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Abstract

Random geometric graphs have been one of the fundamentalsrfod reasoning about wireless networks: one
placesn points at random in a region of the plane (typically a squargrale), and then connects pairs of points by
an edge if they are within a fixed distance of one another. titiad to giving rise to a range of basic theoretical
questions, this class of random graphs has been a centtgiiealaool in the wireless networking community.

For many of the primary applications of wireless networkswéaver, the underlying environment has a large
number of obstacles, and communication can only take plam®g nodes when they are close in spand when
they have line-of-sight access to one another — considegXample, urban settings or large indoor environments.
In such domains, the standard model of random geometrihgrigmot a good approximation of the true constraints,
since it is not designed to capture the line-of-sight restms.

Here we propose a random-graph model incorporating botgerimitations and line-of-sight constraints, and
we prove asymptotically tight results férconnectivity. Specifically, we consider points placeddamly on a grid
(or torus), such that each node can see up to a fixed distaomg thle row and column it belongs to. (We think of the
rows and columns as “streets” and “avenues” among a regupéced array of obstructions.) Further, we show that
when the probability of node placement is a constant faeiayer than the threshold for connectivity, near-shortest
paths between pairs of nodes can be found, with high prdbattiy an algorithm using only local information. In
addition to analyzing connectivity arigdconnectivity, we also study the emergence of a giant corapps well an
approximation question, in which we seek to connect a seivehghodes in such an environment by adding a small
set of additional “relay” nodes.

*The fourth author’s institution has designated this papegproved for public release; distribution unlimited.

tDepartment of Mathematical Sciences, Carnegie Mellon ésity, Pittsburgh PA 15213, USA. Supported in part by NSRgECF-0502793.

tDepartment of Computer Science, Cornell University, lthAlY 14853. Supported by a David and Lucile Packard Founddglowship,
a John D. and Catherine T. MacArthur Foundation Fellowshiml NSF grants CCR-0122581, CCF-0325453, 11S-0329064,-G408340, and
BCS-0537606; work done in part while on sabbatical leaveaah€gie Mellon University.

§Tepper School of Business, Carnegie Mellon UniversitytsBitrgh PA 15213, USA. Supported by NSF ITR grant CCR-01223%e AL-
ADDIN project) and NSF grant CCF-043075.

YInformation Grid Division, Air Force Research LaboratotfFG, 525 Brooks Rd., Rome NY 13441-4505, USA.



1 Introduction

Most of today’s approaches to wireless computing and conzatians are built on architectures where base stations
connect the wireless devices to a supporting infrastractitowever, since the overwhelming trend is to transmit
information in packets, over standard protocols, a dontifiacus in the wireless research community is on more
decentralized approaches where nodes cooperate to relkgtpan behalf of other nodes. This focus is at the heart
of current work on mobile ad hoc networks (MANETS) [18, 19].

Such networks can be viewed as consisting of a collectiorodés, representing wireless devices, positioned at
various points in some physical region. The (wireless)k$ihof the network, joining pairs of nodes that can directly
communicate with one another, are predominantly shogeand constrained by line-of-sight; this is an inevitable
result of the scarcity of radio frequency (RF) spectrum amgkjral constraints on the propagation of RF and optical
signals. The ways in which these physical limits on direanouinication affect the overall performance of the
network is a fundamental issue that motivates much of theréftieal work in this area.

Random Geometric Graphs. Given this framework, random geometric graphs have emeaageddominant model
for theoretical analysis of distributed wireless networkdne places: points uniformly at random in a geometric
region (typically a disc or a square), and then, foaage parameter, one connects each pair of nodes that are within
distancer of one another. This model is the subject of a recent book loyd3e [21], and we refer the reader there
for extensive background; we also note that the enormousllyential work of Gupta and Kumar on the capacity of
wireless networks is framed this model as well [14, 15].

One of the most basic questions is to determine how the pildpadd connectivity of a random geometric graph
depends on the number of node&nd the range parameter A canonical result here is the following theorem of
Penrose [20]. If we place points uniformly at random in a unit square, and then cowtirsly increase the range
parameter-, with high probability the resulting geometric graph beesk-connected at the smallest valuerofor
which there are no nodes of degreek. In other words, the graph becomesonnected at the moment that all
trivial obstacles td:-connectivity (i.e. low-degree nodes) disappear. An ayals type of result is familiar from the
theory of classical Eris-Renyi random graph models e.g. Bolt[4]. (For further results and discussion concerning
thresholds for properties in random geometric graphs, se#, ®ai, and Krishnamachari [12].)

For modeling distributed wireless networks, the assumpaticandom node placement has proved to be a reason-
able abstraction for the lack of structure in node locatigigen that most frameworks for ad hoc networks assume
some arbitrary initial “scattering” of nodes, or that nodeach their positions as a result of arbitrary mobility. Klor
problematic is the fact that the analysis takes place iroregivith no obstructions — in other words, that a node
can communicate witlall other nodes within distance This is at odds with the underlying constraints in many
applications of distributed wireless networks, where ¢heain generally be a large number of obstructions limiting
communication between nearby nodes due to a lack of direstdf-sight contact.

In other words, while random geometric graphs model wisetetworks in open spaces, we lack a corresponding
model for wireless networks in some of their most common domaurban settings, large indoor environments, or
any other context in which there are obstacles limitingbiigy. With such a model would come the ability to address
a range of basic theoretical problems. In particular, wegarded by the following genre of question:

How do connectivity and other structural properties of @ndyeometric graphs change once we intro-
duce line-of-sight constraints?

