwards is bounded by the sum of (i)
v3(Tz), (ii) the number k1 of components of G(73) which are paths, and (iii) the number k3 of
components of G(7z) which are cycles. It follows from (7) that whp v3(72) = v(72)2(72)/3 =
O(n'/®(logn)'2). Also, k1 < v1(T2) = O(n'/®(logn)®). Finally, if vy = v5(73), then

v2 _ k
E(ky | v2,v(T2)) Z(f)(k 1! 2

= 2 (2m)g
"1 fua\k

< X (@)
k=3

< logn.

The upper bound holds after removing the conditioning on v5. Thus in this case, the expected
number of isolated vertices created from 7> onwards is O(n'/®(logn)'?).

Case 2: z < n~'/5(logn)?.

In this case we exit Wy with

2z ~ n'/5(logn)? (165)
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Q

Cn®/Pw?(logn)*
~ Cn®lPw(logn)!
v < nt®(logn)®.

v

m

Let
Ws ={v: 2 < 0z(Tz), vz > n*>(logn)'?, v; < 2n'/*(logn)’} C W,

where O is as defined in Lemma 16.

Then let
To<t<Tr v(t)€Ws if such t exist.
n

otherwise

73 = min {
We prove

Lemma 20

Pr(37: <t < Tz : v (t) > v (Ts) + n'/5(logn)?) = O(n~2).

We observe first that z(7z) is small enough that Lemma 5 implies

Pr(A(G(T5)) > 30) = O(n™*). (166)
Also, (7) implies that gs if v € W3 then
vy = v+ 0z +v"%logn)
vy = % + 02 + (vz)/%logn)
ka = O@z? + (/%2 +1)logn)).
k>4

For t € [T2, T3] let Xy = v1(t + 1) — 01 (t) if v1(¢) > 0 and |v1 (¢t + 1) — v1(¢)] < 30. Otherwise
let X; = 0. Let § = n~ /5. We show that exists a constant v > 0 such that

E(e"Xt | A(t)) < exp{y(62% + 622 + &* + dv™! + dv™1/22) logn}. (167)

Here we condition on the degree sequence A(t) of G(t) and assume it satisfies (7). Let
pr =Pr(X; =k | A(t)). Then pr, =0 for k > 30 and
0(2)
B2vs + O((2% + v +v71/22) logn)
Pe=19 Z4+0((z*>+v ' +v"22)logn)
% +0((z>+v ' +v/%2)logn)
O((22 + v~ +v=/22)logn)

1A
Lo

(168)

O
|
N = O

AV

Consider for example p_;: O(v~!) (see Lemma 6) accounts for the probability that there is
a loop or multiple edge within distance two of x. O(v;z/m) = o(22logn) accounts for the
case of y being of degree at least 3 and having a degree 1 neighbour other than z. Excluding
these cases, we lose one vertex of degree one if y is of degree two and its neighbour (other
than z) is of degree at least three. Thus
2uy  3uz + 4dvg + - - - + 30v3g 1 9
p-1 = o S T— + O™ + 2% logn)
3’[)21]3

T om? +0((z2 + vt + 07 /22) logn).
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The other probabilities are computed similarly.
It follows that the moments

E(X} | A(t) < { O((22 +v=! +v=1/2z)logn) i=1,3

O(z+ (vt +v22)logn) =2 (169)

So,

E(e’™ | A(t))

30
3k
D e

k=-30
30
2k 5%k3
= > (1+5k+T+T+O(64))
k=-30

= 1+0((02% 4822+ 6* + v~ + 6v™/22) logn),
and (167) follows.

Removing the conditioning A(t) does not change the validity of the upper bound in (167).
Thus for v(t) € Ws,

E(eéXt |{v(5)}t0§s§t) < exp{'y((522+(52z+(54+(511_1 —|—5’U_1/23) logn}

Fix tg € [T3,T3]- We define the stopping time

;. to<t<TAT,: vi(t)=0 if such t exist.
T = mm{ T3 otherwise.

