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Abstract13

We pursue the analysis of the maximum degree in a dynamic duplication-divergence graph model14

defined by Solé et al. in which a new node arriving at time t first randomly selects an existing15

node and connects to its neighbors with probability p, and then connects to the other nodes16

with probability r/t. This model is often said to capture the growth of some real-world processes17

e.g. biological or social networks. However, there are only a handful of rigorous results concerning18

this model. In this paper we present rigorous results concerning the distribution of the maximum19

degree of a vertex in graphs generated by this model.20

In this paper we solve an open problem by proving that for 1
2 < p < 1 with high probability the21

maximum degree is asymptotically concentrated around tp, i.e. it deviates from this value by at22

most a polylogarithmic factor. Our findings are a step towards a better understanding of the overall23

structure of graphs generated by this model, especially the degree distribution, compression, and24

symmetry, which are important open problems in this area.25

2012 ACM Subject Classification Mathematics of computing → Random graphs; Theory of com-26

putation → Random network models27

Keywords and phrases random graphs, duplication-divergence model, degree distribution, maximum28

degree, large deviation29

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2330

Funding This work was supported by NSF Center for Science of Information (CSoI) Grant CCF-31

0939370, by NSF Grants CCF-1524312, CCF-2006440, CCF-2007238, DMS1952285 and, in addition,32

by the National Science Center, Poland, Grant 2018/31/B/ST6/01294.33

1 Introduction34

Studying structural properties of graphs (e.g., symmetry, compressibility, vertex degree)35

is a popular topic of research in computer science and discrete mathematics ever since36

the seminal work of Paul Erdős and Alfréd Rényi [8] . Recently attention has turned to37

dynamic graphs such as preferential attachment (Barabási-Albert) graphs [1], Watts-Strogatz38

small world graphs [25] or duplication-divergence graphs. Dynamic graphs, in which the39

edge- and/or vertex-sets are functions of time, are ubiquitous in diverse application domains40

ranging from biology to finance to social science. Deriving novel insights and knowledge from41

dynamic structures is a key challenge and understanding the structural properties of such42

dynamic graphs is critical for new characterizations and insights of the underlying dynamic43

processes.44
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Numerous networks in the real world change over time, in the sense that nodes and45

edges enter and leave the networks. To explain their macroscopic properties (e.g., subgraph46

frequencies, diameter, degree distribution, symmetry) and to make predictions and other47

inferences (such as link prediction, community detection, graph compression, order of node48

arrivals), several generative models have been proposed [19, 24]. Typically, one tries to49

capture the behavior of well-known graph parameters under probability distributions induced50

by the models, e.g. the distribution of the number of vertices with a given degree, the number51

of connected components, the existence of Hamiltonian paths or other parameters like clique52

number and chromatic number (see [3, 9, 13] for overviews of the main results in the area).53

In this paper we make further progress on structural properties of the duplication-54

divergence graph models, in which vertices arrive one by one, select an existing node as55

a parent, connect to the some neighbors of its parent and other vertices according to some56

pre-defined rule. More precisely, a newly arriving node at time t first selects randomly57

an existing node and connects to its neighbors with probability p; and then connects to other58

nodes with probability r/t. The particular model which we bring under consideration is a59

duplication-divergence model, first defined by Solé, Pastor-Satorras et al. [21]. It has been a60

popular object of study because it has been shown empirically that its degree distribution,61

small subgraph (graphlets) counts and number of symmetries fit very well with the structure62

of some real-world biological and social networks, e.g. protein-protein and citation networks63

[5, 20, 22]. This suggests a possible real-world significance for the duplication-divergence64

model, which further motivates the studies of its structural properties. However, it is also one65

of the least understood models, much less so than the Erdős-Rényi or preferential attachment66

models. At the moment there exist only a handful of results related to the behavior of the67

degree distribution of the graphs generated by this model. Unlike other dynamic graphs such68

as the preferential attachment model, the graphs generated by the duplication-divergence69

model can be very symmetric or quite asymmetric. In Figure 1 it is shown that there exist70

certain ranges of the model parameters p and r such that the graphs generated from the71

model are high symmetric, and certain ranges such that the graphs are asymmetric. Here the72

symmetry is measured by the size of the automorphism group |Aut(G)|, i.e. the number of73

distinct mapping of vertices onto themselves preserving the adjacency matrix. Still the basic
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Figure 1 Symmetry of graphs (log |Aut(G)|) generated by the Solé-Pastor-Satorras duplication-
divergence model, as presented in [22].
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question about the conditions under which the generated graph is symmetric or not remains75

unanswered. We believe that proving results about the range of the maximum degree can be76

a stepping stone for rigorous general results regarding symmetries and compression, just as77

it has been in the case for other random graph models.78

In particular, the parameters such as the maximum degree of a random graph and the79

degree of a given vertex are parameters that are studied not only for their own sake, but it80

turns out that their analysis opens the way to further results. Let us recall here two examples81

of these insights related to the questions of graph asymmetry and incompressibility.82