An understanding of such issues could help provide a framefeo reasoning more generally about the performance
of distributed wireless networks in obstructed environtaen

The present work: Connectivity in line-of-sight networks. In this paper, we propose a random-graph model
incorporating both range limitations and line-of-sighhstraints, and we prove asymptotically tight results fer
connectivity. We also consider related structural questiincluding the emergence of a giant component, as well as
some of the algorithmic issues raised by the model.

To motivate the model, consider a stylized abstractionroitéid-range wireless communication in an urban envi-
ronment: there are streets running east-west,avenues running north-south, and wireless nodes can becbédc



intersections of streets and avenues. Each nodedmaew — it can see up taw blocks north and south along the
avenue it lies on, and up to blocks east and west along the street it lies on.

More concretely, we have an underlying §ebf lattice points{(z,y) : =,y € {1,2,...,n}}. We measure
distance using thé, metric, though to prevent complications arising from baanyceffects in this presentation, we
define the distance between points as though they form a torus

d(({E,y), (x/vy/)) = mm(|x - IE/‘,TL - |.’E - {E/D +m1n(|y - y/|7n - ‘y - yl|)

For a specifiedange parametew, we say that two points arautually visiblef they are in the same row or the same
column of the torus, and if they are within distance at mo$tom one another. We view the rangeas implicitly
being a function of,, and in this paper we will make the assumption thas asymptotically bounded below by n
and above by some polynomialin specifically, we assumea n = o(w) and thaty = O(n?) for a value of§ < 1 to

be specified below.

We now study the random gragh that results if, for som@lacement probabilityy > 0, we locate a node at
each point ofl" independently with probability, and then connect those pairs of nodes that are mutuallyl@isis
p increases, the torus becomes more crowded with nodes, andgtlting graplt is more likely to be connected.
Our main result states, roughly, that the smallest valyeaifwhichG becomes:-connected with high probability is
asymptotically the same as the smallest valug aff which the minimum degree i@ is k& with high probability.

More concretely, for a critical value of the placement piabty p* = 0(1“7”), we find that in an interval of
width O(%) aroundp*, the random graplr goes from beind:-connected with arbitrarily small probability to being
k-connected with probability arbitrarily close io Moreover, the probability thad? has no nodes of degree k&
undergoes a comparable transition in a correspondingvaitaroundp*. We state this theorem abokHconnectivity
as follows. First, we writev = n’ where we assume that>> Inn andé < ﬁ. Note that wedo not preclude the
case wheré = o(1).

(1—%5) In n+§ Inlnn+c,

Theorem 1.1 Letk > 1 be a fixed positive integer and let= o . Then
0 c, — —00
lim Pr(G is k-connectefl= { e * ¢, — ¢
Cp — OO0

Where k—2 10\k 2
2k=2(1 — Lg)ke=2

(k- 1)

The proof of this result, which occupies Section 2 of the paeeguires techniques quite different from the analysis
of standard geometric random graphs, due to the line-dftgignstraints. One way to appreciate why this appears
necessary is to consider that, as we vasyhe resulting model interpolates between two well-knadwri,qualitatively
different random graph models. When= 1, so that a node can only see neighboring points, we havessitelation
on a lattice, a well-studied problem that is still not contghg well understood. At the other extreme, when=n
and nodes can see all points in their row and column, it is tasge that the model is equivalent to a purely graph-
theoretic one in which we start with the complete bipartitepd &, ,, and keep each edge with probability Note
that our bounds ow preclude either of these exact extremes, but our analysihiéo*middle region” ofw that we
consider involves ingredients from both extremes, commigitéchniques from “classical” random graph analysis with
the combinatorics of the underlying grid of points.

Ak =

Remark 1.2 The reader might wonder if the constraint > Inn is really necessary. Suppose for example that
w = o(Inn). The expected number of isolated verticés = n?p(1 — p)**. If p = o(1) then Xy — 0 only
whenn?p — 0. If p is bounded from below, then unlgss= 1 — o(1), X, = n?>~°(") and one can show thathp

Xo # 0. Thus the threshold for connectivity is very close to onenvhe= o(Inn) and perhaps therefore somewhat
less interesting.

Remark 1.3 Theorem 1.1 could be strengthened to give a hitting timeivefshere we add random vertices one at
a time. Therwhpthe first vertex that makes the graph have minimum degreil also make the graplk-connected.
We will make some remarks on this version at the end of thd pfaheorem 1.1.



Thepresent work: Further results. We consider the emergence of a giant component in our moaéé here that
sinceG itself hasO(n?p) vertices, a giant component is one widin?p) vertices.

Theorem 1.4

(@) If p = £ wherec > 1 andw — oo thenwhp G contains a component with at lea&p. — p2 — o(1))cn? /w
vertices, wherg, is the unique solution if0, 1) of 1 — z = e~ *.

(b) If p = £ wherec < 1/(4e) andw — oo thenwhpthe largest component i@ has sizeD(Inn).

We also consider the problem of how nodes in such a randormhgrap construct paths between each other,
possessing knowledge of their own coordinates but otherhéwving only local information. We show that whgn
exceeds the threshold for connectivity by a fixed (relagivehall) constant factor — i.ep = C'lnn/w — then a
simple decentralized algorithm allows a given pair of naale’s-distanced to construct, with high probability, a path
of O(d/w + In n) edges while involving only)(d/w + w In n) nodes in the computation. This is nearly optimal, even
with global information, sinc€(d/w) is a simple lower bound on the length of any path between nadigsdistance
d (and hence also a lower bound on the number of nodes who ngedtticipate in the construction of the path).

