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Abstract

Let the costs C(i, j) for an instance of the Asymmetric Traveling Salesperson Prob-
lem (ATSP) be independent copies of an absolutely continuous random variable C that
(i) satisfies F (x) = P(C ≤ x) = x + O(x2) as x → 0 and (ii) has an exponential tail.

We describe an algorithm that solves ATSP exactly in time elog
3+o(1) n, w.h.p.

1 Introduction

Let the costs C(i, j) for an instance of the Asymmetric Traveling Salesperson Problem
(ATSP) be independent copies of an absolutely continuous random variable C that satisfies

(i) F (x) = P(C ≤ x) = x+O(x2) as x → 0 and (ii) P(C ≥ x) ≤ αe−βx for constants α, β > 0.

In 1971 Bellmore and Malone [4] conjectured that using the assignment problem in a branch
and bound algorithm would give a polynomial expected time algorithm. Lenstra and Rinnooy
Kan [17] and Zhang [21] found errors in the argument of [4]. Since then, there has been little
progress on this problem, up until now. The main result of this paper is

Theorem 1 Let the costs for ATSP C(i, j) be independent copies of C. There is an algo-

rithm that solves ATSP exactly in elog
3+o(1) n) time, w.h.p.

1.1 Background

Given an n× n matrix C = (C(i, j)) we can define two discrete optimization problems. Let
Sn denote the set of permutations of [n] = {1, 2, . . . , n}. Let Tn ⊆ Sn denote the set of
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cyclic permutations i.e. those permutations whose cycle structure consists of a single cycle.
The Assignment Problem (AP) is the problem of minimising C(π) =

∑n
i=1C(i, π(i)) over all

permutations π ∈ Sn. We let ZAP = Z
(C)
AP denote the optimal cost for AP. The Asymmetric

Traveling-Salesperson Problem (ATSP) is the problem of minimising C(π) =
∑n

i=1 C(i, π(i))

over all permutations π ∈ Tn. We let ZATSP = Z
(C)
ATSP denote the optimal cost for ATSP.

Alternatively, the assignment problem is that of finding a minimum cost perfect matching in
the complete bipartite graph KA,B where A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} and
the cost of edge (ai, bj) is C(i, j).

It is evident that Z
(C)
AP ≤ Z

(C)
ATSP. The ATSP is NP-hard, whereas the AP is solvable in time

O(n3). Several authors, e.g. Balas and Toth [3], Kalczynski [14], Miller and Pekny [20],
Zhang [22] have investigated whether the AP can be used effectively in a branch-and-bound
algorithm to solve the ATSP and have observed that the AP gives extremely good bounds
on random instances. Experiments suggest that if the costs C(i, j) are independently and
uniformly generated as integers in the range [0, L] then as L gets larger the problem gets
harder to solve. Rigorous analysis supporting this thesis was given by Frieze, Karp and
Reed [11]. They showed that if L(n) = o(n) then ZATSP = ZAP w.h.p. and that w.h.p.
ZATSP > ZAP if L(n)/n → ∞. In some sense this shows why branch and bound is effective
for small L.

We implicitly study a case where L(n)/n → ∞. Historically, researchers have considered
the case where the costs C(i, j) are independent copies of the uniform [0, 1] random variable
U [0, 1]. This model was first considered by Karp [15]. He proved the surprising result that

ZATSP − ZAP = o(1) w.h.p. (1)

Since w.h.p. ZAP > 1 we see that this rigorously explained the observed quality of the
assignment bound. Karp [15] proved (1) constructively, analysing an O(n3) patching heuristic
that transformed an optimal AP solution into a good ATSP solution. Karp and Steele [16]
simplified and sharpened this analysis, and Dyer and Frieze [8] improved the error bound

of through the analysis of a related more elaborate algorithm to O
(

log4 n
n log logn

)
. Frieze and

Sorkin [12] reduced the error bound to

ZATSP − ZAP ≤ α1 log
2 n

n
w.h.p. (2)

One might think that with such a small gap between ZAP and ZATSP, that branch and bound
might run in polynomial time w.h.p. Indeed one is encouraged by the recent results of Dey,
Dubey and Molinaro [7] and Borst, Dadush, Huiberts and Tiwari [5] that with a similar
integrality gap, branch and bound with LP based bounds solves random multi-dimensional
knapsack problems in polynomial time w.h.p. Given Theorem 1, one is tempted to side with
[4]and conjecture that branch and bound can be made to run in polynomial time w.h.p.