For t > tg define Y; = Zi:to X, and

t
S = exp{dY; — ylogn Z (62(1)% + 822(7) + 6* 4+ dv™t + dv™22(7))}.

T=tgo
Then
E(St | {v(7)}to<r<t)
E(S;_1exp{0X; — y(022 + %2+ 6* + sv ' + 51)*1/22) logn} | {v(7) }so<r<t)
Si_1E(exp{6X; — 7(82% + 6%z + 6* + dv ™t + 6v 1/ 22) logn} | {v(T) ho<r<t) < Sici.

Thus the sequence Sy, to <t < 7' is a supermartingale. Applying the maximum inequality,
we see that for any A > 0,

Pr( max S;>A) <
to<t<T'

Putting A = e’L, L = n'/5(logn)? we obtain

==

t
Pr(3to <t<T': Y, > L+vlogn Y (2(1)*+62(r) +6° +o(r) ™" +dv(r) "/ 2(r)) < ™"

T=1g

Now observe that ¢ = to < (7) < (1+ o(1))Cn%/*(logn)*, 2(r) < ©2(7) and v(r)~! <
2(T)n=/%(logn) 2. So

t

Z (2(7)? + 62(7) + v(7) 1) + 8% + dv(r) 2 2(r)) < 2Cn'/5(logn)®.

T=t1g
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and
Pr(3ty <t < T': Y, > 3C0%*yn'/>(logn)®) < n='o8™,

Observe next that (166) implies that
Pr(ﬂt 2 to : Y}, # Ul(t) - Ul(to) | V(to)) = O(TL_4).

So from time ty to 7' we have vy (t) — vi(tg) = O(n'/®(logn)®) with probability at least
1 — O(n™*). Since vy (t) returns to 0 at most n times in [75, 73], the probability that vq () —
v1(to) > n'/?(logn)® for some time in [73, 73] is at most O(n=?).

To finish the proof of the upper bound in Theorem 3 we see that whp on exit from W3 we
have vz < n'/3(logn)'? and v; < 2n'/5(logn)®. The number of isolated vertices that are
created from now on is bounded as in Case 1.

6.1 Lower Bound

We fix a time to € [T, T2] such that

n~'/(logn)®, (170)
m(to) ~ Cn®/®(logn)*°.

S W
S
2

The existence of t follows from the fact that in [77, 73] z drops from ~ n~1/1% to
~n1/5(logn)? in steps bounded by O(v—'logn).

Next let Ty = n3/5/(logn)?® = o(logn/z(ty)®). We show that the expected number of isolated
vertices created between to and t; = to + T is Q(n'/®/(logn)™/?).

Let X; = v1(t + 1) — v1(t). When v1(t) > 0 we decompose X; as
Xt = 5,5th + erry
where
P probability (va/m)? — Lz?logn
£~ 1 probability 1 — ((va/m)? — Lz*logn)
0 6 =0 or probability 2Lz?logn when §; = 1
Y;{ +1 probability 1/2 — Lz%logn when & =1
—1 probability 1/2 — Lz2logn when §; = 1
where L is some large positive constant, large enough that — see (168)
Lz*logn > 1— (po +p1 +p-1)-
Note that if (170) holds then whp 22 > v~!,v; /m, z/v/?. Note further that gs (see (7)

2
vy
s 1—(140(1))z(t), (171)
and that (159) implies whp
Z(t) ~ Z(to) for t € [to,tl].

erry is simply X; — 6,Y;.
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In the case of v; (t) = 0 a simple calculation shows that

Pr(vi(t+1) = 0| v (t) = 0) = O(2*) = o(1).
In this case we take err; = 0 and put Pr(6; = 0) = Pr(v1(t +1) = 0.
Now Pr(A(G(tg)) > 30) = O(n~*) — see (166) — and we deduce that

E <Zl errt> = O(Ty2(tg)? logn).