Theorem 1.5 Letp = C'Inn/w for a sufficently large constaidt andw > C'Inn. There is a decentralized algorithm
that, givens and ¢, with high probability constructs an-t path with O(d(s,t)/w + Inn) edges while involving
O(d(s,t)/w + wlnn) nodes in the computation.

Finally, we consider a basic algorithmic problem in a nondi@m version of the line-of-sight model: given an
input set of nodes, we would like to add a small set of adddimdes so that the full set becomes connected. More
concretely, suppose we are given a set of nodes at p&irts7’, such that the graph ol (defined by visibility with
respect to the range parametgris not connected. We would like to add further nodes, at &'set T, whereY
should be as small as possible subject to the constraintitagraph onX U Y should be connected. We think of
the additional node¥ as “relays” that connect the original nodesXnunder line-of-sight constraints; as a result, we
refer to this as th&elay Placemergroblem.

By considering the graph of mutual visibility, and viewirtgetnodes irt” as Steiner nodes, an instance of Relay
Placement can be easily cast as an instance dfitlie-Weighted Steiner Treeoblem. The general Node-Weighted
Steiner Tree problem is inapproximable to within a factofXfn »), Klein and Ravi [17]. For the class of line-of-
sight networks that we study here, however, we show how ttoéxhe underlying visibility structure to obtain a
constant-factor approximation. In particular, we makeafsegraph-theoretic notion that we catihesivenessvhich
suggests some combinatorial questions of independen¢stte

Theorem 1.6 There is a polynomial-time algorithm that produces a Steget whose total cost is within a factor of
6.2 of optimal.

Relay Placement is clearly related to certain algorithariegallery problems (see e.g. Efrat and Har-Peled [7]
and Efrat, Har-Peled and Mitchell [8] and the VC-dimensiesults in Kalai and Matousek [16] and Valtr [24]), since
there too one is placing nodes in a region subject to vigjhilonstraints. However, the problems considered in the
literature on art-gallery problems have a different focas they are concerned with placing nodes so as to see the
entire region, as opposed to adding Steiner nodes so asate ereonnected visibility graph, as we do here.

A preliminary version of this paper appeared in [10].

2 Connectivity

This section is devoted to the proof of Theorem 1.1. We willaantrate first on the case whetg— ¢ and to avoid
trivialities we will assume that,, = c¢. Thus until further notice, we will assume that

(1-3ilmn+Lmn+ec

p= 2w



The overall outline of the proof is as follows. We start bytfsgidying the distribution of the minimum degree of
G. We then imagine adding nodes in two stages — most of the riadés first stage, and a few final nodes in the
second stage. Now, suppose the grapformed by nodes added in the first stage can be disconnectia loleletion
of some sefS of fewer thank nodes. We argue that with high probability, any two compésidrand K of H — S
come “close” to one another at many disjoint locations ortohes7 — in particular, at each of these locations, there
is some point of the torus that sees nodes in bo#md K. When we then add nodes in the second stage, it is enough
that a node is placed at one of these points that can see hoijooents; and we argue that there are enough such
points that this happens with high probability. We also &htbatwhpthe new vertices do not create any small cuts.

2.1 Minimum degree computation

Proposition 2.1 lim Pr(G contains a vertex of degree k) = 1 — e .

Proof. Let X; denote the number of vertices of degfe€ [ < k. Then observe first that

4w _
E[X] = n2p( l )pl(lp)‘*“ :
4[ l
- n2pl+1l_""e—4wp
2 (1-16)Inn B gl pie2e
2w I' n2(Inn)k
0 [ <k-2
M I=k—-1

Thus the expected number of vertices of degree lessktimasymptotically\;. The rest of the proof is quite standard,
see for example Bollob’as [4]. L&, denote the set of vertices of degree less thamG and letX = |Sy|. Let X"
denote the number of pairs of verticeav € Sy, such thaw, w are within/; distancew of each other. LeX’ denote
the number of vertices i, which are at; distance greater thalw from any other vertex its;,. Then

X <X<X' +X".
Now

8
E[X"] < 16w*n?p? (2‘]‘:) (1—p)5=2k = o(1)

using our upper bound ah ThusX = X’ with high probability.
Now fix a positive integet. Then, wherda); = a(a —1)---(a — t + 1), we compute

k—1 ¢ k—1 t
((TLQ _ 16tw2)p2pi(1 _p)4w—i> <E [(X/)t] < <n2pzpi(1 _ p)4w—i>
i=0 =0

which implies that
lim B [(X')] = A}

n—oo

and soX’ is asymptotically Poisson with mean, which implies the lemmam

2.2 Probabilistic part of proof

We imagine placing nodes at random according to the follgwivo-stage process. We place a node at each point with
probability p; in the first stage. We then independently place a node at ezinhwith probabilityp, in the second
stage. We choose
(1-30)Inn+~Lminn+c— (Inn)~! - Inn

2w )

pP1=

4



andp- so that this is equivalent to the original placement proeé#sprobability p, in which case

1
2wlnn’

For ease of terminology, we say that a nodesisif it was placed in the first stage, and we say that bliseif it is
placed in the second stage at a point not hit by the first slagteld denote the subgraph 6f consisting only of red
nodes.

For each point ifl’, we define its foutarmsto be the four sets ab points that are visible from it in a single
direction (north, south, east, and west). We further partieach army of point z into 10 consecutive segments
ag,ao, ..., a1 Of lengthw/10. A segment is said to beeakif it contains fewer thans% Inn red nodes. Otherwise
we say that istrong An arm is said to benightyif all its segments are strong.

Let & be the event: there exists a red vertex which has ancaom which we can find 000 red vertices, each
having an arm orthogonal @ which is not mighty.