First, Łuczak et al. [17] used the estimation of these parameters to prove that the83

preferential attachment model with m ≥ 3 (where m is the number of edges added when84

a new node arrives) generates asymmetric graphs (i.e. graphs with only one automorphism)85

with high probability. This was achieved by proving two properties: (A) for any pair of86

early vertices t1 and t2 the degrees of both nodes t1 and t2 are distinct, and (B) for any87

pair of late vertices their corresponding neighbors are not the same, in particular, they have88

different sets of early neighbors (and therefore, a permutation of t1 and t2 does not produce89

symmetry). We believe that this approach to asymmetry analysis can be extended to the90

dupication-divergence model and it requires knowledge of the maximum degree which is91

exactly the topic of this paper.92

A second usage of these parameters was presented by Chierichetti et al. in [4]. For93

example, for the preferential attachment model they used an upper bound on the maximum94

degree and the degree of a vertex arriving at time s to show that the entropy over all graphs95

on t vertices generated by this model is bounded by Ω(t log t). They also used their bound96

on vertex degrees to provide the lower bounds on graph entropy for several other random97

graph models known in the literature, e.g. copying model or ACL model (see also [18] for98

the preferential attachment graph compression algorithm).99

Therefore, we turn our attention to the asymptotic behavior of the distribution of degrees100

of vertices in random graphs generated by the duplication-divergence model. Let us recall101

that, for example, for Erdős-Rényi model ER(t, p) it is known that the degree distribution102

approximately follows the Poisson distribution with a tail decreasing exponentially [2].103

Clearly, the degree of each vertex is a random variable with the binomial distribution, so it is104

highly concentrated around its mean (t− 1)p. Moreover, the maximum degree is also highly105

concentrated around (t − 1)p +
√

2p(1− p)(t− 1) log t [9, Theorem 3.5]. For preferential106

attachment model PA(t,m) it was proved that the degree distribution exhibits scale-free107

behaviour, i.e. the number of vertices with degree k is proportional to k−3 [3]. In addition,108

if we consider a vertex arriving at time s, its degree in graph on t vertices is proportional to109 √
t/s on average and with high probability it does not exceed

√
t/s log3 t [6]. Recently, in110

[10] some large deviation results for the degree distribution were presented.111

Here we provide analogous results for duplication-divergence model. The paper is112

organized as follows: in Section 2 we present a formal definition of the duplication-divergence113

model, recall previous results related to the properties of the degree distribution and introduce114

our main results. In Section 3.1 and Section 3.2 we prove upper bounds for the degrees for115

earlier and later vertices arriving in the graph, respectively. Finally, in Section 3.3 we give116

a proof of the lower bound for the maximum degree in the graph.117

2 Model definition and main results118

We formally define the duplication-divergence model DD(t, p, r), introduced by Solé et al. [21].119

Then we summarize our main results about the high-probability bounds on the the maximum120

CVIT 2016



23:4 The concentration of the maximum degree in the duplication-divergence models

degree.121

Throughout the paper we use standard graph notation from [7], e.g. V (G) denotes the122

vertex set of a graph G, degG(s) – the degree of node s in G and ∆(G) – the maximum123

degree of a vertex in G. All graphs considered in the paper are simple.124

By Gt we denote a graph on t vertices. Since in the paper we deal with the graphs125

that are dynamically generated, we assume that the vertices are identified with the natural126

numbers according to their arrival time. We use the notation degt(s) for the random variable127

denoting the degree of vertex s at time t i.e. after t vertices have been added in total.128

Let us now formally define the model DD(t, p, r) as follows: let 0 ≤ p ≤ 1 and 0 ≤ r ≤ T129

be the parameters of the model. Let also GT be a graph on T ≤ t vertices, with vertices130

having distinct labels from 1 to T . Now, for every t = T, T + 1, . . . we create Gt+1 from Gt131

according to the following rules:132

1. we add a new vertex t+ 1 to the graph,133

2. we choose a vertex u from Gt uniformly at random – and we denote u as parent(t+ 1),134

