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0 Introduction

This paper is a contribution to the theory of random graphs (see
Bollobds [4]). Thanks to the efforts of a great many people, including
Pésa [13], Korshunov [12], Komlés and Szemerédi [11] and Bollob4s
[2], the threshold function of a Hamilton cycle is known to be
in(logn+loglogn+w(n)), where w(n) — .

In fact, Bollobas [3] showed that almost every random graph process
is such that the hitting time of minimal degree 2 is equal to the hitting
time of a Hamilton cycle. Thus if at time 0 we start with the empty
graph with vertex set [n] = {1,2,...,n} and at time ¢, 1 <t < N = (3),
we add the ¢-th edge at random, then in almost every case it is true that
if we stop as soon as the minimal degree becomes 2, the graph at hand
is Hamiltonian. Since, trivially, a graph of minimal degree less than 2 is
not Hamiltonian, this means that the primary obstruction to a Hamilton
cycle is the existence of a vertex of degree less than 2. It is a classical
result of ErdGs and Rényi [7] that the threshold function of the minimal
degree being at least 2 is 3n(logn+loglogn+w(n)), where w(n) — o,
so, in particular, the threshold function of a Hamilton cycle is also
in(logn+loglogn+w(n)).

A simpler result in the vein of the results above, proved by Erdés and
Rényi [8], is that the primary obstruction to a matching (assuming that
n, the number of vertices, is even) is the existence of an isolated vertex.
In particular, having a matching has the same threshold function as hav-
ing minimal degree 1, namely 3n(logn+w(n)), where w(n) — .
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Bollobéas & Frieze [6] studied the secondary obstructions to a match-
ing in a graph of even order. If we have a condition on the minimal
degree being at least 1 then the threshold function goes down to about
half the original one: n(3logn+loglogn+w(n)), where w(n) — o, the
main secondary obstruction being the existence of two vertices of degree
1 having a common neighbour.

Our main aim in this paper is the study of secondary obstructions to a
Hamilton cycle. If we condition on the minimal degree being at least 2
then what is the threshold function of a Hamilton cycle and what is the
crucial obstruction to a Hamilton cycle? We shall show that the secon-
dary obstruction is a 2-spider: three vertices of degree 2 having a com-
mon neighbour; the new threshold function is

in(3logn+2loglogn+w(n)),  where w(n) — o.

In fact, we shall study the secondary obstructions to |3k| edge-disjoint
Hamilton cycles and k—2|3k| matchings, the obvious primary obstruc-
tion being the existence of a vertex of degree less than k. These turn
out to be k-spiders: k+1 vertices of degree k having a common neigh-
bour.

1 Generating a random graph of minimal degree at least k

For a detailed study of the standard models of random graphs we refer
the reader to [4]. Here we shall concern ourselves with a natural model
which has rarely been studied because of the technical difficulties
involved. Given natural numbers n, m and k, let 4(n,m;8 = k) be the
set of all graphs with vertex set [n] = {1,2,...,n} having m edges and
minimal degree at least k. Let us turn %(n,m;8 = k) into a probability
space by giving all members of it the same probability. In this paper we
shall study this probability space, but as the space itself is not amenable
to direct investigation, we shall generate the members of 4(n,m;8 = k)
in a rather roundabout way.

We shall need a probability space rather close to %(n,m;é = k): the
space M$(n,m;8 = k) consisting of all multigraphs on [n] with m edges
and loops, having minimal degree at least k, with all members of this
set equiprobable.

For natural numbers s and ¢, let [s]* be the set of all s* sequences of
length ¢ with the terms taken from the set [s] = {1,2,...,s}. Consider
[s]’ as a probability space in which any two points (i.e., sequences) have
the same probability, namely s~'. The space [s]’ has the following
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intuitive interpretation which we shall use in the sequel. Put ¢ distin-
guishable balls, say by, b,,...,b, into s boxes, with probability 1/s of
putting a ball into any of the boxes. Every arrangement corresponds to
a sequence of length ¢: if b; goes into the i-th box then set x; = i. Then
the sequence (xq,x,,...,x,) is a random element of the space [s]".

The degree of a number i in a sequence X = (x1,%2,...,x,) € [s],
denoted by dx(i), is the number of times i occurs in the sequence:
dx(i) = |{j: x; = i}|. Thus dx(i) is the number of balls in the i-th box.
The minimal degree of X is 8(X) = min{dx(i): i € [s]}. Similarly the
maximal degree of X is A(X) = max{dx(i): i € [s]}.

Let [n]|8=k]' = {X € [n]": 8(X) = k} and consider this set as a
probability space consisting of equiprobable elements. This space is
much less pleasant than [s]’ but it is not very far from Yn,m;é6 = k),
the probability space we intend to study. Indeed for Y =
(Y1,¥25---,31) € [n]8 = k]’ (I even) we take the multigraph with vertex
set [n] and edge set {y;y,,y3ys,...,y,-1y;}. Ignoring the loops and
replacing multiple edges by simple edges, we obtain a graph with vertex
set [n]. Conditional on this graph having precisely m edges and
minimal degree at least k, as we shall see, we obtain exactly a random
element of §(n,m;é6 = k).

Let us see then how we can pass from [s]’ to [n |8 = k].. For
X € [s]’, let

UX) = UX,k) = {i € [s]: dx(i) = k}
= {il,i2,...,in},

where i} < i, < --- <i,. Omit the terms of X not belonging to*U and
replace i, by r. Let p(X) be the sequence obtained in this way; call
p(X) the reduced sequence. By construction, p(X) € [n |6 = k]' for
some /. We call n the order and [ the length of the reduced sequence.
For example, if s=7, ¢t = 16 and k = 2 then from

X =4,7,1,5,6,7,2,7,1,4,7,2,3,5,7,4)
we first obtain
4,7,1,5,7,2,7,1,4,7,2,5,7,4),
as UX) = {1,2,4,5,7}, and then
p(X) = (3,5,1,4,5,2,5,1,3,5,2,4,5,3) € [5]| 8 = 2]*.

Let us use the reduced sequence p(X) = (y;,y,,...,y;) € [n|6 = k]’
to construct a multigraph MG(X, k) as follows: the vertex set is [n] and
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the edge set is {y1¥2,Y3V4,---,Yr—1Yr}, where I' = 2|5l|. Finally, let
G(X, k) be the graph obtained from MG(X, k) by deleting the loops and
replacing the multiple edges by simple edges. Let us write v(X) and
I(X) for the order and length of p(X), let e,,(X) = |3/(X)] be the
number of edges and loops of MG(X, k) and let e(X) be the number of
edges of G(X,k). Note that the number of vertices of G(X,k) (and
MG(X, k)) is also v(X).

For Y€ [n|6=k]' write P(p(X) =Y) = P(X € [s]': p(X) = Y),
with the probability taken in [s].

Lemma 1 Let Y;,Y, € [n|6 = k]'. Then
P(p(X) = Y1) = P(p(X) = 1,).

Proof Let YE [n|8=k]. In how many ways can we choose a
sequence X € [s]" satisfying p(X) = Y? The set U(X) can be chosen in
(x) ways and the set W(X) = {j: x; € U} can be chosen in (;) ways.
Having chosen U(X) and W(X), we have fixed / terms of the sequence
X. The remaining ¢t—/ terms come from a set of s—n elements, with no
element occuring more than k—1 times. Hence P(X € [s]': p(X) = Y)
does not depend on Y, provided Y € [n |8 = k]'. O

Lemma 1 states that conditional on v(X) =n and I(X) =1, all
sequences in [z |8 = k]’ are equally likely to arise as p(X). A similar
assertion holds for G(X, k) and 4(n,m;é = k).

Lemma 2 If G{,G, € 4(n,m;é = k) then
P(G(X,k) = G) = P(G(X, k) = Gy),
with the probabilities taken in [s]".

Proof Fix an ordering of [n]®, the set of possible edges, say take the
lex order: 12, 13, ..., 1n, 23,24, ...,2n,34, ..., (n—1)n.

Pick two sequences of non-negative integers (x;)1" and (v;)7, such that
pj = 1forevery j and my = u+v < 3t, where p = Jp; and v = J ;.

Given a graph G € 4(n,m;é = k), let ¢(G) be the multigraph
obtained from G by taking the j-th edge with multiplicity u; and adding
v; loops at vertex i. All we have to check is that the number of
sequences X for which MG(X, k) = ¢(G) is independent of G.