Lemma 2.2 Pr(&) = o(1).

Proof. For a fixed vertex: and armg, the probability that the arm contains a weak segment cambeded by

p2 ~

10 Pr (Bin(w/lo,pl) < % 1nn> < ¢~ (Inn)/400 _ ) —~1/400
So the probability that there is a red node giving ris€ités bounded by

w —
8n2 (100()) p1000n 1000/400 __ 0(1). u

Now let&; be the event: there exists a red vertesf degree less tham In n that has a red neighbar such thatw
has an arm orthogonal tav which is not mighty.
Lemma 2.3 Pr(&) = o(1).
Proof. The probability that? contains such a pair, w is bounded by

Inlnn
n p1 Z ( >p1 1 _p1)4w7t(2n71/4()0)

Inlnn t
< 9y —1/400 Z ( (4+ o elnn) o—2c+o(1)
=o(1) m
Now let&; be the event: there exists a red vertex with at nkost1 red neighbors and at least one blue neighbour.
Lemma 2.4 Pr(&s) = o(1).

Proof. The probability that? contains such a vertaxis bounded by

k—1
4w
n’p E ( ; >pt(1 - )4‘” t(4wp2) ~ 4 \pwpe = o(1). [ |
t=0

Now let&, be the event: there exists a blue vertex with fewer thaed neighbours.
Lemma 2.5 Pr(&4) = o(1).
Proof. The probability thati contains such a vertaxis bounded by
dw—t >\kp2 o
npzz )1 - p1) NT*O(U- u

For the non-probabilistic part of this argument, we willase that none of,, &, &5, &4 hold.



2.3 Non-probabilistic part of proof

For the next part, we assume tha&) > k.

Recall thatH is the subgraph off consisting only of the red nodes. L&tbe an arbitrary set df — 1 red vertices,
and letHg = H — S. Our main goal is to show that iffs has multiple connected components, then with high
probability they will all be linked up by the addition of théule nodes.

Let L be the set of points ifi’ with coordinategs, j), where each ofandj is a multiple of3w. For each connected
componentk’ of Hg, and for each point € L, letvg, denote the node ik that is closest ta: in ¢; distance. We
claim

Lemma 2.6 vk, lies within thew x w box B, centered at:.

Proof. Let a red node beinkif it is not in S. Assume without loss of generality that the painis located at the
origin of the torus, which we denote= 0. Suppose that = vio = (a,b) is N-E of 0 and that it does not lie if,.

v has at least one arm containing a pink nadeT his follows from the non-occurrence 8§. If the degree of is less
thanln Inn then we can use the non-occurrence&gto argue that the two arms af orthogonal tovw are mighty.

If the degree ofv is greater tharn Inn then we can use the non-occurrence€ofto argue that there is a choice of
Inlnn — 2000 w'’s such that the two arms af orthogonal tovw are mighty. Let denote the arm of containing a
w with mighty arms. Note that every segment of a mighty arm aimistat Ieastal—1 In n pink nodes.

Casel: « is the South arm of.

If @ < w/2 then any pink node on is either inBy or closer to0 thanvg,. Similarly, if b > w/2 then any pink
node ona is closer to0 thanvgy. So we can assume that> w/2 > b. Also, if (a,b’) € « then we must have
0 > V' = —b” where we can assume tha " < w — b.

Choose such a pink node, —b") with a mighty West arn. Now choose a pink node = (a’, —b") €  such
that (i) a — o’ € [4w, .5w] and (i) the North army of w is mighty. Now choose a pink node’, c) € ~ such that
|c — b| < .1w. We can make these choices because of the non-occurreficendl the fact tha{{}—1 Inn > 1000 + k.

It follows that|a’| + |¢| < a + b+ .1lw — .4w, contradiction.

Case2a: « is the North arm ob anda > w/2.

Choose a pink nodé, ') € a with a mighty West arn3. Then choose a pink node = (a’,b') € 3 such
that (i) a — o’ € [4w, .5w] and (ii) the South army of w is mighty. Now choose a pink node’, b”) € ~ such that
[b” — b < .1lw. It follows that|a’| + [0”| < a4+ b+ .1lw — .4w, contradiction.

Case 2b: « is the North arm ob anda < w/2.

We must havé > w/2, elsevio € By. Choose a pink nodg, b’) € « with a mighty West arn. Then choose
a pink nodew = (a’,b") € B such that (i) a — a’| < .1w and (ii) the South army of w is mighty.

If |b— /| < .7w then choose a pink node’, b”) € ~ such thafd” — b| € [.9w,w]. It follows that|a’| + || <
a+b+ .lw+ .7Tw — 9w, contradiction. Otherwisgb — V| > .7w. We can choose a pink node= (a/,V") € v
such that the West arm of y is mighty and|)’ — V| > .9w. Choose a pink node = (a”,b”) € § such that
la” — a'| < .1lw and its South arra is mighty. Finally, we note that there exists a pink nade= (a”,b"”’) € ¢ such
that|y” — b"'| € [.5w, .6w]. Then we havéa”| + |V"'| < a+ b+ w + . 1w — 9w + .1w — .5w, contradiction.

The case where is the West arm is dealt with as in Case 1 and the case whisrthe east arm is dealt with as in
Case2.m

Now, letJ and K be two distinct component dfs. Sincev s, andvg, both lie in thew x w box aroundz, there
is some point(J, K, x) that is visible from both of them. We observe that

Lemma 2.7 The points:(J, K, x) andz(J, K, y) are distinct, for distinct points,y € L.

