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Abstract

We consider a random instance Im = Im,n,k of k-SAT with n variables and m clauses, where
k = k(n) satisfies k − log2 n → ∞. Let m = 2k(n ln 2 + c) for an absolute constant c. We prove
that

lim
n→∞

Pr(Im is satisfiable) = 1− e−e−c

1 Introduction

An instance of k-SAT is defined by a set of variables, V = {x1, x2, . . . , xn} and a set of clauses
C1, C2, . . . , Cm. We will let clause Ci be a sequence (λi,1, λi,2, . . . , λi,k) where each literal λi,l is a
member of L = V ∪ V̄ where V̄ = {x̄1, x̄2, . . . , x̄n}. In our random model, each λi,l is chosen indepen-
dently and uniformly from L.1 We denote the resulting random instance by Im = Im,n,k.

Random k-SAT has been well studied, to say the least, see the references in [6]. If k = 2 then it is known
that there is a satisfiability threshold at aroundm = n. More precisely, if ε > 0 is fixed and I is a random
instance of 2-SAT then

lim
n→∞

Pr(Im,n,2 is satisfiable) =

{
1 m ≤ (1− ε)n
0 m ≥ (1 + ε)n

Thus random 2-SAT is now pretty much understood.

For k ≥ 3 the story is very different. It is now known that a threshold for satisfiability exists in some
(not completely satisfactory) sense, Friedgut [5]. There has been considerable work on trying to find
estimates for this threshold in the case k = 3, see the references in [6]. Currently the best lower bound
for the threshold is 3.52, due to Hajiaghayi and Sorkin [7] and Kaporis, Kirousis, and Lalas [8]. Upper
∗Supported by DFG COJ 646.
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1We are aware that this allows clauses to have repeated literals or instances of x, x̄. The focus of the paper is on k = O(lnn),

although the main result is valid for larger k. Thus most clauses will not have repeated clauses or contain a pair x, x̄.
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bounds have been pursued with the same vigour. Currently the best upper bound for the threshold is
4.506 due to Dubois, Boufkhad and Mandler [4].

Building upon Achlioptas and Moore [1], Achlioptas and Peres [3] made a considerable breakthrough for
k ≥ 4. Using a sophisticated secnd moment argument, they showed that ifm ≤ (2k ln 2− tk)n then whp
a random instance of k-SAT Im,n,k is satifiable, where tk = O(k). Since a simple first moment argument
shows that Im,n,k is unsatisfiable if m > (2k ln 2 + o(1))n, they have obtained an asymptotically tight
estimate of the threshold for satisfiability when k is a large constant.

An earlier paper by Frieze and Wormald [6] showed the following: Suppose ω = k − log2 n→∞. Let

m0 = − n ln 2

ln(1− 2−k)
= 2k(n ln 2 +O(2−k)). (1)

so that 2n
(
1− 1

2k

)m0
= 1 and let ε = ε(n) > 0 be such that εn →∞. Let Im be a random instance of

k-SAT with n variables and m clauses. Then

lim
n→∞

Pr(Im is satisfiable) =

{
1 m ≤ (1− ε)m0

0 m ≥ (1 + ε)m0.
(2)

The aim of this short note is to tighten (2) and prove the following.

Theorem 1. Suppose ω = k − log2 n → ∞ but ω = o(lnn). Let m = 2k(n ln 2 + c) for an absolute
constant c. Then

lim
n→∞

Pr(Im is satisfiable) = 1− e−e
−c

.

Theorems such as this are common in random graphs and usually indicate that the threshold for a certain
property P1 depends on the occurrence of some much simpler property P2, a classic example being the
case where P1 is Hamiltonicity and P2 is minimum degree at least two. Here there does not seem to be
a good candidate for P2.

2 Proof of Theorem 1

Let Xm = X(Im) denote the number of satisfying assignments for instance Im. Suppose that k =
log2 n + ω. Let m0 ∼ 2kn ln 2 be as in (1) and m1 = m0 − 2kγ, where γ = lnω. The following
results can be deduced from the calculations in [6]: If σ1, σ2 are two assignments to the variables V , then
h(σ1, σ2) is the number of indices i for which σ1(i) 6= σ2(i) (i.e., the Hamming distance of σ1 and σ2).

