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We describe a polynomial (O( n’.‘)) time algorithm DHAM for finding hamilton 
cycles in digraphs. For digraphs chosen uniformly at random from the set of 
digraphs with vertex set (1,2,. . . , n } and m = m(n) edges the limiting probability 
(as n + co) that DHAM finds a hamilton cycle equals the limiting probability that 
the digraph is hamiltonian. Some applications to random “ travelling salesman 
problems” are discussed. 6 1988 Academic PRSS, Inc. 

1. INTRODUCTION 

Some of the main problems in the study of hamilton cycles in random 
(undirected) graphs have been solved in recent years. For example Komlbs 
and SzemerCdi [13] showed that if m = :n log n + $n log log n + c,n and 
G n, m denotes the random graph sampled uniformly from the set of graphs 
with vertex set V, = {1,2, . . . , n } and m edges, then 

lim Pr( G,, m is hamiltonian) = ,,limm Pr( 6 (G,, ,) 2 2) 
n-+m 

if c, + -cc 
-e-zc if c, --) c 0.1) 

ifc,-, cc, 

where 6(G) is the minimum degree of graph G. 
Bollobas [3] strengthened this result in the following way: let e,, e2.. . eN, 

where N = ‘1 0 be a random permutation of the edges of the complete 
graph K,. Let G,,, = (V,, {e,, ez,. . . , e,}) and m* = min{ m: 6(G,) 2 2). 
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Bollobas showed that 

lim Pr(G,,,, is hamiltonian) = 1. 
“‘CQ 

(1.2) 

Subsequently Bollobas, Fenner, and Frieze [5] described an algorithm 
HAM which can be implemented in O(n3+‘(‘)) time and satisfies 

lim Pr(HAM finds a hamilton cycle in G,, ,) 
n--cc 

= lim Pr( G,, m is hamiltonian). (1.3) 
n--m 

There are now a large number of related results, many of which can be 
found in Bollobas [4, Chap. VIII]. 

When we come to digraphs we find that previous research has left 
considerable gaps in our knowledge. The main result of this paper provides 
the analogs of (1.1) and (1.3) for digraphs. Let D,,, denote the digraph 
sampled uniformly from the set of digraphs with vertex set V, and m edges. 
Suppose now m = n log n + c,n. 

Let S+(D), S-(D) denote the minimum outdegree and indegree of a 
digraph D. We prove 

THEOREM 1. There is a (randomised) polynomial (O(n’.‘)) time al- 
gorithm DHAM which satisfies 

lim Pr(DHAM fina5 a hamilton cycle in D,,, ,) 
n+ c9 

= ~~m~Pr(min(s’(D~,,),S-(D,,,)} 2 1) 

i 

0 if c, --f -co 

= e-2e-’ if c, -+ c 

1 ifc,-+ cc. 

The previous best existence result is due to McDiarmid [14] who gave a 
nonconstructive proof that, in the notation of Theorem 1, if c, - log log n 
-+ cc then 

lim Pr(D,,, is hamiltonian) = 1. 
n+cc 

He proved this by showing that for any 0 I p I 1, 

WW is hamiltonian) 2 Pr( G,, , p is hamiltonian), 

where D,, p (resp. G,,,) is the random digraph (resp. graph) with vertex set 
V, in which each of the 2N (resp. N) possible edges occur independently 
with probability p, 
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The best previous result concerning polynomial time algorithms is due to 
Angluin and Valiant [2] who described an 0( n log n) time algorithm A and 
showed 

lim Pr( A finds a hamilton cycle in D,,, *) = 1, 
n-m 

assuming p = c log n/n and c is a sufficiently large constant. 
Instead of proving Theorem 1 directly we shall instead prove a stronger 

result, the directed constructive equivalent of (1.2), from which the theorem 
follows. 

Let q, e2,. . . e,(,-,) be a random permutation of the edges of the 
complete digraph DK, with vertex set V,. Let E,,, = {e,, e2,. . . , e,} for 
1 I m I n(n - 1) and D,,, = (V,, E,,,). 

TI-IEOI@M 2. Let m* = nh{ m: 8+( 0,) 2 1, S-(D,,,) 2 I}. l&n 

lim Pr(DHAM finds a hamilton cycle in D,,,.) = 1. 
n+co 

(Note that lim ,,,,Pr(HAM finds a hamilton cycle in G,,) = 1 was 
proved in [5].) The proof genera&es easily to the case where we want k 
edge disjoint cycles. 