Suppose that MG(X, k) = ¢(G). The multigraph ¢(G) has m; edges
and loops, so the set of edges and loops can be ordered in

m
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ways; furthermore, the edges can be oriented in 2* ways. The list of
oriented edges and unoriented loops determines the first 2m; terms of
the reduced sequence p(X). If p(X) has more than 2m; terms then it
has precisely 2m;+1 terms, giving us n choices for the last term. By
Lemma 1, this shows that the number of sequences X € [s]’ for which
MG(X, k) = ¢(G) is independent of G. O

It is easily seen that Lemma 2 does not extend to MG(X,k) and
M$(n,m;8 = k). However, the proof of Lemma 2 implies a variant of
it for multigraphs with given sequences (;)7" and (v;)}.

Our main problem in investigating the space 9(n,m;é = k) is that,
although for a given space [s]’ there is a pair (n,m) such that
P(v(X) = n and e(X) = m) is rather large (in the sense that it is much
larger than the average though still close to 0), we cannot pinpoint the
exact dependence of a pair (n,m) on (s,f). As we cannot come close to
determining this exact dependence, we cannot find suitable pairs
(n,m) = (n,m(n)) (n = 1,2,...,) which are reached with not too small
a probability from a pair (s,8) = (s(n),#(n)). To overcome this
difficulty, we shall nest the original models [s]’ in such a way that a
small change in the parameters (s,?) yields only a small change in the
distribution of (v(X),e(X)). Then we shall locate rather crudely the
peak of this distribution and shall show that if (s,?) is varied suitably
then for some choice of (s,7) we must hit our preselected pair (1, m)
with a reasonable probability.

Let 3, be the set of all s! sequences of natural numbers a =
(a1,a,,...,a) of length s such that a; < i for every i. Consider 3, as a
probability space by giving all sequences the same probability, 1/s!.
Given a € 3 define B(a) = (by,...,b,) by setting b; = a; = 1 and, hav-
ing defined b,,...,b; fori <s,

b _ bi ifai+1$i,
HLTi+ ey, =i+l

It is easily checked that if 1 < A < i then
P(b;=h) = P(b; = h lbi+1 =i+t1, b4 = Ciypy ..., by =¢5) =
and
P(bi=bi_1|b[$i—1) = 1. (2)

To see this, note that P(b; = i) = P(a; = i) = 1/i and, by induction on
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i, for h < i—1 we have
1

7

i1

P(bl=h) =P(a,$t—1)P(b,_1=h)= i

1
i—1

The probability space 3{ = 3 x---x3 allows us to pick a random
sequence from each member of a family of probability spaces [i]’; this
will enable us to pass from a random sequence in a space [}/ to a ran-
dom sequence in a space [iy]”°. Indeed, for

A=(@",a?,... 49 €3¢, 1<i<sy, 1

define

N
N

X(’) ]) = XA(i’ ]) = (x(i7 1)9x(i7 2)7 RN ’x(i) ]))1
where x(i, ) is defined by

B@®) = (x(1,0),x@2,0),...,x(s,D).

Since, by relation (1), for fixed i and /, the random variable x(i,/) is
uniformly distributed on [{], we have the following lemma.

Lemma 3 Let 1 <i<sand 1< j<t. Then the map 3{— [il’, given
by A — X (i, ), is a measure-preserving map onto [i]’.

There is another, more intuitive, way of describing a random array
(X4(i,j)). This time we start with the only element of [1]’, namely
(1,1,...,1), we change it randomly into an element of [2]‘, then apply
another random transformation to obtain an element of [3]‘, and so on.
What are these random transformations we apply? Having got a ran-
dom element X(i,#) of [i]', say (x(i,1),x(,2),...,x@,1), let

x(i,j)  with probability Fi‘i ,
x(i+1,j) = 1
g
Then X(i+1,f) = (x(i+1,1),x(i+1,2),...,x(i+1,7)) is our random ele-
ment of [i+1]’. For 1 < j <t we take

X@, ) = (x(,1),x3,2),...,xG,)).

Relations (1) and (2) imply that the random array {X(i,j):1 <
i <s,1=<j=<{ obtained in this way has the same distribution as the
array {X,(i,j): 1 <i<s, 1< j<1t, with A chosen from 3.

Lemma 4 Let A = a©,a?,....a®) € 3!. Then the random variables
B@? = (x(1,),x@2,),...,x(s,j)), 1<j<t, are independent and,

i+1 with probability
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conditional on x(1,j),x(2,j),...,x(i—1,j),

1
i with probability 7
x(i,j) = 1
x(i—1,j) with probability 1— 7
Let now 1 < m < N be a natural number satisfying
m = m(n) = %n(ﬁ logn+kloglogn+c) +0(1),

where k is a fixed natural number and c is a real constant. Further-
more, set

so=n, s = n+np*/E+D,

to=2m, t=2m+n*E D
Strictly speaking, we should set

s=n+[n* V] and ¢t =2m+ |nk/k*D)

but, in order to avoid inessential, purely formal complications,

throughout this paper we shall dispense with the integer signs. In addi-

tion, all our inequalities are claimed to hold if n is sufficiently large.
Given a sequence X = (x1,%z,...,%;) € [i]/, set

D(X) = |{h: dx(h) = 1|,

that is, denote by D,(X) the number of boxes containing precisely /
balls.
Lemma 5 Set

1 —c -k k/(k+1)< 1 )
—_— +
minfkl IGGk+ 1) dogn)n “iegn) ©

and let Ey C 3] be the event

D[=

{A€3!: D(X4G,j)) <D forall0<sI<t sy<is<sandfy<j<it.
Then
P(Ey) = o(n~'o8m),

Proof The bound above is tighter than needed immediately, but is
important later. Fix i and j (so <i <+, t{y < j <) and, for simplicity,
write d = D, and let A = (logn)>. The (generalized) Markov inequality
implies
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P[D(X4(, /) > d]

[(D:(XA(z 1)))] |
) ()(10*( ) ( —%)]_:I
= 124]

N ——— (logn)' % k/(k”)l{l 0(loglogn)]’ '
(k+1) I logn

(
-
-liwm

—A
<1+ —7—]| .
(1 2\/logn)
Since we have fewer than n* choices for the triple (/,i,j), the assertion
follows. O

Lemma 6 Almost every A € 3 is such that
em(XA(i9 ])) - e(XA(i’ ])) < 8(10g n)4

foralli,j,sp<i<sandfy<jst.

The proof of Lemma 6 is deferred to the next section as it relies upon
concepts developed in that section.

Lemmas 5 and 6 enable us to show that as we vary i and j, the func-
tions v(X4(i,))), e(Xa(i,))) and e,(X4(,j)) vary in a more or less
predictable way.

Lemma 7 Let the maps 3! — [i)/, given by A — X(i, j) = X4(i, j), be as
before. Then almost every A is such that if sy<i<s and ty<j<
then

v(X(s0,))) < n < v(XGs,}))), 4
en(X(i,tp)) < m < e(X(, 1)), )
|F(XG, j+1) - f(XG, )| < 9Cogn)*, 6
|fF(XG+1, ) - F(XG, )| < 9(logn)*, ™

forf=v,eande,.

Proof Let E; C 3/ be the event that E, (see Lemma 5) holds and so
does the conclusion of Lemma 6. We have to show that the probability
of A € E, not satisfying all the inequalities (4), (5), (6) and (7) tends to
0Oasn— o,
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Note that

b(XG, ) = i - fg: Di(XG, ) ®

and
en(XG, ) = B(] - ij ID,(Xa,j)))J . ©)

Since for A € E, we have

0 < D(XG,j)) <D, < (IfeT_lc),(logn)l_"nk/(k”) (10)

and
0 < e, (XG, )) ~e(XG, )) < 8logn)* (11)

for all i and j (5o <i<s, ) < j=<1t), equations (8) and (9) imply (4)
and (5).