P1 Xm1
∼ E(Xm1

) ∼ 2n(1− 2−k)m1 = eγ whp.

P2 Let Zt denote the number of pairs of satisfying assignments σ1, σ2 for which h(σ1, σ2) = t. Then
whp Zt = 0 for 0 < t < 0.49n.

Because these properties are not explicitly spelled out in [6], in Section 3 we indicate briefly how they
can be demonstrated using the arguments in this reference. We defer their verification until Section 3 and
now show how they can be used to prove Theorem 1.

We generate our instance Im by first generating Im1 and then adding the m −m1 random clauses J =
{C1, C2, . . . , Cm−m1}. Suppose that in this case Im1 has satisfying assignments {σ1, σ2, . . . , σr}, where
by P1 we can assume that r ∼ eγ . Now add the random clauses J and let Y = |{i : σi satisfies J}|. We
show that for any fixed positive integer t,

E(Y(t)) ∼ e−ct, (3)
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where Y(t) =
∏t−1
j=0(Y − j) signifies the t’th falling factorial. Thus by standard results, Y is asymptoti-

cally Poisson with mean e−c and Theorem 1 follows.

Proof of (3): Since each of the clauses C1, . . . , Cm−m1 is chosen independently of all others, we have

E(Y(t)) = r(t)Pr(σ1, . . . , σt satisfy J) = r(t)Pr(σ1, . . . , σt satisfy C1)m−m1 . (4)

Now

Pr(σ1, . . . , σt satisfy C1) = 1− Pr(∃1 ≤ i ≤ t : σi does not satisfy C1),

and

Pr(∃1 ≤ i ≤ t : σi does not satisfy C1) ≤ tPr(σ1 does not satisfy C1) =
t

2k
.

On the other hand, by inclusion/exclusion

Pr(∃1 ≤ i ≤ t : σi does not satisfy C1)

≥ tPr(σ1 does not satisfy C1)−
∑

1≤i<j≤t

Pr(σi, σj do not satisfy C1).

We then write

Pr(σi, σj do not satisfy C1)

= Pr(σi, σj do not satisfy C1 | P2)Pr(P2) + Pr(σi, σj do not satisfy C1 | ¬P2)Pr(¬P2)

=

(
n− τ

2n

)k
+ o(1) ≤ 1

3k

Finally, going back to (4), we obtain

r(t)

(
1− t

2k

)m−m1

≤ E(Y(t)) ≤ r(t)
(

1− t

2k
+
t2

3k

)m−m1

.

Since t2(m−m1) = O(m−m1) = O(ω2k) = o(3k), we get

E(Y(t)) ∼ r(t)
(

1− t

2k

)m−m1

∼ etγ
(
1− 2−k

)t(m−m1) ∼ e−ct,

thereby proving (3). 2

3 Verification of P1 and P2

P1: Let us first compute the expected number E(Xm1) of satisfying assignments of Im1 . For any fixed
assignment the probability that a single random clause over k distinct variables is satisfied equals 1−2−k

(because there are 2k ways to assign values to the k variables occurring in the clause, out of which 2k−1
cause the clause to be satisfied). Since the m1 clauses are chosen independently, and as there are 2n

assignments in total, we conclude that E(Xm1) ∼ 2n(1 − 2−k)m1 . Furthermore, in [6, Section 2] it is
shown that E(X2

m1
) ∼ E(Xm1)2 and so P1 follows from the Chebyshev inequality.

P2: If σ1, σ2 are two assigments at Hamming distance h(σ1, σ2) = t, then the probability that either
σ1 or σ2 does not satisfy a random clause C1 is 21−k − 2−k(1 − t/n)k. For the probability that one
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assignment σi does not satisfy C1 is 2−k (i = 1, 2). Moreover, if both σ1 and σ2 violate C1, then C1 is
false under σ1, which occurs with probability 2−k, and in addition σ1 and σ2 assign the same values to
all the variables in C1, which happens with probability (1 − t/n)k. Consequently, the expected number
of satisfying assignment pairs σ1, σ2 at Hamming distance t in Im1

is

F (t) = E(Zt) = 2n
(
n

t

)
(1− 21−k + 2−k(1− t/n)k)m1

(cf. [6, eq. (5)]). Setting ρ = m1/n = 2k(ln 2 − γ/n) + O(1/n), τ = t/n and taking logarithms, we
obtain

f(τ) = n−1 lnF (t)