Proof. z(J, K, z) lies in thew x w box aroundr, andz(J, K, y) lies in thew x w box aroundy, and these boxes are
disjoint, sincer andy are at leasBw apart. B

2.4 Finishing the proof

Note that if a node is placed atJ, K, ), then it will be a neighbor both of a point ihand K, and hence and K will
belong to the same componentGh In the second stage of node placement, a blue node will lmeglat each point



z(J, K, z) with probability p.. We should not however forget that we have conditioned oretleatse, &, &3, &4
not occuring and that(G) > k. This accounts for thée** + o(1)) factor in (1) below. By Lemma 2.7, there afgzg
such points for a fixed pair of componentsk’, and so the conditional probability that no blue point iscpldat any
of them is bounded by

(e/\;c +0(1))(1 _pQ)n2/(9w2) < efnz/(Q()w3 Inn) < efn2’35/(201nn). (l)

There are at most? components, since for any fixed pointe L, each component has a node in thex w box
aroundz. Thus, the probability that there exists a Sedf size at most — 1 and componentd, K of Hg, which are
not connected it by a blue vertex is at mostte """ **/(20lnn)p2k=2 — (1) Thus, conditional on there being no
vertices of degreé — 1 or less, if we remove any sétof &k — 1 red vertices, thewhpthe graphHg is connected.
Deleting blue vertices does not affddl; and so if we remove any sstof k — 1 vertices, themwhpthe graphHg. It
follows from the non-occurrence 6}, thatG — S will also be connected.

This finishes the case, — c¢. If ¢, — —oo then one uses the Chebyshev inequality to show that with high
probability there are vertices of degree less thanlf ¢, — oo then with high probability there are no vertices
of degree less thah (the expected number tends to zero), and the argument,for- ¢ implies thatG will be
k-connected with high probability.

This completes the proof of Theorem 1.1.

Remark 2.8 One can prove a hitting time version by modifiying the prodbdiews:

21— % 6)1n n+§ Inlnntinlnlnn)

1. Letmy =n 5 . If we put inm_ random vertices thewhp the resulting graphGz,
has minimum degrele — 1 andO((In1n n)?) vertices of degreé — 1.

2. The vertices of degrde— 1 are all more thanlOw apart in Gg.

3. The graphz; obtained by deleting the vertices/of- 1 will be k-connected. This follows from a minor change
to the proof of Theorem 1.1.

4. Addingm — m_ random vertices results in a grapl, which isk-connected and none,of the new vertices
have degree less than+ 1 when they are added.

These four properties imply that the graptkisonnected at the time the graph has minimum degree

3 TheExistence of a Giant Component: Proof of Theorem 1.4

We now consider the existence ofjmnt component in our model of line-of-sight networks.

(a) To prove this part of the theorem, we first require a lembmauaithe existence of a giant component in the
random graptd = B,, ., , Whereq = d/m. Here we creatéd by including each edge of the complete bipartite
graphk,, ., independently with probability.

Lemma3.1 If d > 1 thenwhp H contains a componedt, with (1 —o(1))pqsm vertices on each side of the partition,
wherep, is the unique solution i110, 1) of 1 — z = e~*. FurthermoreC,, contains(1 — o(1))(2p4 — p2 — o(1))dm
edges.

Proof. We follow the proof of the existence of a giant component vienhing processes as elaborated in Chapters
10.4 and 10.5 of Alon and Spencer [1]. Note that the degreeveftax of H has a distribution which is asymptotically
Poisson with mead and the proof in [1] can easily be adapteddo This will show thatCy, has~ (1 —z4)m vertices

on each side. To get the number of edges, imagine the modeéwieefix the number of edges as~ dm. Suppose
now we put inu — 1 random edges and obtain a giant comporggntvith (1 — o(1))(1 — x4)m vertices on each side.
Now put in theuth random edge. We see that the probability it is not part efgiant component’, is ~ z2. This
shows thatE(C,)| ~ (1 — 22%)m in expectation. By adding two random edges we can estimateatiance and then
use the Chebyshev inequalitm



Now divide the torug" into N = n?/w? sub-squares’, Ss, ..., Sy of sizew x w. Fix a particular sub-squarg and
consider the bipartite grapH; with w 4+ w verticesR; U C; (rows/columns) where there is an edgey) € R; x C;

if the gridpoint ofT" corresponding téz, y) is occupied by a node @¥. Applying Lemma 3.1 withn = w andd = ¢
we see that with probabilityl — o(1)), H; contains a giant componeht with (1 — o(1))(1 — z.)w vertices on each
side and(1 — o(1))(1 — 2?)w? edges. When translated into a subgraplGGofve see that’; induces a connected
subgraph@; with (1 — o(1))(1 — z2)w? vertices. This is because each edgélpfcorresponds to a vertex 6f.

We divide each sub-squaf further into 16w/4 x w/4 sub-squares. We choosegecialsub-squares; 1, . . .,
S; 4. These will either be a1, 2),(2,1), (3,4), (4,3) or at(1,3),(2,4),(3,1), (4,2) where(i, j) denotes the sub-
square in rowi, columnj, 1 < i,j < 4. We then have these two sorts of sub-square alternate dengws and
columns ofI" as in Figure 1.

Each special sub-square is associated with a direction.=f1 then the direction is North. If = 4 then the
direction is South. Ifj = 1 then the direction is West and.if= 4 then the direction is East.

Now whp each of the 4 special sub-squares will contair(l — z.)w/4 useablecolumns (North or South sub-
squares) or rows (East or West sub-squares) that corresperdices of a giant component of the correspondifg
We say that a squar® is goodif H; contains a giant component with (1 — 2?)w? edges and each special sub-square
has~ (1 — x.)w/4 useable rows or columns, depending on its direction.