Let us turn to the proof of (6) and (7). When we add the (j+1)-th
ball, there is precisely one box whose contents changes, namely it has
one more ball. Hence

0 < v(X(G,j+1)-v(XGj)) <1 (12)
and
0 < e,(X(i, j+1))—e,(XG, /) < 3k+1). (13)

Inequalities (11), (12) and (13) imply (6).
In order to prove some analogous inequalities about X(i+1,j) and
X(, j), we shall make use of Lemma 4. Given

k+1
S ID, = O((logn) n*/*+D)
=0

elements of X(i,j), the probability that when passing to X(i+1,)) we
change at least 2k +1 of them (into i+1) is

0((nk/(k+1) logn)2k+1)n —-2k-1 _ O(H—Zk/(k+1)).

Since for sp <i <+ and f, < j < t we have about n%/**1 choices for
(i, )), almost every A € E; is such that at most 2k of the balls belonging
to boxes with at most k+1 balls are changed at each stage X,(i,j) —
X,(+1,)).

Similarly, the probability that, given Dy,; = O((logn)'n*/**V)
groups of k+1! = k+2 balls each, we change at least /+1 in some group
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is at most

k+0\ _,_ N
Dk+l(1+1 n~'"1 = O((logn)'n*/%+Vp~1-1)

- O(n—l/(kﬂ)[lig_’l]')
n

Hence, summing these inequalities for / = 2, we see that almost every

A € E; is such that, when changing X,(i,j) into X4(i+1,j), no box

with at least k+2 balls is reduced to a box with fewer than k balls.
Consequently, almost every A € E; is such that

k-1 k-1
0=< ¥ DI(XG+1,))) — 3 D(XG,j)) <2k+1
=0 =0

and
k—1 k-1
=2k < 3 ID(X(i+1,))) — X ID(XG,))) < 2k(k—1)+k—1 < 2k>.
=0 =0

The additional terms 1 and k—1 arise because it may happen that the
(i+1)-th box contains at most k—1 balls. Hence

—2k < v(X(i+1,)))-v(XG,)) s 1 (14)
and
—k? < e, (X(i+1,))) —e,(XG,j) < k. (15)
Inequalities (11), (14) and (15) imply inequality (7). O

Lemma 8 Let n, m, sy, s, to and t be as before and set L =

L(n) = 9(logn)*.

(a) There exist i, j, n' and m' with |n—n'| <L, |m-m'|<0L,
soSis<sandty< j<tsuch that

Plv(X(,)) = n' and e, (X, ))) = m'] > 103(log n) ~8p ~2K/k+D)

(b) There exist i, j, n" and m" with |n—n"| <L, |m-m"| <L,
So<i<sandty<j<tsuch that

P[v(X(,j)) = n" and e(X(i, j)) = m"] > 10~ 3(logn) ~8p ~2K/k+D,

Proof (a) Let E, C 3! be the set of A’s satisfying the conclusions of
Lemma 7 so that, by Lemma 7, P(E;) = 1—0(1). Let

A={i,) EL:sp<i<s ty<j<8 CQ,
where '

O={i,)ER:sp<i<s, ty<j<8 CR%.

10
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Define F: A — R? by
FG, ) = (v(XG, ), en(XG, ).

By inequalities (6) and (7), this function F can be extended to a function
F: Q — R? such that

A, y) = Fx, )l < 2L max{|x—x'], [y =y'[}

and F is linear on the segments [(i, j), (i+1, /)] and [, j), G, j+1)].

We claim that F maps some point (x,y) € Q into (n,m). Indeed, by
inequalities (4) and (5), the function F maps the side x = s, of Q
into the half-plane {(x,y):x < n}, the side y =t into the half-plane
{&,y): y=m}, x =s into {(x,y): x = n}, and y = 15 into {(x,y):y <
m}. Hence the image of the boundary of Q has winding number 1
about (n,m), unless (n,m) is in the image of the boundary. But this
implies that the continuous function F maps some point of Q into
(n,m).

Having found (x,y) € Q with F(x, y) = (n,m), let (i,j) € A be a lat-
tice point satisfying max{|i—x|,|j—y|} <3%. Then FG,j) = FG,j) is
close enough to (n,m):

|v(X(,j))—n| <L and |e,(X(,j))—m| < L. (16)

Since for every A € E, there is a point (i,j) € A satisfying (16) and
we have |A| ~ n?/®*1 choices for (i, ), some point (i,j) € A will do
for at least 2n~2%/®+D portion of E,. As, moreover, there are (2L +1)2

pairs (v, e,,) satisfying (16), the assertion (a) follows.
The proof of (b) is analogous. O

We are ready to prove the main theorem of the section about generat-
ing random graphs and multigraphs of minimal degree at least k.

Theorem 9 Let

1
= =1 _—
m = m(n) zn<k+llogn+kloglogn+c),

where k is a natural number and ¢ € R.
(a) There exist i’ and j' such that n<i < n+n*/® D om < j' <
2m+n*/**D gnd

Plv(X(', ")) = n and e, (X(',j)) = m] = 10*(log n) ~8p ~2K/(k+1)

(b) There exist i" and j" such that n <i"<n+n®®*D 2m <" <
2m+n*/®*V gnd

P[u(X(",j") = n and e(X(i", ")) = m] = 10" *(logn) 8p ~2K/(k+D,

11
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Proof (a) Let i, j, n’ and m’ be as in Lemma 8(a): with probability at
least 107 3(logn) ~8n~2K/**V) the pair (U(X(i,j)),e,,,(X(i,j))) = (n',m’)
is close to (n,m),soleta=n—n'"and b = m—m’.

We claim that i’ = i+a and j’ = j+2b will do for (a). To see this,
start with MG(X4(i, j), k) and add or remove |a| boxes and 2|b| balls
to X4(i,j), as appropriate, that is, consider the multigraph
MG(X4(i+a,j+2b),k). Let E, be the event defined in Lemma 5.
Recalling the calculations in the proof of Lemma 7, we see that for
A € E, the probability that MG(X4(i+1,j),k) has one more vertex
than MG(X4(i, j),k) and these multigraphs have the same number of
edges is at least "

1_0(n—1/(k+1))_O(n—(k+2)/(k+1) logn) - l—O(n_l/(kH)), Q7)

the second term being the probability that we change a ball in a box
with at most k balls, or that the box i+1 contains fewer than k balls,
and the third is the probability that we change at least /+1 balls in a
box with k+1 balls (/ = 1).

Similarly, for A € E, the probability that MG(X(, j +2), k) has pre-
cisely one more edge than MG(X(,j),k) and they have the same
number of vertices is at least

(1_nk/(k+l)n~—1)2 = 1-2n " Vk+D), (18)

where n*/®*Dp=1 is an upper bound for the probability that a ball is
added tc a box containing at most k—1 balls.

Since a+b = o(n/**V)  part (a) of the theorem follows, recalling
that by (4) and (5) the numbers i’ and j' satisfy the required inequali-
ties, and noting that by changing i to i—1 and j to j—2, if necessary,
the result holds whatever the signs of a and b.

(b) This is proved analogously. For the case of adding the (i+1)-th
box, we have to subtract a term of order (log n)?/n from the left-hand
side of (17) to account for the probability that either a loop or multiple
edge has at least one of its end vertices changed to vertex i+1, or that
MG(X(i+1,j),k) has some loop or multiple edge incident with vertex
i+1.

For the case of adding balls j+1 and j+2, we have to subtract a term
of order logn/n from the left-hand side of (18) to account for the pro-
bability that the 2 new balls yield a loop or a multiple edge.

We also need A € E, rather than E; for (5) to hold (see Lemma 7).
O
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Hamilton cycles in random graphs of minimal degree at least k 71

2 Configurations

We describe a useful way of partitioning [n |8 = k] according to the
degrees of the numbers in the sequence.
Let

DX(k,v,u) = [dE [0]": ¥ di=pandd, = kfori = 1,2,...,v},
i=1

where u is even. Ford € DX(k, v, w) let
[v|d]* = {X € [v]*: dx()) = d;fori=1,2,... v}

It turns out that several properties can most easily be proved by condi-
tioning on p(X) € [v|d]* for fixed d € DX(k,v,p) for some v and u.

We work with MG(X, k) conditioned on p(X) € [v|d]*. This has the
same distribution as the multigraph produced in the configuration model
of Bollobas [4]. Thus let Wi,W,...,W, be disjoint sets, where
|W;| =d; for i = 1,2,...,v, and let W = U:.’=1 W;. For S C [»] let
Ws=U,.; W and for w € W we define Y(w) by we Wy,. A
configuration F is a partition of W into 3w pairs. @ is the set of
configurations and for F € & we let ¢o(F) be the multigraph with ver-
tices [v] and an edge {y(x), ¥/(y)} for each pair {x,y} € F.