THEOREM 3. Let k 2 1 be an integer constant and let rnz = min{ m: 
a’( 0,) 2 k, 6-(D,,,) 2 k}. Then there exists an O(n1.5) time algorithm 
DHAM, satisfying 

lim Pr(DHAM, finds k edge disjoint hamilton cycles in Dmr) = 1. 
“+CC 

We will also consider the use of DHAM in the exact solution of random 
travelling salesman problems. The first application is to the Bottleneck 
Travelling Salesman Problem (BTSP). An instance of BTSP is specified by 
the assignment of a numerical weight to the edges of DK,. The objective is 
to find a hamilton circuit for which the maximum edge-weight is minimised. 

Let us assume that edge-weights are drawn independently from the 
uniform [0, l] distribution. As a simple corollary of Theorem 2 we prove 

THEOREM 4. There is a polynomial (0( n2)) time algorithm DBOT satisfy- 
ing 

lim Pr( DBOT solves BTSP exactly) = 1. 
tl’M 

We can use ideas from this paper and Frieze [9] to tackle the more usual 
travelling salesman problem (DTSP) in which we seek the hamilton circuit 
of minimum total weight. We change the distribution so that the edges of 
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DK, are independently given integer weights from (0, 1, . . . , B(n) - 1). 
We can then prove 

THEOREM 5. If B(n) = 0( n/log n) then there is a polynomial ( O(n2)) 
time algorithm DTSPSOLVE satisfying 

lim Pr( DTSPSOLVE solves DTSP exactly) = 1. 
n-co 

(In order not to make the paper too long we will only give an outline 
proof of this result, but we hope it will suffice to convince the reader.) 

2. SOME NOTATION AND PRELIMINARIES 

For convenience we give here some definitions and basic results that are 
used throughout the paper. 

E(X) denotes the edge set of X, where X can be a graph, digraph, or 
cycle and V(X) denotes its vertex set. 

B(a, p) denotes the binomial random variable with parameters a and 
P and 

BS(b, c; a, p) = Pr(b I B(a, p) 5 c). 

The following inequalities for the tails of the binomial distribution are 
invaluable and can be derived, for example, from Theorem 1 of Hoeffding 
[lo]: 

BS(0, (1 - e)up; a, p) I e-E2ap/2, O<&<l, (2.la) 

BS((1 + &)a~, cc; a, p) < e-E2ap/3, O-C&Cl. (2.lb) 

Let Q, be a sequence of events. We say that Q, occurs almost always 
(a.a.) if lim n-t mPr(Q,) = 1. It is also useful to allow a-a. to stand for 
“almost all”, with the obvious meaning. 

If m = an log n for some constant CY > 0 and p = m/n(n - 1) then it is 
convenient to derive properties of D,, m from D,, p. For a property Q 

n(n-1) 

Pr(D,,. ha Q> = z, Pr(D,‘,, has e)Pr(lE(Dn,,> 1 = mt) (2.2) 

as Dn,pjm’ edges is distributed as D,,, ,+ We deduce from (2.2) that 

Pr(D,,, has Q) I (1 + o(l)),/wPr( Dn,p has Q) (2.3) 
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and that if { Q, } are monotone properties, i.e., are preserved by adding 
edges or are preserved by deleting edges then 

D,,, p has Q, a-a. implies D,, , m has Q, a.a. (2.4) 

The following quantities are defined later as well but are given here for 
quick reference: 

m, = [nlogn - nlogloglogn], m, = [nlogn + nlogloglogn], 

m2 = [5n log n/6], and m3 = [2n log n/3]. 

p; = m;/n(n - 1) for i = 0,1,2,3. 

3. OVERVIEW OF THE ALGORITHM 

We assume that the input to DHAM consists of the edges ED, in 
random order e,, e2,. . . , e,(,-,). However, only the edges e,, e2,. . . , em* 
are available to DHAM. 

In the undirected case one tries to extend a current path and use 
rotations (see Fig. 1) to create extra paths. This approach fails in digraphs, 
for obvious reasons. 