If S; is good then we choos@ — z.)w/5 random rows or columns from the useable rows or columns di eac
of the four special sub-squares. Suppose fat is the set of rows or columns chosen frdin;. We observe that
conditional onS; being good, the setX; ; are uniformly random and independent of each other.

We are now in a position to usaixed percolation Let £ denote theN x N, N = n/w lattice £ with site
percolationpy = 1 — o(1) and bond percolatiops = 1 — o(1). Here we place a vertex at sités the square; is
good. If two adjacent site®;, H;, say are good then we join them by an edge in the lattice if theviing holds:
Let the adjacent special squares®e andsS;, .. We add the edge iX; , N X, 11 s # 0. If this occurs then there are
a pair of nodes o7, u € G;, v € G, such thatu, v are in the same row or column and are at distafice apart.
HenceG,; andG;; will form part of the same component @.

In this model of percolation the giant cluster will contaimast all of the points — see argument below. We had
the good fortune to get outline proofs, for the case ofiann grid, from two experts on percolatioh:2

For completeness, we include an elementary proof of this fac
Size of the giant: We now argue that if in théV x N toroidal latticeLy we havepy = pg = p = 1—1/y
wherey = y(N) — oo asN — oo thenwhpthe size of the giant cluster in the associated random sajphgt,, is
(1 —0(1))N?2. We can assume that< N?In N for otherwisel, = Ly, whp.

Let A\ = 4!/ and partition  into N2 /\? sub-squares of side Fix such a sub-squargand consider tha — 2
vertex disjoint paths that crossin the E-W direction and are not part of the perimeteSoEach such path occurs in
L, with probability p>*~1 > 1 — 2)/~. Thus the numbeZ of E-W paths thatlo not appear in’,, is dominated by
the binomialB(\, 2A/v). Thus

1/2
2e)\3/2 ) A 1 e
S 56 .

Pr(Z > \/?) < (
gl

Now consider mixed percolation on &iV/\) x (IN/\) lattice where each site corresponds toa A sub-square and
each site and bond are open with probability= 1 — e=7""". We denote this random graph &y. We go from
L, to L' by having a site open for each sub-square in which there deast\ — 2A1/2 — 2 complete paths in both
the E-W and N-S directions. We open a bond between 2 sité$ iiithere is an open bond ig,, which connects 2
completely open paths. So if both of the two ends of a bond’iare open, the bond itself is open with probability
>1—(1- p)A*2A1/2*4 > p;. Observe also that if’ contains a component with/ sites, thenC,, has a component
with > MA(X — 2A1/2 — 2) sites.

1Agoston Pisztora: That there is a cluster of this size fafiéem a simple generalisation of Theorem 1.1 of DeuscheRisztora [6].

2Geoffrey Grimmett: Let the density € (0, 1) of open sites be fixed. Lef, be the set of vertices dB,, (then x n box containing the
origin) that lie in infinite open paths. With probability— o(1) , the largest open clusté?,, of B,, satisfiesCy, ® I, C By, \ Bn—m Where
m = (Inn)2. See the proof of Lemma 2 of [9] particularly (3.5)-(3.6). €Féfore, the density of the largest cluster®f is very close to the
percolation probability(p). The claim then follows once we have tltdp) — 1 asp — 1. This holds by (1.18) of Grimmett [13].



By repeatmg this argument, we obtain a sequence of mixedofaion modelsM; on anN; x N;, N; =
NH;’O A ' i =0,1,..., lattice with bond and site probabilitigs wherep, = p and1 — p;,1 = exp{—(1 —
p;) /%) and); = mln{Nl, (1 — p;)~/3}. Furthermore, the models are coupled so thatif, ; has a component
with M, ,, sites thenM; has a component with?,  ; \; (\; — 2A}/* — 2) sites.
Letio = min{i : N7p; < 1/v}. We see that with probablllty O(1/~) the final modelM;, 1, has all its sites
and bonds open. Hence, with this probabilify, has a component with at least

1/2 )
N2H< 2)\ +2> ZNQ (1_Z%> :NQ(l—O(’}/_l/G))

=0

sites.

It follows thatwhpalmost all of the giants:; will be part of the same component@f This completes the proof
of part (a) of Theorem 1.4.

(b) We first note that an-regular,N-vertex graph contains at madt(er)* 1! trees withk vertices. This is proved
for example in Claim 1 of [11]. Thus the expected numbet-okrtex trees irG is bounded by

n?(4ewp)* 1 = n?(4ec)* 1 = 0(1)
if K > Alnn andA is sufficiently large.

Remark 3.2 Examining the above proof, we see thabifs a sufficiently large constant, then there withp be a
component of siz@(n?), although it will not be so straightforward to put a lower balion its size.

4 Finding Paths Between Nodes: Proof of Theorem 1.5

Thus far, we have considered the existence of paths betwamsnn random line-of-sight networks. In terms of the
motivating applications, it is also interesting to consitthe algorithmic problem faced by a pair of nodeandt trying
to construct a path between them in such a network. We caraidecentralized model in which each node knows
only its own coordinates and those of its neighbor&jrigiven the coordinates @f the nodes must pass a message to
t by forwarding it through a sequence of intermediate nodescdvisider the standard goal in wireless ad-hoc routing:
we wish to construct ag-¢ path with a small number of edges, while consulting a smatilmer of intermediate nodes
[23].

To begin the proof of Theorem 1.5, 18t = n? and letS;, Ss, ..., Sy be the collection of allb x w sub-squares
obtained by choosing consecutive rows and columns. @}, H;, i = 1,2, ..., N be defined similarly to that done
in Section 3. We first observe that

Lemma4.1 (a) With high probabilityG,, Gs, ..., Gy are all connected. (b) With high probability the diameter of
G;isatmostDInn,i=1,2,..., N, whereD is some absolute constant.