We claim that if each F € @ is equally likely then ¢(F) is distributed
as MG(X, k) conditional on p(X) € [v|d]*. To see this, note the fol-
lowing.

We can generate F at random by taking a random permutation
Wi, Wa,...,w, of W and then taking pairs {wy,w,}, {ws,w,}, ....

(Note that each F appears (3u)!122~ times). (19a)
If we replace each w; by (w;) then we obtain a member of [v|d]*
and each such member appears IT_ , 4! times. (19b)

The next lemma gives a list of the likely properties of the sequence
dox) -

Lemma 10 Let s, s, to and t be as in the previous section and suppose
that i and j satisfy sy < i < s and h<jst
Let DX, = {d € UV u DX(k,v,u) : (20) below holds}. Then

P(dyx) & DX,) = o(n~'o8"),
where X = X(i, j).
d, < (logn)? (r=1,2,...,v). (20a)

13
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o
{r:d, = k}| - mn"/("ﬂ) = o(nk/**1)_ (20b)

logn logn 1-€2/(4k +4)

. — < n

{r.d,<(1 e,,)k 1ord,>(1+e,,)k+1} 2n s

(20¢)
where €,, = 1/loglogn.

ITINY| < n@k+D/@k+3), (20d)

where

TINY = {r: a < %198
k+1

and where a;, satisfies

g o (S — 1
k+1 Cap 2k+1)(k+2)°

(The exact value for a; is unimportant; we only require that a; is posi-
tive and sufficiently small.)

Proof (a) Now A(p(X)) = A(X) and
P(A(X) = (logn)?) < iP(dx(1) = (logn)?)

Al
< )=
(logn)“/\ i

= o(n'o8"), (21)

(b) Lemma 5 gives an upper bound to the number of r such that
dx(r) = k which is tight enough and is satisfied with the required proba-
bility. Now let Z; = |{r: dx(r) = k+1}|, A = n¥/**D(logn)* and

e —1/(k+1)
Kk+r)E" :

Then, using a simple monotonicity argument for the third inequality,

A_ . 1 e’ K/(k+1)
P(Zk =i=i-|1 \/E)gn] k!(k+1)"n

14
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. A
(=3 [-s{-o 5 )]
i—A logn
1 loglogn

(- pofezzm )
<k

= o(n —log n) .

(¢) In the proof of (c) we need an inequality for the binomial random
1 1

variable B(n, p) (see [4, p.13, Theorem TOD:if0<p<i0<s<
and 8%pgn = 1 then

I

P(|B(n,p) ~pn| = 8pn) < e="/3, 22)
Let now
1+e,
Z, = [r: dx(r) = 1 logn] s A= (logn)z.
Then
2 -1 y4
e < 7]
PZ,.>a=n ) =< N E N
-1/ A
a i logn
<) ()rfax = i)

)

. 2 A
(Le—ée,. logn/(k+1)(1 +o(1)))

R

< [e—rl;e,,zlogn/(k+1)(1+0(1))]A

= ofn™"e"),
where in the third inequality we made use of (22). The other half of (c)
is proved in an identical way.

(d) We can be cruder with our estimates as we do not need a tight
bound. Let ny = n@*+D/@k+3)  Tpen

)

P(ITINY| = ny) < E[(
no

i a;logn Mo
= = = — +
< (nO)P(dx(l) <d 1 2)

15
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= o) -5) T

., .\d n
< %(E) e/l
no di

< {nZ/(2k+3)n {1+0(1)} /2(k+1)(k+2)n —{1-0(1)} /(k+1)}n0

= o(n~logm, O
Armed with these results we can now prove Lemma 6.

Proof of Lemma 6 Fix i and j and consider X = X4(i,j). Condition on
p(X) € [v|d]*, where, by Lemmas 5 and 10 we have, with probability
1 —o(n —logn)’

s = v = n—o(nk/*+D) (23a)
t=p = 2m—o(n*/*+D) (23b)
d € DX,. (23¢)

Let us call DX, the set of d where (23a, b, c) are satisfied.

We work with the configuration model. We first consider the number
of loops in MG(X,k). Let a= [10(logn)?] and J C EVENS =
{2,4,6,...,u}, where |J| = a, be given. Then (see (19a))

logn)?\*
P(y(w;—q) = y(w,), i €EJ) < ((:E—;l) .
Hence
1 2\a
P(MG(X, k) has = a loops) < (’:)(%’%%) (23d)
= o(n'g"),

Next let b = [7.5(logn)*]. If MG(X,k) contains at least b edges that
are removed in the reduction to G(X, k) then there exist disjoint sets
J1,J, C EVENS with |J;| = |J,| = b such that

{owi—1), 9w} : L € I} C {p(w;—1),¥(w)}: | € J1}.
Thus

1,,\2 2\2)b
P(em(X) —e(X) =a+b) = o(n_k’g") +<2b“) {Zb((::)g—zz)) }

= o(n~'ogn), (23e)

The result follows as there are o(n?) values for i and j. O

16
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The reader may have noticed that in order to apply Theorem 9 we
need to show 8(G(X, k)) = k with high probability.

Lemma 11 (a) Let i’ and j' be as in Theorem 9 (a). Then
II, = P[6(G(X,k)) < k| v(X) = n, e,(X) = m] = 0(1),
where X = X(i',j').
(b) Leti" and j" be as in Theorem 9(b). Then
II, = P[8(G(X,k)) < k| v(X) = n, e(X) = m] = 0(1),
where X = X(@i",j").
Proof (a)

m = 2 P[3(G(X, k) < k |p(X) € [n]|d]*"]
deDX(k,n,2m)

XP[p(X) € [n|d]*™| v(X) = n, e,(X) = m].
Now (a) will follow from
P[8(G(X,k)) < k | p(X) € [n]|d]*"] = 0(1) ifd € DXy, (24)
since, using Theorem 9 and Lemma 10, we have

S P(pX) € [n|d]*"| v(X) = n, e,(X) = m)
d¢DX,
_PeX En |d)?™, where d & DX,)
N P(v(X) = n, e, (X) = m)
= o(1).
We prove a set of results (25) that imply (24) and will be useful later.
Assume that d € DX,,.

P(there exists a loop or repeated edge within distance 10k
of TINY in MG(X, k) | p(X) € [n|d)*™) = o(n " V**2). (25a)
P(there exists a vertex incident with 3 edges of MG(X, k) which
are not in G(X, k) | p(X) € [n|d]*™) = O(n"*{logn}'®). (25b)
Proof of (25a)
P(there exists a loop...) < n@+D/@k+3) g; n’(;rfl—l%?—i—l)rﬂ

= 0({10g n}30k+3n -2/(2k +3)) .

17
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P(there exists a repeated edge...)

0k 4 \r+2
< p@k+D/@k+3) 12 arH (logn)
r=0 2m_2r_3

= 0({10g n}30k+6n -2/(2k +3)) .

Proof of (25b)
P(there exists a vertex...) < P(there exist t+1 vertices inducing ¢+3

edges in MG(X, k) for some 0 < ¢ < 3)

< % nt+l (logn)4 3
t=0 2m_2t_5

= O(n"%{logn}'®).
This completes the proof of (24) and thus of (a).

(b) For future reference, let E, denote the event specified by (25b).
Let

DXy(n) = {(dy,d,,...,d,) € DX1};
n
DX, = {d EDX|(n):m=< Y d; < m+8(logn)4}.
i=1

Define an equivalence relation = on DX, by d =d' if and only if
d; = d,; for some permutation o of [n]. Let £ be the set of
equivalence classes of ~. Then, letting D, = U ,_ [n|d]*™ for v € 2

and 2m’ = 3"  d;, we find that

d€w

L, < Y P[5(G(X,k) < kand E, | p(X) € D,,e(X) = m]
wEN

XP[p(X) € D, | v(X) = n, e(X) = m]

P(p(X) e U n |d]“’)+P(em(X) —e(X) > 8(logn)*) + P(E;)
+ d¢DX,

P(v(X) = n, e(X) = m)
(26)
The calculations for (25b) are clearly valid for any i and j, so
P(E,) = O(n"*{logn}'®). Hence, by Theorem 9 and the proof of
Lemma 6, the second term of (26) is o(1).
Let us now fix ® € 2. We have the following inequalities:

18



Hamilton cycles in random graphs of minimal degree at least k 77

P[8(G(X,k)) < k and E, | p(X) € D,,, e(X) = m]
< nP(1 € TINY, 1 is incident with a loop

or multiple edge in MG(X, k) |p(X) € D,,, e(X) = m)

< n@k*+D/C@k+3) max{P(1 is incident with a loop

or multiple edge in MG(X, k)
|p(X) € [n]|d)*™, e(X) = m): d € ® such that 1 € TINY}.