The ideas behind DHAM derive from the patching algorithms of Karp 
[ll], Karp and Steele [12], and, more recently, Dyer and Frieze [6], for 
finding approximate solutions to travelling salesman problems. 

The algorithm is split into 3 phases. In Phase 1 we construct a small set 
of edges E' c E,. such that if D' = (V,, El) then 6+( 0') 2 1 and 
6-( D') 2 1 and D' a.a. contains a set of about log n vertex disjoint cycles 
covering V,. 

In Phase 2 we try to “patch” the cycles together in pairs by 2-edge 
exchanges (see Fig. 2). We will see that at the end of this phase there is a.a. 
a cycle c” of size n - o(n) plus a few (O(log n)) others. 

FIGURE 1 
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FIGURE 2 

FIGURE 3 

In the final phase we try to patch the small cycles one by one into c” by a 
more complex process of “double-rotations” (see Fig. 3). 

4. DETAILS OF PHASE I 

PHASE 1 OF DHAM. 

begin 
u := a random permutation of V,; {used t o avoid bias in the set of cycles 

produced {by Phase 1 
if e = (u, w) let e^ denote (u, a(w)); 
$1+:= jI-;= @; ~ 

{construct a set E’+ of about 10n edges for which a+(,!?‘+) 2 1 and the 
average out-degree is = lo} 

A:for i = 1 to m* do 
begin 

if d+(u;, 2”) I 9 then ,@+:= l?+U{6i}; 

{where ei = ( ui, wi) and d+( u, E) (resp. d-( u, E)) is the number of edges 
in E with tail (resp. head) u.} 

end; 

{consiruct a set l?- of about 10n edges, disjoint from l?+, for which 
6-( E’ -) 2 1 and the average indegree is = 10) 
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B:for i = 1 to m* do 
begin 
if e, 4 ,!?I+ and &(a( wi), z’-) I 9 then I?- := 8’- U { 6,) 

end 
i .= El+ ” $7 

BIP := bipartite ‘graph (V,, W,, A) where W, is a disjoint copy of V, and 
{ u, w  } E A iff ( u, w) or (w, u) E I.?; 

{BIP is close to the model of Walkup [15] where each vertex randomly 
chooses 10 neighbours. 10 is sufficiently large so that it is easy to show it 
a.a. contains a perfect matching, 2 in fact should suffice.} 

apply the algorithm of Even and Tarjan [8] to find a maximum matching 
M of BIP; 
{This algorithm is not “aware” that the edges of E,. have been 
relabelled.} 
if M is not a perfect matching then DHAM has failed else 
begin 

define the permutation 1c, of V, by M = ((u, q(u)): u E V,}; 
$) := &$/,; 
output F = {(u, +(u)): u E V,} 
{F defines a set of vertex disjoint cycles covering V,} 

end 
end 

Before proving that Phase 1 is a.a. successful we discuss some preliminary 
results. Let m, = ]n log n - n log log log n] and m, = In log n + 
n log log log n 1. It is straightforward to show 

s+(Dnl,) = lY(D,,) = 0 and s+( D,,) = s-( D,,) = 1 

a.a. (Erdos and Renyi [7]) 
and hence 

m, I m* I m, a.a. 

Next let 

UE V,: d+(u,EmO) I&= 
310gn I 1 log log n 

or d-( u, E,,,) I I, 

LEMMA 4.1. 

u, w E TINY implies dist(u, w; GD,,,,) 2 5 a.a. (4.1) 

where if D is a digraph then GD is the graph obtained by ignoring edge 
orientation and parallel edges in D and dist(u, w; G) is the distance from 
uertex u to uertex w in graph G. 
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Proof 

A(GD,,,O) I 6logn a.a. (actually with probability 1 - o( n-i)), 

(4.2) 
where A denotes maximum degree. (The expected number of vertices of 
degree exceeding 6 log n in GD,,pO is at most n BS (610g n, n - 1; n - 
1,2p,) = o(n-‘); now apply (2.3)) 

Here and throughout the paper we do not aim for best possible interim 
results, only for ease of calculation: 

ITINY = n’(l) a.a. (4.3) 

(The expected size of TINY in GD,,pO is n BS(0, I,; n - 1, p,,) = n’(l). The 
markov inequality (Pr( X > a) I E( X)/a for a nonnegative random vari- 
able X, E = Expectation here, naturally) implies that ITINY 1 = n’(l) a.a.; 
apply (2.4)) 