In the analysis below, ω = ω(n) is an arbitrary function such that ω → ∞, ω = logo(1) n.
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2 Outline Proof of Theorem 1

Let M∗ =
{
(ai, bϕ(i)), i ∈ [n]

}
denote the optimum matching that solves AP. Any other

perfect matching of KA,B can be obtained from M∗ by choosing a set of vertex disjoint
alternating cycles C1, C2, . . . , Cm and replacing M∗ by M∗⊕C1 · · ·⊕Cm. Here an alternating
cycle is one whose edges alternate between being in M∗ and not in M∗. We use the notation
S ⊕ T = (S \ T ) ∪ (T \ S).

The basic idea of the proof is to show that if |M ⊕M∗| ≥ log2+o(1) n then w.h.p. C(M) −
C(M∗) > α1 log

2 n
n

where α1 is from (2). Given this, it does not take too long to check all
possible M , close in Hamming distance to M∗, to see if M defines a tour and then determine
its total cost.

3 Analysis of the Assignment Problem

3.1 M ∗ only has low cost edges

In this section we prove that w.h.p.,

max {C(i, ϕ(i))} ≤ γ∗ =
γ log n

n
for some absolute constant γ > 0. (3)

Define the k-neighborhood of a vertex to be the k vertices nearest it, where distance is given
by the matrix C. Let the k-neighborhood of a set be the union of the k-neighborhoods of
its vertices. In particular, for a complete bipartite graph KA,B and any S ⊆ A, T ⊆ B,

Nk(S) = {b ∈ B : ∃s ∈ S s.b. (s, b) is one of the k least cost edges incident with s}, (4)

Nk(T ) = {a ∈ A : ∃t ∈ T s.t. (a, t) is one of the k least cost edges incident with t}. (5)

Given the complete bipartite graph KA,B, any permutation π : A → B has an associated
matching Mπ = {(a, b) : a ∈ A, b ∈ B, a = π(b)}. Given a cost matrix C and permutation
π, define the digraph

D⃗ = D⃗C,π = (A ∪B, E⃗) (6)

consisting of backwards matching edges and forward “short” edges:

E⃗ = {(b, a) : b ∈ B, a ∈ A, b = π(a)} ∪ {(a, b) : a ∈ A, b ∈ N40(a)}
∪ {(a, b) : b ∈ B, a ∈ N40(b)}. (7)

The edges of directed paths in D⃗ are alternately forwards X → Y and backwards Y → X
and so they correspond to alternating paths with respect to the perfect matching defined
by π. Since “adding” an alternating cycle to a matching produces a new matching, finding
low-cost alternating paths is key to our constructions. In particular, an alternating path’s
backward edges (from the old matching) will be replaced by its forward ones, and so it helps
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to know (Lemma 2, next) that given x ∈ X, y ∈ Y we can find an alternating path from
x to y with O(log n) edges. The forward edges have expected length O(1/n) and we will
be able to show (Lemma 4, below) that we can w.h.p. be guaranteed to find an alternating
path from x to y in which the difference in weight between forward and backward edges is
O(log n/n). It is then simple to prove the upper bound in Lemma 3. A long edge can be
removed by the use of such an alternating path.

Lemma 2 W.h.p. over random cost matrices C, for every permutation π, the (unweighted)

diameter of D⃗ = D⃗C,π is at most k0 = ⌈3 log4 n⌉.

Proof. This is Lemma 5 of [12]. 2

If we ignore the savings from edge deletions in traversing an alternating path then it follows
fairly easily that

max {C(i, ϕ(i))} ≤ γ1 log
2 n

n
for some absolute constant γ1 > 0. (8)

For a fixed i we have

P
(
C(i, j) ≥ 6 log n

n
for j ∈ [n/2]

)
≤
(
1− 6 log n

n
+O

(
log2 n

n2

))n/2

= n−(3−o(1)).

It follows that w.h.p. all of the forward edges in the paths alluded to in Lemma 2 have cost
at most 6 logn

n
. If x ∈ A and y ∈ B then Lemma 2 implies that w.h.p. there is a path from x

to y for which the sum of the costs of the forward edges is at most 6k0 logn
n

. So if there is a

matching edge of cost greater than 6k0 logn
n

then there is an alternating path of using at most
k0 edges that can be used to give a matching of lower cost, contradiction. This verifies (8).