3. for every vertex v:135

a. if v is adjacent to u in Gt, then add an edge between v and t+ 1 with probability p,136

b. if v is not adjacent to u in Gt, then add an edge between v and t+ 1 with probability137

r
t .138

All edge additions are independent random Bernoulli variables.139

We now review in some details recent results on the degree distribution. For example, for140

p < 1 and r = 0, it is shown in [11] that even for large p the limiting distribution of degree141

frequencies indicates that almost all vertices are isolated as t → ∞. Moreover, from [16]142

we know that the number of vertices of degree one is Ω(log t) but again the precise rate of143

growth of the number of vertices with any fixed degree k > 0 is currently unknown. Recently,144

also for r = 0, in [14, 12] authors showed that for 0 < p < e−1 the non-trivial connected145

component has a degree distribution that has a power-law behavior with the exponent is146

equal to γ satisfying 3 = γ + pγ−2.147

Now let us turn to results directly related to the question of maximum degree. For148

example, in [23] it was shown that for any fixed s asymptotically as t→∞ it holds that149

E[degt(s)] =
{

Θ(ln t) if p = 0 and r > 0,
Θ(tp) otherwise.

150

151

Note that by the close relation between parameters ∆(Gt) and degt(s) we can establish easily152

that E[∆(Gt)] = Ω(tp) when p > 0 or r = 0, and E[∆(Gt)] = Ω(ln t) otherwise.153

It turns out that a lower bound on maximum degree is easily established as a byproduct154

of existing result by Frieze et al. [10]: for 1
2 < p < 1 and Gt ∼ DD(t, p, r) with p > 0 and155

s = O(1) it holds that156

Pr
[
degt(s) ≤

C

A
tp log−3−ε(t)

]
= O(t−A)157

158

for some fixed constant C > 0 and any A > 0. This is obviously the case because for any s it159

holds that degt(s) ≤ ∆(Gt). In the same paper, Frieze et al. also proved that for 1
2 < p < 1,160

Gt ∼ DD(t, p, r) and s = O(1) it holds asymptotically that161

Pr[degt(s) ≥ AC tp log2(t)] = O(t−A)162
163

for some fixed constant C > 0 and any A > 0. They also left as an open problem the question164

of the behavior of the right tail of the maximum degree distribution or, equivalently, of the165

upper bound on degt(s) for larger s that holds with high probability.166
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In this paper, we solve this problem. More precisely, we obtain two major results: first, we167

provide a bound degt(s) ≤ (1+ε)tppolylog(t) which holds quite surely (i.e. at least 1−O(t−A)168

for any given A > 0 [15]) for any ε > 0. We prove that this bound is valid for all vertices169

in Gt, not only for s = O(1) as before leading to the estimate ∆(Gt) ≤ (1 + ε)tppolylog(t)170

for any ε > 0 with high probability. Next, we provide a precise lower bound and we show171

that there exists an early vertex s such that degt(s) ≥ (1− ε)tp for any ε > 0 quite surely.172

Putting everything together we obtain the main result of this paper, that is:173

I Theorem 1. Let 1
2 < p < 1. Asymptotically for Gt ∼ DD(t, p, r)174

Pr[(1− ε)tp ≤ ∆(Gt) ≤ (1 + ε)tp log5−4p(t)] = O(t−A)175
176

for any constants ε > 0 and A > 0.177

In other words, we are now certain that the maximum degree of the graph is concentrated in178

the sense that by moving only by some polylogarithmic factor from the mean to both left179

and right we observe the polynomial tail decay.180

3 Analysis and proofs181

3.1 Upper bound, early vertices182

The main idea of the proof of the upper bound of the maximum degree is as follows: we first183

find for small s (i.e. s ≤ t0) a Chernoff-type bound on the growth of degτ (s) over an interval184

of certain length h.185

Then, we introduce an auxiliary deterministic sequences ti and Xti such that t0 < . . . <186

tk−1 < t ≤ tk. The definition of these sequences stems from the bound mentioned above, in187

particular from the relation between h and the growth of the degree, guaranteed with high188

probability. Ultimately, we prove degτ (s) ≤ Xτ with high probability for all s ≤ t0.189

Let us start with providing a Chernoff-type bound on the growth of the degree of a given190

early vertex:191

I Lemma 2. Let 1 ≤ s ≤ τ ≤ t. Let Xτ be any value such that degτ (s) ≤ Xτ . Then for any192

h ≤ εXτ with ε ∈ (0, 1) it is true that193

Pr
[
degτ+h(s) ≥ degτ (s) + (1 + 3ε) h(pXτ + r)

τ

]
≤ exp

(
−hε

2(1 + ε)(pXτ + r)
3τ

)
.194

195

Proof. First, recall that for i = 0, 1, . . . , h− 1 we have degτ+i+1(s) = degτ(s)+i +Iτ+i where196