Proof. (a) G; is connected iffH; is connected. Iff{; is not connected then then there exist non-empty subsets
K CRy, L CCy,|K|+|L| <wsuchthat U L induces a connected componentfdf. The probability that such
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a pair exists is at most

w\ (w ke bb—1(1 _  \k(w—0)+0(w—k)
S (D)) i)y

(?e)k (a;)f (kkieg)kMsze((k+£)w2u)p

k+£

e2Clnn
2<kH0<w \ XD {C’ln n (1 - %)}
GQClnn>kH

1 <
= Cc/2
Pociri<w N T

= O((Inn)*n=9).

So if C > 3 we can inflate this latter probability estimate #%/w to account for all o5y, Ga, . .., Gy

(b) We concentrate oH. Fix x € Ry andy € C,.

CaselClnn < w!/100,
Let Sy, k=0,1,...,to = [2log,, w]| be the set of vertices at distancérom = in H;. GivensS, S1,. .., So,—1 the
size ofSy, is distributed as the Binomid (w — | So| — |Sa| —. .. —|Sar_2|, 1 — (1 —p)52+-11). GivenSy, S1, . . ., Sax
the size 0fSa; 41 is distributed as the BinomidB(w — |S1| — [S3| — ... — [Sax_1],1 — (1 — p)!%2+]). Suppose we
define the events

& = {18l € [(wp/2)", (2wp)']}, 1< <t

Note that&; implies that _
1S;] = (Ce®MInn)t < W7/10,

Then the Chernoff bounds imply thRi:(—&;) < n~¢/19 and fori > 1,
Pr(=&; | £,j < i) < e~ ClSimalinn/10,
It follows easily now that
Pr(3i <ty: =&) = O(n~ /).
Thus with probabilityl — O(n~¢/11), we have that

[Sual = w13+,

Defining Ty, k = 0,1,...,to = [3log,,w]| be the set of vertices at distankefrom y in H; we see that with

probability 1 — O(n~=/11) we have
[Tiy| = w2400,

After the construction of;,, T},, edges betweeS;, \ Ui<t0 S; andTy, \ UKt0 T; are uncondtioned. Thus,

wi/Bte)

Pr( A an edge (u,v) € Sy, x Tyy) = O(n~ /M) + (1 —p) O(n=C/1,
Thus with probabilityl — O(n~/11) the distance from: toy in H; is o(Inn). ForC > 44 we can inflate the failure
probability byn* to deal with all pairs of vertices in allf;.
Case2 C'lnn = w* for constantl /100 < o < 1/2.
Same argument as above with= [2/(3«)].
Case3Clnn = w* for constantl /2 < o < 1.
Same argument as above with=1. =

The next thing we observe is that we can now assume that adl a@frall vertices are mighty. This is again a simple
calculation, similar to that given for the proof of (2.2).i$lalso allows us to specify the value @fin the expression
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p = Clnn/w: it should be large enough for Lemma 4.1 to hold and for allsaofall nodes to be mighty. (In fact, as
will be clear from the subsequent discussion, we will nedg arweak variant of mightiness in the analysis.)

We now describe the decentralized algorithm to pass a me$sag a nodes to a node (thereby constructing an
s-t path). The algorithm consists of two stages. First, starits, the message is passed between nodes on the row
of s, moving the “short way” around the torus toward the column.dEach node passes the message to its farthest
neighbor on the arm in the correct direction; since all arnesnaighty, the message travels &ndistance of at least
w/2 in each step. This process stops, at a npdehen the message is about to “overshoot” the column #ét this
point, the message is then passed between nodes in the cofumaccording to the same rule. This process stops
when the message is about to overshoot the rotv of

The second stage now begins, with the message at antigg belongs to a subsé&t of sizew x w, such that
B also containg. The message is how propagated by breadth-first searchrodgls withinD Inn steps, but only
including nodes that belong to the g8t Here D is the constant from Lemma 4.1. (Note that by our assumplian t
nodes know the coordinates of themselves and their neighhanode can determine which subset of its neighbors
lie in B and hence should be included in the BFS.) By Lemma 4.1, the hadll be reached by this BFS, since the
subgraph of5 restricted taB is connected and with appropriately short paths.

The bound on the number of edges in the resultistgpath follows directly from the definition of the two stages.
To bound the number of nodes involved in the computation, bseove that(d(s,t)/w) nodes are involved in the
first stage, and the second stage involves at most the tatsberof nodes irB, which isO(pw?) = O(wlnn) with
high probability.

5 Relay Placement: An Approximation Algorithm: Proof of Theorem 1.6

Finally, we discuss an approximation result for the RelacBiment problem: given a set of nodes on a grid, we would
like to add a small number of additional nodes so that thesetlbecomes connected. As before, we are given an
n x n torus of pointsT'. Let K = (T, E) be the graph defined on the pointsifin which we join two points by an
edge if they can see one another. Also, we are given acgdst each pointc € T, and for a sefX C T we define
o(X) =Y e x o

Let X = {x1,29,..., 2} be a given set of points ili. We consider the problem of choosing a set of additional
pointsY = {y1,...,ys} such thatk[X UY] is a connected. We call a Steiner sefor X'; nodes placed at can act
as “relays” for an initial set of terminal nodes placedst Our goal is to find a Steiner set whose total cost as small
as possible.