We now take account of the edges removed in an alternating path and thereby remove an
extra log n factor. We will need the following inequality, analogous to Lemma 4.2(b) of [10],
which deals with uniform [0, 1] random variables.

Lemma 3 Suppose that k1 + k2 + · · · + kM = K ≤ a logN, a = O(1), and Y1, Y2, . . . , YM

are independent random variables with Yi distributed as the kith minimum of N independent
copies of C. If λ > 1, λ = O(1) and N is large, then

P
(
Y1 + · · ·+ YM ≥ λa logN

N

)
≤ Na(α+log λ−θa−1λ),

where θ = 1
2
min {1, β, L−1} where L is the hidden constant in F (x) = x+O(x2) for x ≤ 1.

Proof. The density function fk(x) of the kth order statistic Y(k) satisfies

fk(x) =

(
N

k

)
(x+O(x2))k−1

(
1− x

2

)N−k

for x ≤ 1

2L
.

fk(x) ≤ α

(
N

k

)
(x+O(x2))k−1e−β(N−k)x for x >

1

2L
.
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Let β̂ = min {β, 1}. Hence the moment generating function of Y(k) is given by

E(etY(k)) ≤ αk

(
N

k

)∫
x≥0

etx(x+O(x2))k−1e−(N−k)θxdx

≤ αk

(
N

k

)∫
x≥0

xk−1(1 +O(x))k−1e−((N−k)θ−t)xdx

≤ αk

(
N

k

)∫
x≥0

xk−1e−((N−k)θ−t−Lk)xdx

≤ (αN)k

k((N − k)θ − t− L)k
.

So, if Y = Y1 + · · ·+ YM then

E(etY ) ≤
M∏
i=1

(
(αN)ki

((N − ki)θ − t− L)ki

)
=

(
αN

θN − t

)K M∏
i=1

(
1 +

θki + L

(N − ki)θ − t− ci

)
∼
(

αN

θN − t

)K

= λK ,

if we take t = θN − αλ−1.

So,

P
(
Y ≥ λa logN

N

)
≤ P

(
etY ≥ exp

{
tλa logN

N

})
≲

λK

N θλ−αa
.

2

Given this lemma we can verify (3).

Lemma 4 Equation (3) holds w.h.p.

Proof. Let

Z1 = max

{
k∑

i=0

C(xi, yi)−
k−1∑
i=0

C(yi, xi+1)

}
, (9)

where the maximum is over sequences x0, y0, x1, . . . , xk, yk where (xi, yi) is one of the 40
shortest edges leaving xi for i = 0, 1, . . . , k ≤ k0 = ⌈3 log4 n⌉, and (yi, xi+1) is a backwards
matching edge. Also, in the maximum we assume that all C(·, ·) are bounded above by

L = γ1 log
2 n

n
, see (8). We compute an upper bound on the probability that Z1 is large. For

any constant ζ > 0 we have

P
(
Z1 ≥

ζ log n

n

)
≲

k0∑
k=0

n2k+2 1

(n− 1)k+1
×

∫ L

y=0

 1

(k − 1)!

(
y log n

n

)k−1 ∑
ρ0+ρ1+···+ρk≤40(k+1)

q(ρ0, ρ1, . . . , ρk; ζ + y)

 dy
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where

q(ρ0, ρ1, . . . , ρk; η) = P
(
X0 +X1 + · · ·+Xk ≥

η log n

n

)
,

X0, X1, . . . , Xk are independent and Xj is distributed as the ρjth minimum of n − 1 copies

of C. (When k = 0 there is no term 1
k!

(
y logn

n

)k
).

Explanation: We have ≤ n2k+2 choices for the sequence x0, y0, x1, . . . , xk, yk. The term
1

(k−1)!

(
y logn

n

)k−1
dy asymptotically bounds the probability that the sum Σ = C(y0, x1) +

· · ·+ C(yk−1, xk), is in
logn
n

[y, y + dy]. Indeed, if C1, C2, . . . , Ck are independent copies of C
then since y ≤ L,

P
(
C1 + · · ·+ Ck ∈

log n

n
[y, y + dy]

)
=

∫
z1+···+zk∈ logn

n
[y,y+dy]

k∏
i=1

(
1 +O

(
log2 n

n

))
dz

∼
∫
z1+···+zk∈ logn

n
[y,y+dy]

1dz =
1

(k − 1)!