Iτ+i ∼ Be
(
p degτ+i(s)+r

τ+i

)
. Also clearly degτ+i(s) ≤ degτ (s) + i for any i = 0, 1, . . . , h, so we197

have198

degτ+i(s)
τ + i

≤ degτ (s) + i

τ
≤
(

1 + i

Xτ

)
Xτ

τ
≤
(

1 + h

Xτ

)
Xτ

τ
≤ (1 + ε)Xτ

τ
.199

200

Therefore for any i = 0, 1, . . . , h − 1 we know that Iτ+i is stochastically dominated by201

I∗
τ+i ∼ Be

(
(1 + ε)pXτ+r

τ

)
.202

Now, from the well known Chernoff bound formula we know that for any ε ∈ (0, 1)203

Pr
[

degτ+h(s)− degτ (s) ≥ (1 + ε)E
[
h−1∑
i=0

I∗
τ+i

]]
≤ exp

(
−ε

2

3 E

[
h−1∑
i=0

I∗
τ+i

])
204

205

CVIT 2016
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and therefore206

Pr
[
degτ+h(s) ≥ degτ (s) + (1 + 3ε) h(pXτ + r)

τ

]
207

≤ Pr
[
degτ+h(s) ≥ degτ (s) + (1 + ε)2 h(pXτ + r)

τ

]
≤ exp

(
−hε

2(1 + ε)(pXτ + r)
3τ

)
.208

209

J210

Immediately we can infer how large h has to be to get the polynomial tail:211

I Corollary 3. Let 1 ≤ s ≤ τ ≤ t. Let Xτ ≥ 0, ε ∈ (0, 1) be values such that asymptotically212

for any A > 0, it holds that degτ (s) ≤ Xτ and 3Aτ log t ≤ ε3Xτ (pXτ + r). Then for any213

h ∈
[

3Aτ log t
ε2(pXτ+r) , εXτ

]
it is true that214

Pr
[
degτ+h(s) > degτ (s) + (1 + 3ε) h(pXτ + r)

τ

]
= O(t−A).215

216

Now we provide the definitions for two auxiliary sequences that we mentioned earlier:217

I Definition 4. Let 0 < p < 1 be fixed with certain α ≥ βi and φ < t. We define the218

increasing sequences (ti)ki=0 and (Xti)ki=0 and a number k in the following way:219

t0 = φ, ti+1 = ti + α ti log ti
Xti

, tk−1 < t ≤ tk,220

Xt0 = t0, Xti+1 = Xti + βi log ti.221
222

Observe that directly from the definition we know that Xti ≤ ti for all i = 0, 1, . . . , k.223

Moreover, note that we do not specify the values of Xτ for τ other than {t0, t1, . . . , tk, . . .}.224

However, in this section we will be using precisely these values in the following proofs, so225

such definition is sufficient for our purposes.226

Now we analyze the asymptotic properties of these sequences. We start with a simple227

lower bound:228

I Lemma 5. Assume that φ ≥ log2 t, α ≤
√
φ and βi ≥ α(p − δ) for some δ ∈ [0, p).229

Asymptotically as t→∞ for any i = 0, 1, . . . , k we have Xti ≥ t
p−δ
i .230

Proof. Let us define Yτ = τp−δ. By definition we know that Xt0 = φ ≥ Yt0 .231

Now, let us assume that Xti ≥ Yti holds for some i ≥ 0. Let us also denote by232

h = ti+1 − ti = α ti log ti
Xti

. Then we have asymptotically233

Yti+1 − Yti = (ti + h)p−δ − tp−δ
i = tp−δ

i

((
1 + h

ti

)p−δ

− 1
)
≤ tp−δ

i

(p− δ)h
ti

,234

235

for any δ ∈ [0, p), because Xti ≥ φ ≥ log2 t, so h
ti

= α log ti
Xti

≤ α log ti
φ ≤ log t√

φ
≤ 1. Thus,236

Yti+1 − Yti ≤ Yti
(p− δ)h

ti
≤ Xti

(p− δ)h
ti

= α(p− δ) log ti ≤ βi log ti = Xti+1 −Xti ,237
238

so clearly Xti+1 ≥ Yti+1 holds as well, which completes the inductive step. J239

Now we prove the upper bound:240
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I Lemma 6. Assume that φ ≥ log3 t, α(p − δ) ≤ βi ≤ αp + α
2 log ti for some δ ∈ [0, p). It241

holds asymptotically as t→∞ that Xti ≤ φ1−ptpi log ti for all i = 0, 1, . . . , k.242