This is an instance of thidode-Weighted Steiner Trpeoblem in the grapli’, with X as the set of given terminals
andY as the set of additional Steiner nodes whose total cost wetavaminimize. In general, there is &(Inn) hard-
ness of approximation for this problem [17] (and this is rhattin [17] by a corresponding upper bound). However,
the special structure of the graphallows us to efficiently find a Steiner set whose cost is withtonstant factor of
minimum. This is the content of the following theorem, whigé prove in the remainder of the section.

The crucial combinatorial property &f that we use is captured by the following definition. We say éhgraphH
is d-cohesivef every connected subset éf has a spanning tree of maximum degded hat is, given any connected
subsetS of V(H), we can choose a sét of edges, each with both ends$h such that S, F) is a tree of maximum
degree at most.

We note that it is easy to construct graphs that aredrcthesive for any specified;, for example, any graph
containing an induced; 4,1 is notd-cohesive. In fact, although it is not crucial for our purps$iere, we note that
cohesiveness is a combinatorial property=dhat is almost entirely characterized by this particulgetgf obstruction;
if we let x(G) denote the minimurd for which G is d-cohesive and we let(G) denote the maximurafor which G
contains an induced’; ;, then we can prove the following.

Proposition 5.1 ¢(G) < k(G) < »(G) + 1.

Proof. The proof is a direct generalization of a result of Chroba&oiand Novick [5], who proved the special case
that every claw-free graph contains a spanning tree of maximegree three.

The simple argument for the lower bound was already obseabesle: if S is a set of nodes for whict/[S] is
isomorphic toK; ;, thenS is clearly a connected subset@fwith no spanning tree of maximum degree — 1.
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For the upper bound, let us suppose tGatloes not contain an inducef; ,;; we show how to construct a
spanning tree of maximum degree- 1 for the subgraph induced on any connected suBseft G. To do this, we
choose an arbitrary root nodec S, and letA = (S, F) be a spanning tree &f. We claim thatA has maximum
degree + 1. Indeed, suppose that some nades S has degree greater thar- 1 in A; we will supposew # v, as
the case in whiclw = v is strictly analogous. Now, if we considerin the depth-first traversal of rooted at, then
this means thaw has a parent and at least 1 children. By the properties of depth-first search travertbaire can
be no edges among the childrenwf hencew together with { + 1 of) its children form an induced&’ ,1; in G, a
contradiction. It follows that\ has maximum degree+ 1, as desireds

Returning to the line-of-sight graphi, a direct application of Proposition 5.1 implies thétis 5-cohesive. With
somewhat more care, we can show

Lemmab5.2 The graphK is 4-cohesive.

Proof. A direct application of Proposition 5.1 implies that is 5-cohesive, but we can do better via the following
argument. For each edge éf, define itslengthto be the number of rows or columns Bfthat separate its ends.

Now, consider an arbitrary connected sulisef i, and let(S, F') be a spanning tree ¢f whose total edge length is

minimum.

We claim that the maximum degree , F) is four. For suppose not; then some nede S has degree at least
five, and hence there are two nodesw € S that lie on the same arm af and for which(u, v) and(u, w) are both
edges inF'. In other wordsy, v, w lie in the same row or column &, in this order, and: andw are close enough to
see one another. It follows that, w) is also an edge oK. But now (S, F U {(v,w)} — {(u,w)} is a spanning tree
of S whose total length is strictly less than that(6f F'), a contradiction.m

We now describe the approximation algorithm and its ansly$\e first define weights on the edgesiofas
follows. First, we say that th& -reduced cost;X of a nodev is equal to0 if v € X, and equal ta:, otherwise.
We definec® (Y') = 3=,y ¢, For each edge = (v,w) of K, we define itsweightw, to bemax(c;’, ¢;x ). For a
subgraph\ of K, letw(A) denote its total edge weight.

Now, let Y* be a Steiner set foX of minimum cost, and lef\* be a Steiner tree foX of minimum total
edge weight. (Note that the Steiner nodesAdéfmay be different fromy™.) The 4-cohesiveness oK implies a

corresponding gap af between the cost of the optimal Steiner Bétand the weight of the optimal Steiner traé.
Lemmab5.3 w(A*) < 4c(Y™).

Proof. SinceX UY* is a connected subset &f, Lemma 5.2 implies that it has a spanning theef maximum degree
four. By the definition of the edge weights, each edge (v, w) of A has the property that at least one of its ends has
an X -reduced cost that is at least as largevasWe charge the weight afto this end.

Each node inX U Y* is charged for the cost of at most four edges, and haride < 4cX (X UY™) = 4¢(Y™).
SinceA is a Steiner tree foX, andA* is the Steiner tree fak of minimum total edge weight, we also hawg¢A*) <

w(A), completing the proof.m

A Steiner tree whose edge weight is within a constant fagtgr1.55 of optimal can be computed in polynomial
time via an algorithm from Robins and Zelikovsky [22]. LEtbe a Steiner tree fak computed using this algorithm.
LetY” be the Steiner nodes d&f. By charging the costs of nodes¥fi to the weights of distinct incident edgesAn,
we have

Lemma5.4 c(Y') < w(A').

Proof. We rootA’ at a node inX, and we charge the cost of each nodé'into the incident edge leading toward
the root in the rooted version @f . The cost of eacly € Y’ is thus charged to a distinct edggy) in A’, and by the
definition of the edge weights, we havg < w,(,). B

Finally, we useY” as our Steiner set fak. Using Lemma 5.3 and Lemma 5.4, together with the approximat
guarantee for the edge weight&f, we obtain a bound ofy < 6.2 on¢(Y”) relative to the optimuna(Y™):

oY) < w(A') < yw(A%) < dye(Y™).
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