(
y log n

n

)k−1

dy.

We integrate over y. 1
n−1

is the probability that (xi, yi) is the ρith shortest edge leaving xi,
and these events are independent for 0 ≤ i ≤ k. The final summation bounds the probability
that the associated edge lengths sum to at least (ζ+y) logn

n
.

It follows from Lemma 3 that if ζ is sufficiently large then, for all y ≥ 0, q(ρ1, . . . , ρk; ζ+y) ≤
n−(ζ+y)/2 and since the number of choices for ρ0, ρ1, . . . , ρk is at most

(
41k+40

k

)
(the number

of non-negative integral solutions to x0 + x1 + . . .+ xk+1 = 40(k + 1)) we have

P
(
Z1 ≥ ζ

log n

n

)
≤ 2n2−ζ/2

k0∑
k=0

logk−1 n

(k − 1)!

(
42k

k

)∫ ∞

y=0

yk−1n−y/2dy

≤ 2n2−ζ/2

k0∑
k=0

logk−1 n

(k − 1)!

(
42e

log n

)k

Γ(k)

≤ 2n2−ζ/2(42e)k0+1

= o(n−2).

If a ∈ A and b ∈ B then Lemma 2 implies that w.h.p. there is a path of length at most
k0 from a to b and by the above, it will w.h.p. have length at most ζ logn

n
. So if there is a

matching edge of cost greater than ζ logn
n

there is an alternating path of length at most k0
that can be used to give a matching of lower cost, contradiction. 2

3.2 A high probability bound on ZATSP − ZAP

We now verify (2) with our more general distribution for costs. We let the Ĉ(i, j) be inde-

pendent copies of a uniform [0, 1] random variable and then let C(i, j) = F−1(Ĉ(i, j). Then
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we have

C(ATSP ) ≤
(
1 +O

(
log n

n

))
Ĉ(ATSP )

≤
(
1 +O

(
log n

n

))(
Ĉ(AP ) +O

(
log2 n

n

))
, from (2),

≤
(
1 +O

(
log2 n

n

))
Ĉ(AP )

≤ C(AP ) +O

(
log2 n

n

)
.

3.3 AP as a linear program

The assignment problem AP has a linear programming formulation LP . In the following
zi,j indicates whether or not (ai, bj) is an edge of the optimal solution.

LP Minimise
∑

(i,j)∈[n]2
C(i, j)zi,j

subject to
n∑

j=1

zi,j = 1, for i = 1, 2, . . . , n.

n∑
i=1

zi,j = 1, for j = 1, 2, . . . , n.

0 ≤ zi,j ≤ 1, for (i, j) ∈ [n]2.

(10)

This has the dual linear program:

DLP Maximise
n∑

i=1

ui +
n∑

j=1

vj

subject to ui + vj ≤ C(i, j), for (i, j) ∈ [n]2.

(11)

Proposition 5 Condition on an optimal basis for (10). We may w.l.o.g. take u1 = 0 in (11),
whereupon with probability 1 the other dual variables are uniquely determined. Furthermore,
the reduced costs of the non-basic variables C̄(i, j) = C(i, j) − ui − vj are independently
distributed as either (i) C−ui−vj if ui+vj < 0 or (ii) C−ui−vj conditional on C ≥ ui+vj,
if ui + vj ≥ 0.

Proof. The 2n− 1 dual variables are unique with probability 1 because they satisfy 2n− 1
full rank linear equations. The only conditions on the non-basic edge costs are that C(i, j) ≥
(ui + vj)

+, where x+ = max {x, 0}. 2
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3.4 Trees and bases

An optimal basis of LP can be represented by a spanning tree T ∗ of KA,B that contains
the perfect matching M∗, see for example Ahuja, Magnanti and Orlin [1], Chapter 11. The
edges of such a tree are referred to as basic edges, when the tree in question is T ∗. We have
that for every optimal basis T ∗,

C(i, j) = ui + vj for (ai, bj) ∈ E(T ∗) (12)

and
C(i, j) ≥ ui + vj for (ai, bj) /∈ E(T ∗). (13)

Lemma 6
|ui|, |vi| ≤ 2γ∗ for i ∈ [n], w.h.p. (14)