If TINY = & then 8(G(X, k)) < k and Ez is impossible, so we may
assume that TINY # . Fix d € w for which 1 € TINY.
Referring to the configuration model, let

@, = {F € &: 1 is incident with a loop
or multiple edge, E, holds and e(¢(F)) = m},
where @(F) is the graph underlying the multigraph ¢(F), and
®, = {F € ®: 1 s not incident with a loop
or multiple edge, E, holds and e($(F)) = m},

The result will follow from the following relation:

| D, | ((log n)“)
=0 )
|<p2| n

To prove (27) we consider the bipartite graph BG; = (@, ®,,A), where
if f € @, and F, € @, then (F;,F,) € A if there exists a vertex v # 1
such that

(i) v is not incident with any loops or multiple edges in ¢(F;);

(i) the distance from 1 to v in @(F)) is at least 3;

(iii) v ¢ TINY;

(iv) F, is obtained from F; as follows: suppose that

@7

Wl = {xlax27""xp} and Wu = {Yl,}’2,--~,)’q},

where g = p. If there is a loop (x,,x,) and (y;,w),(y,,w’) € g,
then these pairs are replaced by (x,,w), (xy,w"),(y;,y,) € K. If
F, contains at most three pairs (x,,z,), (x,25), ... (@<
b<---), where {z,,2;,...} CW, for some t# 1 and pairs
(y1,u41), (y2,u3), ..., then we replace these pairs in F, by (x,,u;),
(xp,u43), ... and (y1,2,), (¥2,2p), .... All other pairs are in
FNFE. (We interchange the loop/multiple edge pairings for W;
and the beginning of W, .)

19
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It is straightforward to check that this is a proper definition. Further-
more (27) follows since F; € @, has degree at least

n—n@+D/@+3) _ (100 n)* —16(log n)*

in BG; and F, € @, has degree at most 16(logn)* in BG,. O

3 Basic properties of random graphs of
minimal degree at least k
We can now prove some properties of the random graph G =
G,fkf,, € %n,m;6 =k). Let

1
SMALL = {v € [n]: dg(v) < "";c—:gif]; LARGE = [n] —-SMALL.

Let

_ . logn |
PETIT = {v € [n]: dglv) = 3k+3}’

Ng(S) = {w € V(G)—-S: 3 vES with {v, w}EE(G)}.

Lemma 12 G = G,E"},, satisfies (a) to (d) below with probability
1-o(n~4198") gnd (e) and (f) with probability 1—o(1), where A is some
positive constant.

(a) A(G) < (logn)?.

(b) [SMALL| < 2n@+D/@k+3) gy |PETIT| < n@k+3)/@k+4)

n aylogn
(c) S C LARGE, |§| < Tiogn = ING(S)| = = =515

d) S,TC [n], |S| = |T| = n/loglogn and SNT = &
nlogn
9(k+1)(loglogn)?

(e) No connected subgraph of order at most 2k+5 contains k+2 small
vertices, i.e., vertices in SMALL.
(f) No small vertex is on a cycle of length at most 2k +2.

= |{(v,w) EEG):vES, WwE T} =

Proof Our proofs of (a)—(d) are on the following lines: let i” and j” be
as in Theorem 9(b) and let X = X(i",j").
Now let IT and I be properties such that

G(X,k) € IT = p(X) € II or e,,(X) —e(X) > 8(logn)*.  (28)

Then, on using Lemma 2, we have

20
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PG, € IT)
= P[G(X,k) € T |v(X) = n, e(X) = m, 8(G(X,k)) = k]
< P[p(X) € I | v(X) = n, e(X) = m, 8(G(X, k)) = k]
. P(e,,(X) —e(X) > 8(logn)*)
P[8(G(X,k)) = k | v(X) = n, e(X) = m]P[v(X) = n, e(X) = m]
(29)
Note that the second term on the right-hand side of (29) is o(n~}loen)
by (23e) in the proof of Lemma 6, Lemma 11 and Theorem 9 (b). Con-
tinuing,
Plp(X) € [ | v(X) = n, e(X) = m, 8(G(X, k)) = k]
P(p(X) € IT | v(X) = n, e(X) = m)
~ P[8(G(X, k) = k| v(X) = n, e(X) = m]
= (1+0(1))P(p(X) € IT|v(X) = n, e(X) = m) (30)
by Lemma 11. Now
P(p(X) € IT | v(X) = n, e(X) = m)

< 3 P(p(X) € Iland p(X) € [n|d]*|v(X) = n, e(X) = m)

deDX,(n)
+ .
P(v(X) = n, e(X) = m)
Now, by the remark preceding (23) the second term on the right-hand
side of (31) is o(n ~31°87),
Furthermore,
P(p(X) € IT and p(X) € [n|d]*| v(X) = n, e(X) = m)

< PeX) €| pX) € [n|d]*)P(pX) € [n|d]*)
P(v(X) = n, e(X) = m)

(1)

. (32
Hence (29) to (32) imply
P(G,), € II)

(1+o(1))maxsepx,m{P(e(X) € | p(X) € [n|d]*)} |,
< +o(n~toem),
P(v(X) = n, e(X) = m)
(33)

(a) Here we take IT = {p(X): A(p(X) > (logn)?} and use (33). It is
easy to see that the first term is zero.
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(b) For |[SMALL| we take Il = {p(X): |TINY| > n@+D/@k+3)} anq
again use (33). (Again the first term is zero.) For |PETIT| we would
need a similar result for a set like TINY, but this is no problem.

(c) Here we take

n= {p(X): 3 8, T C [n] such that

alogn .
NG g dX()>__k+1 forr e S;
. _ alogn
@) TCnl=S |T| < - = >5ISl;

(i) Nmcx,n(S) C T}

Fix d € DX;(n) and let S and T satisfy (i) and (ii) above.

Let E* be the event that each element of Wy is paired with an ele-
ment of Wy, in the configuration model. Assume first that
n

< sy = .
IS < 50 dage(k+1)(logn)®

Then

{ailogn/(k+1)}|S|
PE*) = {0 2228811

2(k+1)
) (M ){aklog"/("*‘»m
n

IS

When |S| > s, we consider {t € T: dy(r) > (1+e€,)(logn)/(k+1)} and
its complement in 7. Then we find, letting ny = n!~%/*+49 (ha¢

P(E¥)

1 ) logn a;logn {axlogn/(k+1)}|S|
= + +

< [ % logn )(akIOgn/(k+1)}]s|
(k+1)n .
Hence

P(p(X) € IT| p(X) € [n|d]*)

& /n n aktf(lOgn)z (axologn) /(k+1)
<2 (”)((“aklogn)/(2k+2))(—n—)

o=1

+n/2i’gn (ﬂ) n (akalogn)(a,‘alogn)/(k+l)
o1 \T (oaylogn) /2k+2) )\ (k+1)n
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- i (EE)(k+1)/aklogn 2(k+1)en 1/2 ako(logn)2 (ayologn) /(k+1)
~ \o a, ologn n

+n/2§8" (E)(k+l)/akl°g” M 12
po agologn

o=sy+1

(agologn) /(k+1)

y azologn
k+1)n
= o(n—(aklogn)/(3k+3)).
We can now apply (33).
(d) Here we take
n= {p(X): 3 S, T C [n] such that
. n
@ |S|=1|T| = loglogn and SNT = J;

(i) MG(X, k) contains fewer than

nlogn
8(k+1)(loglogn

Fix d € DX (n) and let S and T satisfy (i) of Il. Consider the
configuration model. Now

)2 S-T edges}.