Proof. We again proceed by induction. Clearly, Xt0 = t0 ≤ t0 log t0.243

Directly from the definition we get244

φ1−ptpi+1 log ti+1 −Xti+1 = φ1−ptpi+1 log ti+1 −Xti − βi log ti245

≥ φ1−ptpi+1 log ti+1 − φ1−ptpi log ti − βi log ti246

≥ φ1−ptpi log ti
((

ti+1

ti

)p( log ti+1

log ti

)
− 1
)
− βi log ti247

= φ1−ptpi log ti
((

1 + α log ti
Xti

)p(
1 + log(1 + α log ti/Xti)

log ti

)
− 1
)
− βi log ti.248

249

Now we use the inequalities (1+x)p ≥ 1+px− p(1−p)x2

2 +O(x3) and log(1+x) ≥ x−O(x2),250

true for any p ∈ [0, 1] and any x → 0. In particular, in our case x = α log ti
Xti

≤ 1√
log t

since251

α ≤
√
φ and φ ≥ log3 t. Therefore252

φ1−ptpi+1 log ti+1 −Xti+1253

≥ φ1−ptpi log ti
(
αp log ti
Xti

+ α

Xti

(1− o(1))− α2 p(1− p) log2 ti
2X2

ti

(1− o(1))
)
− βi log ti254

≥ αp log ti + α(1− o(1))− α2 p(1− p) log2 ti
2Xti

(1− o(1))− βi log ti255

≥ α log ti

p+ 1
log ti

(1− o(1))− p(1− p) log ti

2
√
tp−δ
i

(1− o(1))

− βi log ti,256

257

where in the last line we used the fact that Xti ≥
√
φtp−δ ≥ α

√
tp−δ – itself derived as258

a geometric mean between the bounds from Definition 4 and Lemma 5.259

Finally, we note that for a series βi ≤ αp+ α
2 log ti and for sufficiently large t clearly the260

last expression is non-negative, which completes the proof. J261

I Corollary 7. If α ≤ φ, then for the value of k such that tk−1 < t ≤ tk it is true that262

αk < t.263

Proof. We know from the definition of ti and Lemma 6 that264

t > tk−1 − t0 ≥ t0 +
k−2∑
i=0

αti log ti
φ1−ptpi log ti

≥ t0 +
k−2∑
i=0

α ≥ φ+ (k − 1)α > αk.265

266

J267

Here let us note the relation between the last elements of the sequences (ti)ki=0, (Xti)ki=0268

and the final values themselves:269

I Lemma 8. Let ε be any positive constant. Assume that φ ≥ log3 t, α ≤
√
φ, α(p− δ) <270

βi ≤ αp+ α
2 log ti for some δ ∈ [0, p).271

It holds asymptotically as t→∞ that (1− ε)tk ≤ t ≤ (1 + ε)tk−1 and (1− ε)Xtk ≤ Xtk ≤272

(1 + ε)tXk−1 .273

CVIT 2016



23:8 The concentration of the maximum degree in the duplication-divergence models

Proof. Clearly from the previous lemmas we know that for any constant ε > 0 it is true that274

tk
tk−1

= 1 + α log tk−1

Xtk−1

≤ 1 + α log tk−1√
φtp−δ
k−1

∈ (1, 1 + ε).275

276

The first claim follows from this and from the fact that tk−1 < t ≤ tk.277

Similarly, for any constant ε > 0 the second claim follows from the fact that Xtk−1 <278

Xt ≤ Xtk and that279

Xtk

Xtk−1

= 1 + βk log tk
Xtk−1

≤ 1 + α log tk−1(p+ ε)√
φtp−δ
k−1

∈ (1, 1 + ε).280

281

J282

Let us denote by Ai(s) the event that degti(s) ≤ Xti for a fixed s ≤ ti. Now we proceed283

with the main theorem:284

I Theorem 9. For Gt ∼ DD(t, p, r) with 1
2 < p < 1 and s ∈ [1, log4 t] it holds asymptotically285

that286

Pr
[
degt(s) > (1 + ε)tp log5−4p t

]
= O(t−A)287

288

for any constants ε > 0, A > 0.289

Proof. Throughout the proof we will use sequences (ti)ki=0 and (Xti)ki=0 with α = 273p3(A+290

1) log2 t, βi = αp+ α
2 log ti and φ = log4 t.291

Observe that all the assumptions of Lemma 5, Lemma 6 and Corollary 7 are met so292

we know that max{log4 t, tpi } ≤ Xti ≤ tpi log5−4p t for all i = 0, 1, . . . , k and also k < t
log2 t

.293

Moreover, if Ai(s) holds, then the assumptions of Corollary 3 also are true for τ = ti and294

h = αti log ti
Xti

as ti →∞ since for any constant A > 0 and ε = 1
9p log ti it holds that295

3Ati log t
ε2(pXti + r) <

αti log ti
Xti

< εXti .296

297

Moreover, since βi > αp, we know that for ε = 1
9p log ti asymptotically it is true that298