Proof. For each i ∈ [n] there is some j ∈ [n] such that ui+vj = C(i, j). This is because of the
fact that ai meets at least one edge of T and we assume that (12) holds. We also know that if
B occurs then ui′+vj ≤ C(i′, j) for all i′ ̸= i. It follows that ui−ui′ ≥ C(i, j)−C(i′, j) ≥ −γ∗

for all i′ ̸= i. Since i is arbitrary, we deduce that |ui−ui′| ≤ γ∗ for all i, i′ ∈ [n]. This implies
that |ui| ≤ γ∗ for i ∈ r. We deduce by a similar argument that |vj−vj′| ≤ γ∗ for all j, j′ ∈ [n].
Now because for the optimal matching edges (i, ϕ(i)), i ∈ [n] we have ui + vϕ(i) = C(i, ϕ(i)),
we see that |vj| ≤ 2γ∗ for j ∈ [n]. 2

Condition on M∗ and let G+ denote the subgraph of KA,B induced by the edges (ai, bj) for
which ui + vj ≥ 0, where u,v are optimal dual variables. Let T+ denote the set of spanning
trees of G+ that contain the edges of M∗.

Lemma 7 If T ∈ T+ and (14) holds then

P(T ∗ = T | u,v) ∼
∏

(ai,bj)∈G+

C(i,j)≤4γ∗

(1− ui − vj), (15)

which is independent of T .

Proof. Fixing u,v and T fixes the lengths of the edges in T . If (ai, bj) /∈ E(T ) then
P(C(i, j) ≥ ui + vj) = 1 if ui + vj < 0 and 1 − (ui + vj) + O((γ∗)2) otherwise. Also, given
(14), we have that P(C(i, j) ≥ ui + vj) = 1 if C(i, j) ≥ 2γ∗. We then note that the Chernoff
bounds imply that w.h.p. | {(i, j) : C(i, j) ≤ 4γ∗} | ≤ 4n2γ∗ = O(n log n). Thus,

P(T ∗ = T | u,v) =
∏

(ai,bj)/∈E(T )
C(i,j)≤4γ∗

(1− (ui + vj)
+ +O((γ∗)2))

∏
(ai,bj)∈E(T )

(1− ui − vj +O((γ∗)2))

∼
∏

(ai,bj)∈G+

C(i,j)≤4γ∗

(1− ui − vj). (16)
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2

Thus
T ∗ is an asymptotically uniform random member of T+. (17)

Now let Γ+ be the multi-graph obtained from G+ by contracting the edges of M∗ and let T̂ ∗

be the corresponding contraction of T ∗.

Lemma 8 The distribution of the tree T̂ ∗ is asymptotically equal to that of a random span-
ning tree of Kn + M̂ where M̂ is a matching of size at most λ∗ = λ log4 n for some constant
λ > 0. (M̂ yields double edges, other edges occur once.)

Proof. We have that for all i, j ∈ [n],

(ui + vϕ(j)) + (uj + vϕ(i)) = (ui + vϕ(i)) + (uj + vϕ(j)) = C(i, ϕ(i)) + C(j, ϕ(j)) > 0.

So, either ui + vϕ(j) > 0 or uj + vϕ(i) > 0 which implies that Γ+ contains the edge {ai, aj}.
So, Γ+ contains KA as a subgraph.

We know from (12) and Lemma 14 that T̂ ∗ only contains edges of cost at most 2γ∗. So from

(17), T̂ ∗ is a random spanning tree of a graph distributed as Gn,γ∗ plus a set of edges M̂ .

The edges M̂ arise from 4-cycles (C4) where each edge has cost at most γ∗. The expected
number of such cycles is O((nγ∗)4) and so by standard results on the number of copies of

balanced graphs, we see that |M̂ | = O(log4 n) w.h.p. At this density, any copies of C4 will
be vertex disjoint w.h.p., as can easily be verified by a first moment calculation.

A random spanning tree of Gn,p + M̂ , where M̂ is a random matching, is by symmetry, a

random spanning tree of Kn + M̂ . 2

We need to know that w.h.p., for each ai, there are many bj for which ui + vj ≥ 0. We fix
a tree T and condition on T ∗ = T . For i = 1, 2, . . . , r let Li,+ = {j : ui + vj ≥ 0} and let
Lj,− = {i : ui + vj ≥ 0}. Then let Ai,+ be the event that |Li,+| ≤ ηn and let Aj,− be the
event that |Lj,−| ≤ ηn where η will be some small positive constant.