{1-0(1)}nlogn

(k+1loglogn

Thus let U C Wy be of size (nlogn)/2(k+1)loglogn and suppose that
in the construction of F we first choose the pairs containing elements of
U. Now, at any stage, if x € U then the probability it is paired with
something in Wy is at least (|Wy|—|U|)/pn = 1/3loglogn. Hence the
number of pairs stochastically dominates the binomial distribution
B(|U|,1/3loglogn). But

1 |U| < —32|U|/3loglogn
P{B('UL 310glogn) = 4loglogn] =¢

|Wsl, [Wr| =

< ¢~ (nlogn)/200(k+1)(loglog n)’_

Now
|U| nlogn

4loglogn ~ 8(k+1)(loglogn)?’

SO
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2
5 m) < n ) —(nlogn) /200(k +1)(loglog n)>
P € Lo € i) < (7 Ve

= o(n —log n)

and thus (d) follows by (33).

(e) The proof of this (and (f)) is more complex than (a)—(d) as the
failure probability in G(X, k) is not o(n~2) in the unconditioned case.

So let i’ and j' be as in Theorem 9(a) and let X = X(i’,’). Let E;
denote the event ‘there is a vertex incident with 3 edges of MG(X, k)
which are not in G(X, k), or there exists a loop or multiple edge
incident with a vertex of degree k, k+1, k+2 or k+3 in MG(X, k).

Suppose that IT and IT are properties such that

MG(X,k) € Il and E; = G(X,k) € II. (34)
Then
P[G(X,k) € IT | v(X) = n, e,,(X) = m, 8(G(X, k)) = k]
= PIMG(X, k) € I and E; | v(X) = n, €,(X) = m, 8(G(X, k) = K]
= PIMG(X, k) € IT and E; | v(X) = n, e,,(X) = m]—o(1)
(by applying Lemma 11)

= 3 P(MGX,k) € Il and E; | p(X) € [n|d]*™)
deDX,(n)

XP(p(X) € [n|d)*" | v(X) = n,e,(X) = m)—o(n?71°8") — (1)
(by applying Lemma 10)

= 3 PMGX,k € I|p(X) € [n|d]*™)
deDX,(n)

XP(p(X) € [n|d]*™ | v(X) = n, e,,(X) = m)
—o(n~YV**2) — O(n~2{log n}'8) — o(1)
(by applying (25a) and (25b))
> dexg)ig(ﬂ){p(MG(X, k) € IT | p(X) € [n|d]*™)} — o(n?~1°8") — o(1).
(35)
On the other hand,
P(G(X,k) €E IT|v(X) = n, e,(X) = m, 8(G(X, k) = k)
= P(G(X,k) € II and e,,,(X) —e(X) < 8(logn)*
|v(X) = n, e,(X) = m, 8(G(X,k)) = k)+0(1)
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= § Ple(X) = m'|v(X) = n, e,(X) = m, 8(G(X,k)) = k)

m'=m—8(logn)4
XP(G®, € ) +o(1) (36)

on using Lemma 2. What we deduce from (35) and (36) is that if (34)
holds then there exists an m’' (m—8(logn)* < m’ < m) such that

ﬂq%emzéngWMMEﬁMMEMM%%Ml

(37

To prove (e) we let II denote the property described in (¢) and 11 the
equivalent property in MG(X,k), where TINY takes the place of
SMALL; it is easy to see that (34) holds. For a fixed d € DX (n) we
have

P(MG(X, k) & IT|p(X) € [n|d]*™)
k+3 / (2k+1)/(2k+3) 4 k+h+1
n n h+k (logn)
s,,go( k+2 )(h)(k+2+h) (2m—2(2k+5)
= o(1).
Applying (37) we see that
P(G®, € I) = 1-0(1) 38)/

for some m’ (m—8(Qlogn)* < m’ < m).
Now let 4(n,m’';8 = k) = 4(n,m’;8 = k)NII. Set

G = |6(,m";6 = K)|; G = |4, m";8 = k).
We can derive our result from (38) by showing

M > &{1_ 0(715 i’)} (39)
8m'+1 Em’ nl *

for m—8(logn)* < m' < m.
To prove (39) we consider the bipartite graph

H= (%n,m';6 = k), 4(n,m' +1;6 = k), EH)L),
where if
G, €E%n,m';6=k) and G, €E%(n,m' +1;6 = k)

then (G, G,) € E(H) if and only if E(G,) C E(G,). Also let H denote
the subgraph of H induced by ‘é(n,m';a = k) and ‘Z’n(n,m’+1;8 = k).
Furthermore, let d and d refer to degrees in H and H, respectively, so
that, for example, :
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2 d(G) = 2 d(G). (40)

GE%Y(n,m';6=k) GE%(n,m’'+1;6=k)
Now if G € G(n,m’;8 = k) then d(G) = N—m’ (where N = (3)) and if
G € 4(n,m" +1;8 = k) then d(G) = m'+1—kni(G), where ni(G) is
the number of vertices of degree k in G. Hence (40) implies
(N_m’)gm' = {m’ +1 _kEm’+1(nk(G))}gm’+l’ (41)
where E,, ,1(nc(G)) is the expectation over 4(n,m’+1;6 = k) of
n(G). ; ;
_ Applying the same ideas to H we find that if G € %(n,m';8 = k) then
d(G) = N—-m'—|SMALL(G)|A(G)'* and if G € %(n,m'+1;86 = k)
then d(G) < m’+1. We deduce then that
{N-m'—E,.(ISMALL(G) |A(G)'™)} g, < ' + 1) §ppq. (42)
Inequality (39) will follow from (41) and (42) once we prove
E,,(|SMALL(G) |A(G) %) < 3p@k+1D/@k+3)(1g )20k (43)
for m—8(logn)* < m’ < m. But (43) follows since
P(lSMALL(G,E{?,,')I > 2n(2k+1)/(2k+3)) = O(n—Alogn)’ (44)
P(A(G®,) = (logn)?) = o(n=4lem), (45)
where (44) and (45) are immediate from Lemma 12 (a) and (b).
(f) We proceed as in (e), taking IT to be the property described in (f)

and obtain IT from IT by replacing SMALL by TINY as in (¢). Then,
for a fixed d € DX;(n),

P(MG(X, k) & 1 | p(X) € [n|d]*™)

2%k+2 h
< 2 n ) @k+n/eeen (B=D! [ (ogn)*
h—-1 2 2m—2h
h=3
= 0(1)
The proof then continues in a manner analogous to (e). O

Let §y = 4y(n,m;6 = k) denote the members of 4(n,m;5 = k) hav-
ing no k-spiders and satisfying conditions (e) and (f) of Lemma 12 and
the following conditions (a)-(d), which are somewhat weaker than those
of Lemma 12:

(a) A(G) < 2(logn)*;
(b) [SMALL| < 3n@*D/Ck+3) gpg |PETIT| < 2n@k+3)/@k+4).

' n oylogn,
(c) S CLARGE; [§| < Slogn = ING(S)| = IS|s

3k+3
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(d) S, TC [n], |S| = |T| = n/loglogn and SNT = &
nlogn
10(k +1)(loglogn)?
Let Gy = 9\(n,m;8 = k) be the set of graphs in 9, which satisfy the
more stringent conditions of Lemma 12. From Lemma 12 and Lemma
13 below, it is easy to see that
|6l
%ol

= |{(v,w) EEG):vE S, WwE T} =

= 1—o(n~Alen), (46)

4 k-spiders in random graphs
We now investigate the existence of k-spiders in G,f"),,

Lemma 13 Let

_ e—(k+1)c

T e+ D) — DY I+ 1)FEFD
Then lim P(G\%), has a k-spider) = 1—e ™%

0

Proof We will not give all the details as (1) the case kK = 1 is given in
detail in [6] and (2) the most important ideas are already explained in
Lemma 12 (e).

Call a k-spider isolated if it does not share any of its k+2 vertices
with any other k-spider. By Lemma 12 (e) and (f) we have

lim P(G,ff‘},, has a non-isolated k-spider) = o(1).