≤ ln 2− τ ln τ − (1− τ) ln(1− τ) + ρ ln(1− 21−k + 2−k(1− τ)k) +O(τ/n)

≤ ln 2− τ ln τ − (1− τ) ln(1− τ)− 2−kρ(2− (1− τ)k) +O(τ/n)

= ln 2− τ ln τ − (1− τ) ln(1− τ)− (ln 2− γ/n)(2− (1− τ)k) +O((τ + 2−k)/n). (5)

To show that
∑

1≤t≤0.49n F (t) = o(1), we consider three cases:

Case 1: n−1 ≤ τ ≤ ln−1.1 n. Since (1 − τ)k = 1 − kτ + O(k2τ2), −(1 − τ) ln(1 − τ) ≤ τ , and
k ln 2 = lnn+ ω ln 2, we obtain via (5),

f(τ) ≤ τ(1− ln τ)− kτ ln 2(1−O(kτ)) + 2γ/n

≤ τ (1 + lnn− (lnn+ ω ln 2) + o(1))

≤ −τω/2.

Consequently,∑
1≤t≤n ln−1.1 n

F (t) =
∑

1≤t≤n ln−1.1 n

exp(nf(t/n)) ≤
∑

1≤t≤n ln−1.1 n

exp(−ωt/2) = o(1). (6)

Case 2: ln−1.1 n < τ ≤ k−1 ln lnn. We have, for large n,

−τ ln τ − (1− τ) ln(1− τ) ≤ τ(1− ln τ) ≤ (1 + ln k) ln lnn

k
≤ k− 1

2 ≤ ln−
1
2 n.

On the other hand, for large n,

(1− τ)k ≤ exp(−kτ) ≤ exp(−k ln−1.1 n) ≤ 1− ln−0.1 n.

Thus, from (5),

f(τ) ≤ ln 2 + ln−
1
2 n− ln 2− ln 2

ln0.1 n
≤ −1

2
ln−0.1 n.

Hence, if n ln−1.1 n < t ≤ nk−1 ln lnn, then F (t) ≤ exp(− 1
2n ln−0.1 n), which implies∑

n ln−1.1 n<t≤nk−1 ln lnn

F (t) = o(1). (7)

Case 3: k−1 ln lnn < τ ≤ 0.49. Since τ � k−1, we have (1− τ)k = o(1), whence

(ln 2− γ/n)(2− (1− τ)k) ∼ 2 ln 2.

Furthermore, as the entropy function τ 7→ −τ ln τ − (1− τ) ln(1− τ) is increasing on [0, 12 ], we
have

ln 2− τ ln τ − (1− τ) ln(1− τ) ≤ ln 2− 0.49 ln(0.49)− 0.51 ln(0.51) < 1.9998 ln 2.
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Hence, f(τ) ≤ −0.0001. Therefore, F (t) ≤ exp(−0.0001n), and thus∑
nk−1 ln lnn<τ≤0.49n

F (t) = o(1). (8)

Combining (6)–(8), we conclude that
∑

1≤t≤0.49n F (t) = o(1). Thus, whp Zt = 0 for all 1 ≤ t ≤ 0.49.

4 Conclusion

It is instructive to compare the k-SAT problem with k > log2 n + ω, which we have studied in the
present paper, with the case of constant k. We have shown that for k > log2 n + ω in the regime
m/n − 2kn ln 2 = Θ(2k) the number of satisfying assignments is asymptotically Poisson. The basic
reason is that the mutual Hamming distance of any two satisfying assignments is about n/2 (cf. property
P2). Hence, the set of all satisfying assignments consists of isolated points in the Hamming cube, which
are mutually far apart. By contrast, in the case of constant k in the near-threshold regime the set of
satisfying assignments seems to consist of larger “cluster regions” (cf. Achlioptas and Ricci-Tersenghi [2]
and Krzakala, Montanari, Ricci-Tersenghi, G. Semerjian, and L. Zdeborova [9]).

In Theorem 1 we assume that ω = k − log2 n = o(lnn). While this assumption eases some of the
computations, the result (and the proof technique) can be extended to larger values of k. Nevertheless,
the case k < log2 n appears to us to be a more interesting problem.
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