Lemma 9 Fix a spanning tree T of Gr.

P

(
n⋃

i=1

(Ai,+ ∪ Aj,−) | T ∗ = T

)
= o(1). (18)

Proof. In the following analysis T is fixed. Throughout the proof we assume that the costs
C(i, j) for (ai, bj) ∈ T are distributed as independent copies of C, conditional on C(i, j) ≤ γ∗.
Equation (3) is the justification for this in that we can solve the assignment problem, only
using edges of cost at most γ∗. Furthermore, in Gr, the number of edges of cost at most γ∗

incident with a fixed vertex is dominated by Bin(n, γ∗) and so w.h.p. the maximum degree
of the trees we consider can be bounded by 2γ log n.
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We fix s and put us = 0. The remaining values ui, i ̸= s, vj are then determined by the costs
of the edges of the tree T . Let B be the event that C(i, j) > ui + vj for all (ai, bj) /∈ E(T ).
Note that if B occurs then T ∗ = T .

Let E be the event that |ui|, |vj| ≤ 2γ∗ for all i, j. It follows from the argument in the
previous paragraph that B ⊆ E .

We now condition on the set ET of edges (and the associated costs) of {(ai, bj) /∈ E(T )}
such that C(i, j) ≥ 2γ∗. Let FT = {(ai, bj) /∈ E(T )} \ ET . Note that |FT | is dominated by
Bin(n2, 2γ∗ +O((γ∗)2)) and so |FT | ≤ 3n2γ∗ with probability 1− o(n−2).

Let Y = {C(i, j) : (ai, bj) ∈ E(T )} and let δ1(Y ) be the indicator for As,+ ∧ E . We write,

P(As,+ | B) = P(As,+ ∧ E | B) =
∫
δ1(Y )P(B | Y )dC∫

P(B | Y )dC
(19)

Then we note that since (ai, bj) /∈ FT ∪ E(T ) satisfies the condition (13),

P(B | Y ) =
∏

(ai,bj)∈FT

(1− (ui(Y ) + vj(Y ))+ +O((γ∗)2))

≲
∏

(ai,bj)∈FT

(1− (ui(Y ) + vj(Y ))+)

≤ e−W , (20)

where W = W (Y ) =
∑

(ai,bj)∈FT
(ui(Y ) + vj(Y ))+ ≤ 12n2(γ∗)2 = 12γ2 log2 n. Then we have∫

Y

δ1(Y )P(B | Y ) dC =

∫
Y

e−W δ1(Y ) dC

≤
(∫

Y

e−2W dC

)1/2

×
(∫

Y

δ1(Y )2 dC

)1/2

= e−E(W )

(∫
Y

e−2(W−E(W ))dC

)1/2

× P(As,+ | E)1/2

≤ e−E(W )e12γ
2 log2 nP(As,+ | E)1/2. (21)∫

P(B | Y )dC = E(e−W ) ≥ e−E(W ). (22)

Let bj be a neighbor of as in Gr and let Pj = (i1 = s, j1, i2, j2, . . . , ik, jk = j) define the path
from as to bj in T .

It then follows from (19),(21) and (22) that

P(As,+ | B) ≤ e12γ
2 log2 nP(As,+ | E)1/2. (23)

Note that if B occurs and (12) holds then T ∗ = T . Let bj be a neighbor of as in Gr and let
Pj = (i1 = s, j1, i2, j2, . . . , ik, jk = j) define the path from as to bj in T . Then it follows from
(12) that vjl = vjl−1

− C(il, jl−1) + C(il, jl)). Thus vj is the final value Sk of a random walk
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St = X0 +X1 + · · · +Xt, t = 0, 1, . . . , k, where X0 ≥ 0 and each Xt, t ≥ 1 is the difference
between two independent copies of C that are conditionally bounded above by γ∗. Given E
we can assume that the partial sums Si satisfy |Si| ≤ 2γ∗ for i = 1, 2, . . . , k− 1. Assume for
the moment that k ≥ 4 and let x = uik−3

∈ [−2γ∗, 2γ∗]. Given x we see that there is some
positive probability p0 = p0(x) that Sk > 0. Indeed,

p0 = P(Sk > 0 | E) = P(x+ Z1 − Z2 > 0)− P(E), (24)

where Z1 = Z1,1 + Z1,2 + Z1,3 and Z2 = Z2,1 + Z2,2 are the sums of independent copies of C,
each conditioned on being bounded above by γ∗ and such that |x+

∑t
j=1(Z1,j −Z2,j)| ≤ 2γ∗

for t = 1, 2 and that |x+ Z1 − Z2| ≤ 2γ∗. The absolute constant η1 = p0(−2γ∗) > 0 is such
that min {x ≥ −2γ∗ : p0(x)} ≥ η0.