t=to

Now,

=
M
M=
=
=~
~
Vv

(£

t=to t=to t'=tq
t1 t—1 ty t—1
= E (Z Z 5th}r> +E (Z Z errt/>
t=to t'=tg t=to t'=tq

E (Z Y-,—j (tl - Tj)) + O(sz(t0)2 logn)

jed
where J = {7 € [to,t1]: =1} ={mn <72 <---},
T12(to)/3
> E Yy, (tr — 1) | +O(n*/®(logn)=2°) (172)
=0

J
We see from (171) that E(|J|) =~ Th2(to) and we can show as we did with b in (158) that gs
|J| > T12(to)/2. Similarly, E(r; — 75_1) = 1/2(to) and again it is not hard to show that gs
t—1—71; > Ty /4 for all j <Tiz(tg)/3. We deduce then from (172) that

t1 T12(t0)/3
E <Z vl(t)> >E ( > YTJ) T1/5 4+ O(n*/>(logn)~2°). (173)
t=to j=0

Now Z;:o Y;, dominates the distance from the origin of a simple random walk of length
B(r,1—3Lz(ty)%logn) and so

T12(to)/3
El Y v,
7j=0

Substituting this in (173) yields

t1
E (Z V1 (t)) = Q(n*/>(logn)~%/?).

t=to

Q(Ty2(to))?)

= Q(n*5(logn)~%/?).

It follows from Lemma 6 and (170) that where Z; = vo(t + 1) — vo(t) — 2,

u 2oy (t) — 1
(t:to t=to m(t)
= Q@5 (logn) ™),
and this completes the proof of Theorem 3. O
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A Proof of (5) and (6)

To find a sharp estimate for the probabilities in (5) and (6), we have to refine a bit the proof
of the local limit theorem, since in our case the variance of Z is not bounded away from zero.
However it is enough to consider the case where vo? tends to infinity. As usual, we start with
the inversion formula

™

Pr (Z Zy = T> = % e TR (e” 2 Zf) dz
f —T

1 " —iTT iT v
= 5] . [E(e”#)]" dz, (174)

where 7 = s — k. Consider first |z| > (vz)~%/12. Using an inequality (see Pittel [18])

[f(m)| < eRen=Im/3 (1)),

)

we estimate

1

2 Jja|2(vz)=/12

1
21 Jyal > (va)-5/12
evz[(cos((vz)_s/u)71)/3]

<
< e @'/ (175)

dr e’uz(coszfl)/ﬁ} dz

IN

For |z| < (vz)~5/12, putting = ze** and using vz f'(2)/f(z) = s, d/dx = ind/dn we expand
as a Taylor series around z = 0 to obtain

reonllf) - w LR
nf ’(n))
(m)

f
4 DS <T’ T} )
(n)
here 7j = ze®, with # being between 0 and z, and D = n(d/dn). Now, the coefficients of
vz?/2, vz® /3! and va? are Var(Z), O(Var(Z)), O(Var(Z)) respectively, and Var(Z) is of

order z. (Use (39) and consider the effect of D on a power of z.) So the second and the third
terms in (176) are o(1) uniformly for |z| < (vz)~3/!2. Therefore

Jef+f. -
|z|<(vz)—5/12 1 2 3

] - (176)

where
/ — i eikm—vVar(Z)m2/2 dr
1 21 Jyal<(v) =012
1 K +1 )
= ———— 40— ), 178
2rvVar(Z) ((ZU)3/2 (178)

/ = 0 EDz (zf’(z)) / m3evaar(Z)zc2/2 dr
2 3 £(2) ) Jjaj<wa)-or2
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19) vz/ |1_|36—vVar(Z)z2/2 de
|z|>(vz)—5/12

= O(e "), (179)

(a > 0 is an absolute constant), and

/ = 0 UZ/ x4e—vVar(Z)w2/2 dr
3 |z|<(vz)=5/12

1
Using (174)-(180), we arrive at

Pr<;Ze:T> :mx [1+0<k2;1)].
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