We can therefore restrict our attention to isolated k-spiders. « Let i’ and

j' be as in Theorem 9 (a) and let X = X(i’,j'). The first task is to show
that

lim P(MG(X, k) has an isolated k-spider | p(X) € [n|d]*™) = 1—¢ %
n—o
(47)

for d € DX (n). Thus let d € DX,(n) be fixed and let { denote the
number of isolated k-spiders in MG(X,k). If p > 0 is a fixed integer
and ({), = {({—1)...((—p+1), we show that

lim E(@),) = 6 “8)

and then applying a basic result from probability theory (see, for exam-
ple, [4], Theorem 1.20), we obtain (47).
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Let

— 1 —c, k/(k+1)
" kv )ES " :

It then follows, using (20), that
- {1+o()}n\? & [n\/o(n)
g0 = (") S C)0)e

( k(1+e€,)logn )’("“) k(logn)? \@ 7Pk
(k+ 1) {2m—2(k+1)p} (2m—2(k+1)p)

B nP** 1, klogn \k*vp

= {t+o}g7 1)!1’(p)p!(2(k+1)m)

= {1+o0(1)}6f. (49)
A similar calculation shows that E(({)p) = {1-0(1)}6f, so (48) follows.

We can now use (37) with IT and II being the property of having an
isolated k-spider to show that there exists m’ such that

P(G®),. has an isolated k-spider) = 1—e % —o(1), (50)

where m—8(logn)* < m’ < m. Using a similar argument to the final
argument of Lemma 12(e) we can replace m’ by m in the probability
inequality of (50).

To get the lower bound we again use (37) but this time with IT and IT
being the property of not having a k-spider and then proceed as in
Lemma 12(e). This yields

P(G¥, has no isolated k-spider) = e % —o(1)
and the result follows. O

Let S be a set of vertices of degree at least k = 1 is a graph G. For k
even, an S-system is a set of 3k edge-disjoint systems of vertex-disjoint
paths in G such that, for each system, every vertex in S is an internal
vertex of some path of that system. For k odd, an S-system is a set of
lk-1) edge-disjoint systems of paths, as before, together with an inde-
pendent set of edges incident with each vertex in S, which is edge-
disjoint from the path systems.

We shall need the following lemma.

Lemma 14 Let G be a graph and let S C V(G) consist of vertices of
degree at least k. Denote by S the set of vertices of S having degree k in
G. Suppose that
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(a) no vertex of G is adjacent to k+ 1 vertices in S;
(b) no connected subgraph of order at most 2k+3 contains k+2 ver-
tices of S;
(c) no vertex in S is on a cycle of length at most 2k +2.
Then G contains an S-system.

Proof Consider the subgraph induced by the edges incident with the
vertices of S. Without loss of generality, we may take G to be this
graph and, moreover, we can assume that G is connected. It is easy to
show that |S| < k+1; otherwise we could construct a subtree of G with
k+2 vertices of S and at most 2k +3 vertices, contradicting (b). It fol-
lows that no cycle has length greater than 2k+2 and thus, by (c), G
must be a tree. Let T be the subtree obtained by deleting all leaves of
G which are not in S. All leaves of T are in S, so |V(T)| < 2k+1. If
|S| = k+1 and some vertex u is adjacent to every vertex in S, then
some vertex w in S has degree at least k+1 in G, by (a). In this case
consider G—uw; the component containing w clearly has an S-system,
so we may assume that (a) holds with S, replaced by S. This, together
with the observation that, for any vertex v € V(T), every component of
T—v contains a vertex of S, implies that A(T) < k. (We are assuming
that T is not trivial, otherwise the result is immediate.)

If kK = 1 or 2 the result is immediate. If kK = 3 then |V(T)| < 7 and it
is easy to show that any maximal path in G containing a maximum
number of vertices of S can be extended to an S-system.

Suppose then that k =4 and that the assertion holds for smaller
values of k. Let Py be a maximal path in T containing two vertices of
highest degree in 7. We claim that A(T—E(P,)) < k—2. Otherwise, T
would contain three vertices of degree at least k—1 which were not on a
path. But then T would have at least

3(k=2) > k+1 = |S|

leaves, which is impossible.

Now extend P, to a maximal path P in G. Every vertex w of S not
on P is adjacent to at least two leaves of G; this gives a path P, of
length two through w. We will show that the path system P* =
{PYU{P, : w € S—V(P)} can be extended to an S-system. Let G, =
G-E(P*). Then G is a forest, two components of which contain just
one vertex of S, and no vertex not in S is of degree greater than
A(T-E(Py)) < k—2. Thus G, trivially satisfies the conditions of the
lemma with k replaced by k—2. So, by our assumption, G, contains an
S-system, which, together with P*, yields an S-system for G. O
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5 The colouring argument

It follows from Lemma 14 that if G € ¢, then SMALL is k-coverable in
the following sense: there exist sets of vertex-disjoint paths
P, Py, Plisz) plus a matching Py ) if k is odd, where

(i) both endpoints of every path in P, %,,..., P/, are in LARGE;

(ii) each element of SMALL is an internal vertex of one path in each
of @1’@2""7@[k/2j;

(iii) if k is odd then each element of SMALL is incident with an edge
of P/

(iv) (minimality) if EP; denotes the edges of & (i = 1,2,...,[3k])
then e € U2 EP, implies eNSMALL # ;

(v) the edge sets EPy, EP,,..., Efy/y) are pairwise disjoint.

For each G € %, choose fixed sets of paths P;,%,,..., together with a
matching if k is odd. Let EP,(G) refer to this fixed choice.

Suppose Hy,H,,..., H, is a sequence of edge-disjoint Hamilton cycles
of G. They are said to be compatible if H; D EP; for i = 1,2,...,r,
where r < |3k].

We are now close to proving our main theorem. The main tools will
be Pésa’s theorem [13] plus the colouring argument of Fenner and
Frieze [9]. To use the colouring argument we need to consider the dele-
tion of a small set of edges. So if G = G,f"),, and X C E(G) we say that
X is deletable if

(i) X is a matching;

(ii) X is not incident with any vertex of PETIT.
Let Gy be the graph G— X obtained by deleting X from G.

We shall need to consider the state of G after deleting some edge-
disjoint Hamilton cycles. Thus we prove the following result.

Lemma 15 Let G € 9y, let X be deletable and H,,H,,...,H,, r <
[1k], be compatible edge-disjoint Hamilton cycles. Let

K= G—(XU U E(H,.))
i=1

be the graph obtained by deleting X and the edges of these cycles, and let
3 = SMALLUNG(SMALL).
(a) If & # S C LARGE and |S| < Byn then

INk(S)-2| = 3|S],

where B, = a; /T(k+1)(2k+5).
(b) If r < |3k| then K is connected.

30



Hamilton cycles in random graphs of minimal degree at least k 89

Proof (a) By Lemma 12 (e) and (f) we have
ING(S)NZ| < (k+1)|S]. (51)
Let S; C S be of size min{|S|, [n/2logn]|}. Then
INk(S)| = [NG(S)| - (@2r+1)|S|
= [Ng(81)| - (@2r+2)[S]

a;logn _
= 3k+D) |S;|—(@2r+2)|S|
= (2k+5)|S|-@2r+2)|S|
= (k+4)|S|. (52)

The result now follows after using (51).

(b) Suppose S is a component of K (|S| < 4n) and suppose first that
|S| < Bxn. Since E(K) D EPjj; we have S; = SNLARGE # &.
Thus

INK(S)| = |Ng(S1)| = [Nk(S;) NSMALL|

where we have used (51) and (52) to establish the second inequality.
Thus |S| < Bn is not possible, and condition (d) of the definition of %
shows that we have not deleted enough edges to create a component of
size greater than B;n. O

We now proceed as in the proof of Theorem 1.2 of [6].

Let s, be the graph property of having |3k| edge-disjoint Hamilton
cycles plus a further edge-disjoint matching of size |3n] if k is odd.
Let r be a non-negative integer and G € %,. Let H,,H,,...,H, be a
compatible sequence of edge-disjoint Hamilton cycles. G — U:=1 E(H;)
is called an r-subgraph of G.

Let now ¢(G) = (r,s), where r is the maximal length of a compatible
sequence of edge-disjoint Hamilton cycles and

0 if k = 2r,
maximal cardinality of a matching containing
EPyy/2 in any r-subgraph of G ifk=2r+1,

maximal length of a path P in any r-subgraph
of G such that Q € P, ,; implies Q is a
subpath of P or Q is disjoint from P if k=2r+2.