We now partition (most of ) the neighbors of as into N0, N1, N2 where
Nt = {bj : k ≥ 3, k mod 3 = t}, k being the number of edges in the path Pj from as to bj.
Now because T has maximum degree 2γ log n, as observed at the beginning of the proof of
this lemma, we know that there exists t such that |Nt| ≥ (n− (2γ log n)3)/3 ≥ n/4. It then
follows from (24) that |Ls,+| dominates Bin(n, η0) and then P(|Ls,+| ≤ η0n/10) = O(e−Ω(n))
follows from the Chernoff bounds. Similarly for L1,−. Applying the union bound over n
choices for s and applying (23) gives the lemma with η = η0/10. 2

3.5 Alternating paths

We now consider the the number of edges in alternating paths that consist only of basic
edges. We call these basic alternating paths.

Lemma 10 The expected number of basic alternating paths with k edges is at most

n2
(
1− η

1+η

)k
, where η is as in Lemma 9.

Proof. Let P = (bϕ(i1), ai1 , bϕ(i2), ai2 , . . . , bϕ(ik), aik) be a prospective basic alternating path.

Then Q = (ai1 , ai2 , . . . , aik) must be a path in T̂ ∗. When we uncontract M∗, the edge{
ait , ait+1

}
arises either (i) from (bϕ(it), ait+1 , bϕ(it+1)) or (ii) from (ait , bϕ(it+1), ait+1) and we

get an alternating path only if we have the former case for t = 1, 2, . . . , k.

Consider the random walk struction of a spanning tree as described in Aldous [2] and Broder
[6]. We have to modify the walk so that the tree contains M∗. We do this by giving the
edges of M∗ a large weight W ≫ n. This will mean that when the walk arrives at some ai it
is very likely to move to bϕ(i) and then back to ai and so on. It will however eventually leave
the edge (ai, bϕ(i)) and either leave from ai or from bϕ(i). We can model this via a sequence of
independent experiments where the probability of success is at most n/(W +n) at odd steps
at least ηn/(W + ηn) at even steps. Here odd steps correspond to being at ai and being in
case (i) and even steps correspond to being at bϕ(i) and being in case (ii). Lemma 9 implies
that when the walk adds an edge to the tree there is a probability of at least η that the edge
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arises from case (ii) above. The probability of an even success is therefore at least

∑
k≥1

(
1− n

W + n

)k (
1− ηn

W + n

)k−1

· ηn

W + n
=(

1− n

W + n

)
· ηn

W + n
· 1

1−
(
1− n

W+n

) (
1− ηn

W+n

) ∼ η

1 + η
.

This will be independent of the addition of previous edges and so the probability we find a

basic alternating path with k edges can be bounded by n2
(
1− η

1+η

)k
and the lemma follows.

2

So,

Corollary 11 W.h.p. the maximum length of a basic alternating path is at most 3η−1 log n.

Let Z1 denote the number of basic alternating paths. We would like to use the following
result of Meir and Moon [19]: if T is a uniform random spanning tree of the complete graph
Kn and dT (i, j) is the distance between i ̸= j ∈ [n] in T , then

P(dT (i, j) = k) =
k

n− 1
· n(n− 1) · · · (n− k + 1)

nk
, for 1 ≤ k ≤ n− 1.

The problem is that if a tree of KA contains ℓ edges of X (see Lemma 8) then its probability
of occuring in Γ+ is inflated by 2ℓ. On the other hand, the probability that a random tree
in KA contains ℓ given edges is at most (2/n)ℓ. (2/n for ℓ = 1 and at most (2/n)ℓ in

general using negative correlation, see [18].) So, assuming |M̂ | ≤ λ log4 n (see Lemma 8),
and accounting for asymptotic uniformity, the expected number of basic alternating paths
can be bounded by 1 + o(1) times

n2

n∑
k=1

k

n− 1
·
(
1− η

1 + η

)k

·
∑
ℓ≥0

(
λ log4 n

ℓ

)(
4

n

)ℓ

≤ 2n

η
.