Xti+1 −Xti = βi log ti ≥ βi log ti
1 + 1

3p log ti
1 + 1

2p log ti

pXti + r

pXti

= (1 + 3ε)h(pXti + r)
ti

.299

300

Therefore, Corollary 3 implies that for any constant A > 0 and ε = 1
6 log ti it is true that301

Pr[¬Ai+1(s)|Ai(s)] = O(t−A).302

Clearly, for any 1 ≤ s ≤ t0 we know that A0(s) always holds so Pr[¬A0(s)] = 0. Finally,303

we obtain using Lemma 8 and Corollary 3 that304

Pr[degt(s) > Xtk ] ≤ Pr[degtk(s) > Xtk ] = Pr[¬Ak(s)]305

≤
k−1∑
i=0

Pr[¬Ai+1(s)|Ai(s)] + Pr[¬A0(s)] =
k−1∑
i=0

O(t−A) = O(t−A+1).306

307

J308
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3.2 Upper bound, late vertices309

In the second part of the proof we also use the sequences (ti)ki=0 and (Xti)ki=0 as defined in310

Definition 4. Moreover, in their definition throughout this section we use the same constants311

as in the proof of Theorem 9: α = 273p3(A+ 1) log2 t, βi = αp+ α
2 log ti and φ = log4 t.312

The proof consist of showing that for s ∈ [ti, ti+1) for some i = 0, 1, . . . , k − 1 the degree313

of the vertex when it appears in the graph (i.e. degs(s)) is with high probability significantly314

smaller than its respective Xti+1 . Furthermore, we show that the increase of the degree315

between degs(s) and degti+1(s) with high probability also cannot compensate this difference.316

Thus, Xt (or, to be more precise, Xtk) gives us a good upper bound on degt(s) for all s –317

and therefore also we obtain an upper bound for ∆(Gt).318

Let us introduce an auxiliary event Bl(s) =
⋃s
τ=1Al(τ) = [max{degtl(τ) : 1 ≤ τ ≤ s} ≤319

Xtl ] for any s and l such that s ≤ tl.320

I Lemma 10. Let s ∈ (tl, tl+1] for some l = 0, 1, . . . , k − 1. Then, for any ε ∈ (0, 1)321

Pr
[
degs(s) ≥ (1 + ε)(pXtl+1 + r)|Bl(tl) ∧ Bl+1(s− 1)

]
≤ exp

(
−ε

2

3 (pXtl+1 + r)
)
.322

323

Proof. First, we notice the fact that max{degtl+1
(τ) : 1 ≤ τ ≤ s − 1} ≤ Xtl+1 guarantees324

that max{degs(τ) : 1 ≤ τ ≤ s− 1} ≤ Xtl+1 . Therefore, degs(s) is stochastically dominated325

by As ∼ Bin
(
s,
pXtl+1 +r

s

)
so for any ε ∈ (0, 1) we obtain the result directly using the simple326

Chernoff bound with E[As] = pXtl+1 + r. J327

Note that the result implies that with high probability at most slightly more than p328

fraction of maximum allowed degree was already used at time s. Therefore, we are interested329

in bounding the remaining part of the degree, i.e. degtl+1
(s)− degs(s), by something smaller330

than the (1− p) fraction of maximum allowed degree.331

I Lemma 11. Let 1
2 < p < 1 and s ∈ (tl, tl+1] for some l = 0, 1, . . . , k − 1. Then332

asymptotically as t→∞, for any constant A > 0 it holds that333

Pr
[
degtl+1

(s) ≥ Xtl+1 |Bl(tl) ∧ Bl+1(s)
]

= O(t−A).334
335

Proof. Let us denote d = 1−p
2 Xtl+1 −

(1+p)r
2p .336

If s ∈ [tl+1− d, tl+1], then the result is a direct implication from Lemma 10 with ε = 1−p
2p ,337

as the degree of the vertex during an interval of length d cannot grow more than d. Therefore,338

it is sufficient to use the bound from Lemma 5.339

Otherwise s ∈ (tl, tl+1 − d). But if such s exists, then it is the case that d ≤ tl+1 − tl ≤340

tl log tl log2 t
Xtl

so from Lemma 5 with δ = 0 and by the fact that Xti ≥ φ we get that341

asymptotically Xtl ≥ t
γp
l log4(1−γ) t for any γ ∈ [0, 1] and therefore342

tl log tl log2 t ≥
(

1− p
2 Xtl+1 −

(1 + p)r
2p

)
Xtl ≥

1− p
4 X2

tl
≥ 1− p

4 t2γpl log8(1−γ) t.343

344

However, if we set e.g. γ = 3
5 , then we can bound the right side from below by 1−p