Thus if $(G) = 8(k,n) = (|4k], |2n](k—2|2k])) then G € ;.
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If ¢(G) = (r,s) we define a ¢-subgraph of G to be any r-subgraph
containing either a matching of size s or a path of length s as the case
may be.

Lemma 16 Suppose G € %y—d; and X is deletable. Let u = [Byn]
and ¢(G) = (r,s). Then for n large there exist a ¢-subgraph H of Gy,
A={a,ay,...,a}, A1,A,...,A, C[n] (t>u) such that, for i=
1,2,...,t, |Aj| = u, a; ¢ A; and, if a € A;, then e = {a,a;} & EH)
and ¢(H+e) # ¢(H).

Proof Let, in fact, H be any ¢-subgraph of Gy. Suppose first that
k=2r+1. Let

M ={M: M D EPj;/; and M is a matching of size s in H};

A = {a: ais left exposed by some matching in M} = {a;,a;,...,4a,};

A; = {a: a and g; are left exposed by some matching in M} C A
(i=1,2,..,1.

Clearly a € A; implies e = {a,a;} & E(Gx) and ¢(Gx+e) # &(Gy).
We must show that ¢ = u. Consider, for example, A;. Let A] =
A;NLARGE. Aj # (J, else a; is the only vertex left exposed by any
matching in M, contradicting G & ;. We will show that

INu(A1) -2| < |A1] (33)

and then Lemma 15 (a) implies that |A}| = u.

To prove (53), let {x,y} € E(H), x € Aj and y € 3, and let M € M
leave x and a; exposed. y is not exposed, so let {y,z} € M. Then
z € LARGE (otherwise y € 3) and, because M’ = M+ {x,y}—{y,z}
leaves a; and z exposed, we have that z € A]. Thus y € Ny(A}) -3
implies that y is adjacent to A] via an edge of M and (53) follows.

Assume next that k > 2r+1. If P = (vy,0;,...,0;) is a path of H
and e = {v;,v;} € E(H) then, as has often been done before, we con-
sider the path

ROTATE(P,e) = (v1,V2,..., Vi, Uk, Ug—15- -+ Vi+1) (54) .

and let v; be called the fixed endpoint in this construction.

Now let P be a path of length s in H either wholly containing or
wholly disjoint from any path of %,,;. Let a; be one endpoint of P.
Consider all paths that may be obtained from P by a sequence of rota-
tions with a; as a fixed endpoint, subject to the restriction that no rota-
tion is allowed in which the deleted edge ({v;, v;4+1} in (54)) is in EP, ;.
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Let A; be the set of endpoints, other than a;, of the paths produced
by this procedure and let A] = AJNLARGE. A; # O as vertices in
SMALL can only be internal vertices of any of the paths produced.
Following Pésa [13] we show that

INu(A]) 2| < 2|A1] (55)

and then Lemma 15 (a) shows that |[A{| = u. Note also that there is no
edge {a,a,} € E(H) where a € Ay, since, by Lemma 15(b), H is con-
nected and such an edge could be used to give a longer path.

So let {x,y} € E(H), x € A} and y € 3 (y is an internal vertex of P
as P is maximal). We observe as in [6] that y has at least one neigh-
bour in A] on P and (55) follows.

Finally, take A = A;U{a;} and repeat the argument for a € A; using
any path of length s with a as fixed endpoint. [

We now give a final lemma which essentially proves our main
theorem.

Lemma 17
lim P(G¥), € s | G¥), has no k-spider) = 1.
n—oo
Proof Let
(gz = ‘Qz(n,m;S = k) = (go_dk.

If G E%n,m;é=k) and X C E(G), let X be strongly deletable if X is
deletable and ¢(Gx) = ¢(G). Let o = [Vlogn] and for X C E(G)
(IX] = o) let
a(X,G) = {1 if G e "@2 and X is strongly deletable,
0 otherwise.

Let G € %,. We show first that
2 \@
S aX,G) > (':)(1 —25—> .

XCEG) logn
[X|=w

To see this let ¢(G) = (r,s). Choose a random w-subset X of E(G). It
is easy to see that the right-hand side of (55) is a lower bound for the
expected number of X satisfying (1) X is a matching (use Lemma
12(a)), (2) X is not incident with a vertex of PETIT (use Lemma 12 (b))
and (3) X contains no edge of some fixed compatible sequence of r
Hamilton cycles and s further edges.
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If (1), (2) and (3) hold then a(X,G) = 1. Hence

S 4X,G) = (3)(1—2—"2)w|@2|. (56)

GE%, XCE(G) logn
| X|=w

We now bound the sum on the left-hand side of (56) from above. Let
N={H:3G €%, XC EG), |X|=w, X is not incident
with any vertex of PETIT(G), and H = Gx}.
For HEQ let Sy =|{X:G=H+X€E€ %, and a(X,G) = 1}|. We

show
((3) —vnz)’ (57)

w

A

Su

where y = 382 and B, is as in Lemma 15. To see this note that if
Sy > 0 then H contains sets A,A;,A,,...,A, as in Lemma 16 and
X € Sy implies (through a(X,G) = 1) that X contains no edge of the
form {a,a;}, where a; € A and a € A; (i = 1,2,...,t). This implies
(57).

But

> alX,G)= Y Sy.
GE%, XCE©) Heo

Thus (56) and (57) imply
ny _ .2 -1 2\ —w
= (000 (o) o

Clearly we must produce an upper bound for |[2|. To do this we count
pairs (H,X), where (1) H is a graph with V(H) = [n], (2) |E(H)| =
m-w,(3) X C [n]?—EH) and |X| = 0, (4) G = H+ X € %, and (5)
X is not incident with any vertex in PETIT(G); in this case we call
(H,X) a proper pair. Let { be the number of such pairs. Clearly

¢ = 1-o}(7)i% (59)

as (G—X,X) is almost always a proper pair when G € 4, |X| = w
and X C E(G). On the other hand

(= 3 ey, (60)

HEQ
where €; = |{X : X is a proper partner for H}| for H € 2. Let
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0' = {H € 2: 3 a proper partner X for which H+ X € 4)}|.
We observe that

m+w)‘ 1)

HEQN =ey={1- 0(1)}(( )=

To see this let H € ' and (H, X) be proper with H+X € 4;. Let
Y C [n]® — E(H) and suppose that the edges in Y are not incident with
any vertex within 10k of PETIT(H + X). Observe that

SMALL(H+X) = SMALL(H+Y).

It is easy then to see that H+Y € %, (but not necessarily 4j). A sim-
ple calculation yields (61). It follows from (59) to (61) that

G| = {1-0(1)}|'| ((5) ‘;"“") / ("’) (62)

w
We will show that
|2'| = {1-o0(D)}|2], (63)
to obtain from (58) and (62) that

1% N—vyn N-m+w\ _
1ol = 1F ‘”}( )/( o )“’“)‘

which proves the lemma.
If H € 22—’ then there exist G € 4y—%) and X C E(G) (|X| = )
such that H = G—X. Hence

1 -1] < (7)ol - 1. (64
On the other hand,

= 11 (V) (65)

as, given G € 9, one can always find a proper pair (H,X) such that
H+X =G.
From (64) and (65) we obtain

le| . _(m\(N-m+o (w_ )
= ()00 e
= o(n*n=48") = o(1),

which is equivalent to (63), with the last relation following from (46). O
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6 The main theorem
We now come finally to the main result of our paper.

Theorem 18 Let

m = %n(%% +kloglogn+c,,).
Then
0 if ¢, & —o sufficiently slowly,
lim PGH, € ) =3 ifc,—c,
1 if ¢, & +o.

Proof When c, = ¢ we need only consult Lemmas 13 and 17. For
¢, = * we have to rework all the calculations. For ¢, — + things
get easier, but we can only allow ¢, = — so that
L+ Cn =€
k+1 logn
for some fixed € > 0. In this case our methods work. O

The above theorem describes rather neatly the secondary obstruction
to membership of ;. In a related vein one could consider
P(G¥3D € ). We strongly believe and seem close to proving that
there exist constants c;,c,,... such that if ¢ = ¢; then

lim P(G¥2V € o) = 1.
n—oo

Finally we mention that we could have based our proof on an analysis
of HAM in [5]. This would show that the Hamilton cycles and match-
ings are almost always constructable in polynomial time. The proof,
however, would have been even longer.
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