Combining this with Corollary 11 we obtain

Lemma 12 W.h.p there are at most m = ωn basic alternating paths, each using O(log n)
edges.

So, w.h.p. the matching M corresponding to the ATSP solution is derived from a collection
of short basic alternating paths P1, P2, . . . , Pm joined by non-basic edges to create alternating
cycles C1, C2, . . . , Cℓ. Now consider an alternating cycle C = (ai1 , bj1 , . . . , bjt , ai1) made up
from such paths by adding non-basic edges joining up the endpoints. Putting C̃(i, j) =
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C(i, j)− ui − vj, we have that where jt = ϕ(it) for t = 1, 2, . . . , k,

C(C ⊕M∗)− C(M∗) =
t∑

k=1

(C(ik+1, jk)− C(ik, jk))

=
t∑

k=1

((C̃(ik+1, jk)) + uik+1
+ vjk)− (C̃(ik, jk) + uik + vjk)

=
t∑

k=1

C̃(ik+1, jk)

=
t∑

k=1
(ik+1,jk) non-basic

C̃(ik+1, jk).

We now estimate the expected number of sets of such cycles Z2 that increase the cost by at

most ζ = α1 log
2 n

n
, the upper bound on the gap between AP and ATSP found in [12]. Thus,

where C̃1, C̃2, . . . , C̃k are independent random variables distributed as (i), (ii) of Proposition
5,

E(Z2) ≤
∑
k≥2

k/2∑
ℓ=1

∑
k1+···+kℓ=k

ℓ∏
i=1

(
m

ki

)
ki!2

kiP
(
C̃1 + C̃2 + · · ·+ C̃k ≤ ζ

)
(25)

≲
∑
k≥2

(2m)k
(2ζ)k

k!

k/2∑
ℓ=1

(
k

ℓ

)
(26)

≤
∑
k≥2

(
8α1eω log2 n

k

)k

. (27)

Explanation: We choose ℓ, k1 + · · ·+ kℓ = k and then for each i choose ki paths and order
them and orient them in at most

(
m
k1

)
ki!2

ki ways. To go from (25) to (26) we use

P
(
C̃1 + · · ·+ C̃k ≤ ζ

)
≤
∫
z1+···+zk≤ζ

k∏
i=1

(
1 +O(zi)

1− 3γ∗

)
dz

≲ 2k
∫
z1+···+zk≤ζ

1dz =
(2ζ)k

k!
.

4 Finishing the proof of Theorem 1

It follows from (27) that w.h.p. we can restrict our attention to sets of cycles containing at
most L = ω2 log2 n non-basic edges in our search for an optimal solution to ATSP. Note that
the basic edges of such cycles are determined by T ∗. We can examine all such sets of cycles
and solve ATSP in O(n2L2LL!) time. This matches the claimed running time in Theorem 1.
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Although the above scheme finds the optimal tour w.h.p., it does not give a proof of opti-
mality. A small adjustment will solve this problem. Let Z3 denote the number of sets of
disjoint paths and cycles that use L non-basic edges and with C̃ cost at most η. Arguing as
in (25), we find that E(Z3) = o(1). Now if there is a set of cycles with more than L non-basic
edges and with a C̃ value less than η, then Z3 > 0. So, by checking collections of paths and
cycles that use L non-basic edges as well as the collections of cycles we also get a proof of
optimality. This completes the proof of Theorem 1.

5 Summary and open questions

One can easily put the enumerative algorithm in the framework of branch and bound. At
each node of the B&B tree one branches by excluding edges of M∗. So, at the top of the
tree the branching factor is n and in general, at level k, it is n−k. W.h.p. the tree will have
depth at most L.

The result of Theorem 1 does not resolve the question as to whether or not there is a branch
and bound algorithm that solves ATSP w.h.p. in polynomial time. This remains an open
question.

Less is known probabilistically about the symmetric TSP. Frieze [9] proved that if the costs
C(i, j) = C(j, i) are independent uniform [0, 1] then the asymptotic cost of the TSP and
the cost 2F of the related 2-factor relaxation are asymptotically the same. The probabilistic
bounds on |TSP − 2F | are inferior to those given in [12]. Still, it is conceivable that the
2-factor relaxation or the subtour elimination constraints are sufficient for branch and bound
to run in polynomial time w.h.p.
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