4 t
6/5
l log16/5 t345

– and for sufficiently large t we obtain a contradiction, as each term dominates the respective346

one on the left side. J347

I Lemma 12. Let 1
2 < p < 1 and s ∈ (tl, tl+1] for some l = 0, 1, . . . , k − 1. Then348

asymptotically as t→∞, for any constant A > 0 it holds that349

Pr [¬Bl+1(tl+1)|Bl(tl)] = O(t−A).350
351
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Proof. Let l be the first value for which the theorem does not hold. Then, from Lemma 11352

we get that for any constant A > 0 it holds that353

Pr [¬Bl+1(tl+1)|Bl(tl) ∧ Bl+1(tl)] =
tl+1−1∑
s=tl

Pr [¬Bl+1(s+ 1)|Bl(tl) ∧ Bl+1(s)]354

=
tl+1−1∑
s=tl

Pr [¬Al+1(s+ 1)|Bl(tl) ∧ Bl+1(s)] = O(t−A).355

356

From Theorem 16 we know that Pr [B0(t0)] = 1−O(t−A). Therefore, by our assumption,357

Pr [Bi(ti)] = 1 − O(t−A) for all i = 0, 1, . . . , l. We use this fact, the observation that358

Al(s) ⊆ Bl(tl) and Theorem 9 to get359

Pr [¬Bl+1(tl)|Bl(tl)] ≤
tl∑
s=1

Pr [¬Al+1(s)|Bl(tl)] ≤
tl∑
s=1

Pr [¬Al+1(s) ∧ Bl(tl)]
Pr [Bl(tl)]

360

≤
tl∑
s=1

Pr [¬Al+1(s) ∧ Al(s)]
Pr [Bl(tl)]

≤
tl∑
s=1

Pr [¬Al+1(s)|Al(s)]
Pr [Bl(tl)]

=
tl∑
s=1

O(t−A)
1−O(t−A) = O(t−A).361

362

Finally, from the fact that for any events E1, E2, E3 it follows that363

Pr[¬E1|E2] = Pr[¬E1 ∧ E3|E2] + Pr[¬E1 ∧ ¬E3|E2]364

≤ Pr[¬E1|E3 ∧ E2] + Pr[¬E3|E2],365
366

and we substitute E1 = Bl+1(tl+1), E2 = Bl(tl) and E3 = Bl+1(tl) to obtain the final367

result. J368

I Theorem 13. Let 1
2 < p < 1. Then asymptotically as t→∞, for any constant A > 0 it369

holds that370

Pr
[
∆(Gt) ≥ (1 + ε)tp log5−4p t

]
= O(t−A).371

372

Proof. We observe that373

Pr
[
∆(Gt) ≥ (1 + ε)tp log5−4p t

]
≤ Pr [¬Bk(tk)]374

≤
k−1∑
l=0

Pr [¬Bl+1(tl+1)|Bl(tl)] + Pr [¬B0(t0)] .375

376

Now, from Theorem 16 and Lemma 12 we know that both Pr [B0(t0)] = O(t−A) and377

Pr[¬Bl+1(tl)|Bl(tl)] = O(t−A) for any A > 0, respectively. Putting this all together with378

Lemma 8 we obtain the result. J379

3.3 Lower bound380

Here we proceed analogously as in the case of upper bound for early vertices. First, we381

provide an appropriate Chernoff-type bound for the degree of a given vertex with respect to382

some deterministic sequence. Then we again use a special sequence, which has the desired383

rate of growth and serves as a lower bound on degt(s). Note that we don’t need to extend384

our analysis for the late vertices since a lower bound for the degree of any vertex s at time t385

is also a lower bound for the minimum degree of Gt.386



A. Frieze, K. Turowski, W. Szpankowski 23:11

First, we note that if either we start from non-empty graph, then there exists s ∈ [1, t0]387

such that degt0(s) ≥ 1. Moreover, even if the starting graph is empty, but r > 0, then with388

high probability there exist a vertex with positive degree, as the probability of adding another389

isolated vertex to an empty graph on t vertices is at most (1 − r
t )
t ≤ exp(−r), so within390

first A
r log t vertices for any A > 0 we have a non-isolated vertex with probability at least391

1−O(t−A). Of course, if we both start from an empty graph and r = 0, then there cannot392

arise any edge in the duplication process – yet in this case we have trivially ∆(Gt) = 0, so393

we omit this case in further analysis.394

Let us now return to the aforementioned Chernoff-type lower bound:395

I Lemma 14. Let 1 ≤ s ≤ τ ≤ t. Let Xτ be any value such that degτ (s) ≥ Xτ . Then for396

any h ≤ ετ with ε ∈ (0, 1/3) it is true that397

Pr
[
degτ+h(s) ≤ degτ (s) + (1− 2ε) hpXτ

τ

]
≤ exp

(
−hε

2(1− ε)pXτ

2τ

)
.398

399

Proof. As in the proof of the previous Chernoff-type bound, let us recall that for i =400

0, 1, . . . , h−1 we have degτ+i+1(s) = degτ+i(s)+Iτ+i where Iτ+i ∼ Be
(
p degτ+i(s)+r

τ+i

)
. Also401

clearly degτ+i(s) ≥ degτ (s) for any i = 0, 1, . . . , h, so we have402

degτ+i(s)
τ + i

≥ degτ (s)
τ + h

≥ Xτ

τ(1 + ε) ≥ (1− ε)Xτ

τ
.403

404

Therefore for any i = 0, 1, . . . , h − 1 we know that Iτ+i stochastically dominates I∗
τ+i ∼405

Be
(

(1− ε)pXττ
)
.406

Now, from the well known Chernoff bound formula we know that for any ε ∈ (0, 1)407

Pr
[

degτ+h(s)− degτ (s) ≤ (1− ε)E
[
h−1∑
i=0

I∗
τ+i

]]
≤ exp

(
−ε

2

2 E

[
h−1∑
i=0

I∗
τ+i

])
408

409

and therefore410

Pr
[
degτ+h(s) ≤ degτ (s) + (1− 2ε) hpXτ

τ

]
411

≤ Pr
[
degτ+h(s) ≤ degτ (s) + (1− ε)2 hpXτ

τ

]
≤ exp

(
−hε

2(1− ε)pXτ

2τ

)
.412

413

Finally, is is sufficient to see that if ε < 1
3 , then we can replace 1−ε

2 by 1
3 in the last414

formula, which completes the proof. J415

I Corollary 15. Let 1 ≤ s ≤ τ ≤ t. Let Xτ ≥ 0, A > 0, ε ∈ (0, 1/3) be values such that416

degτ (s) ≤ τ and 3A log t ≤ ε3pXτ . Then for any h ∈
[

3A log t
ε2pXτ

, ετ
]
it is true that417

Pr
[
degτ+h(s) ≤ degτ (s) + (1− 2ε) hpXτ

τ

]
= O(t−A).418

419

Next, we again use sequences (ti)ki=1 and (Xti)ki=1 from Definition 4. Let us also define420

Ci(s) as the event that degti(s) ≥ Xti − φ+ 1 for a fixed s ≤ ti. This allows us to proceed421

with the main theorem of this section:422

I Theorem 16. For Gt ∼ DD(t, p, r) with 1
2 < p < 1 there exists s such that it holds423

asymptotically that424

Pr [degt(s) < (1− ε)tp] = O(t−A)425
426

for any constants ε > 0 and A > 0.427
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Proof. Again let us use sequences (ti)ki=0 and (Xti)ki=0 with α = 12p3(A + 1) log2 t, βi =428

αp − α
log ti and φ = log4 t. These parameters satisfy the assumptions of Lemma 6 and429

Corollary 7.430

Moreover, if Ci(s) holds, then the assumptions of Corollary 15 also are true for τ = ti431

and h = αti log ti
Xti

as ti →∞ since for any constant A > 0 and ε = 1
2p log ti it holds that432

3Aτ log t
ε2(pXti + r) <

αti log ti
Xti

< εti,433

434

and435

Xti+1 −Xti = βi log ti ≤ βi log ti
pXti

pXti

1− 2
2p log ti

1− 1
p log ti

= (1− 2ε)hpXti

ti
.436

437

Therefore, Corollary 15 implies that for any constant A > 0 it is true that Pr[¬Ci+1(s)|Ci(s)] =438

O(t−A). Note that we apply this with a sequence Xti − φ+ 1, not with Xti itself this time.439

Since Xt0 = log4 t we know that C0(s) holds with high probability: either the starting440

graph is nonempty or r > 0 and for first t0 vertices at least one edge appears. Finally, we441

obtain using Lemma 8 and Corollary 15 that for any ε > 0442

Pr[degt(s) < (1− ε)tp] ≤ Pr[degt(s) < Xtk−1 − φ+ 1] ≤ Pr[degtk−1
(s) < Xtk−1 − φ+ 1]443

= Pr[¬Ck−1(s)] ≤
k−2∑
i=0

Pr[¬Ci+1(s)|Ci(s)] + Pr[¬C0(s)] =
k−1∑
i=0

O(t−A) = O(t−A+1).444

445

J446

I Corollary 17. For Gt ∼ DD(t, p, r) with 1
2 < p < 1 it holds asymptotically that447

Pr [∆(Gt) ≤ (1− ε)tp] = O(t−A)448
449

for any constants ε > 0 and A > 0.450
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