We note next that 

Pr(3 a path of length I 4 in CD,,+, with distinct endpoints U, w  E TINY) 

I ( t)io( n i 2)k!pt+1BS(0, I,; n - 5,2p,)’ = O(n-(‘-O(‘)) 

and so, by (2.3), (4.1) holds in CD,,. Now CD,,,, is obtained from CD,, by 
adding 2n logloglog n (random) edges. Assuming (4.1) holds in GO,, m. 
and A(GD,, ,,,) I 6 log n and ITINY 1 = no(‘) we find the probability that 
any of these extra edges is incident with two vertices, both at distance 3 or 
less from TINY is O(n ‘0) )( log n)% logloglog n/n2) = o(1) and the result 
follows. 0 

LEMMA 4.2. The following hold a.a.: 

(a) Phase 1 succeeds. 

(b) 4 has at most 2 log n cycles. 

Proof. (a) Let us first change the problem slightly so that loops are 
allowed and return later to the loopless case. We now assume that 
e,,e,,..., e,,z is a random permutation of V, X V,. We can apply Phase 1 
to this sequence as we did above. 

Remark 1. The distribution of the sequence ( ui, a( wi)) is independent of 
cr. (This is not the case if no loops are allowed in the original sequence.) 

We must show that BIP a.a. contains a perfect matching. Let us first 
consider the distribution of 8’: In the construction of I?+ each u E V, 
independently chooses a(u) = min{ 10, d+(u)} out-neighbours at random 
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from V,, where d+(u) (resp. d-(u)) is the out-degree (resp. in-degree) of u 
in D,,,.. For w  E V, let I’-(w) = {u E V,: (u, w) E El+}. Given 
$+, ,!?I- has the following distribution: each w  E V, independently 
chooses b(u) = min(lO, d-(w) - IT-(w) 1) in-neighbours from V, - 
l?(w) - {u: d’(u) < lo}. 

Suppose now that BIP does not contain a perfect matching. Then by 
Hall’s theorem there exists K s V,, llvl = k, and L C W,, IL1 = k - 1 
such that N( K, BIP) c L where N( K, BIP) = { y: 3.x E K such that {x, JJ} 
E E(BIP)}. Now k # 1 or n since S (BIP) 2 1 by construction. Let 
K’ = K n TINY and k’ = ) K’I. Then (4.1) implies (i) I L’I 2 k’, where 
L’ = N( K’, BIP) and (ii) each u ‘,K - K’ chooses at least 9 out-neighbours 
in L - L’ in the construction of E l+ But the probability of the occurrence . 
of (ii) with k I n/2 is at most 

‘~(~)(,~,)(lO(~)‘)’ (-k-k’) 
1~/21 &2lOt9 ’ 

dl 
r-9 i 1 t2n9 

= O(03). (4.4) 

The case k > n/2 is equivalent to the existence of a K G W,, I #I I n/2 in 
which IN(K, B)( < IKKJ. We will show that 

P-b4 5 lt;;(!yn for all w  E W, a.a. (4.5) 

We can now argue as before, given (4.5), that this implies each w  E K - 
TINY chooses at least 9 in-neighbours from L - L’ in the construction of 
2’ -, where L, L’ are defined analogously to the previous case. The prob- 
ability of this is O(ne6’) as before. 

To prove (4.5) we note that IT-(w)1 is dominated by B(lOn,l/n) and 
then a simple calculation yields (4.5). 

(b) Let $I* be some fixed permutation of I’,. Then 

Pr(Phase 1 outputs (p*) = CPr(rC, = a*+*la = a*)Pr(a = a*) 
n 

= -$ CPr(# = u*$*lu = u*). 
* 0 

But Remark 1 implies Pr( $ = $* 1 u = a,) = Pr( J, = #* lu = u2) for any 
permutations $J*, q, u2. Thus each (p* is output with the same probability. 
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Now it is well known (for example, [3, p. 3631) that a random permuta- 
tion of V, a.a. has approximately log n cycles. We conclude that (when 
loops are present) Phase 1 ends a.a. with a set of ri < 2 log n (say) vertex 
disjoint cycles covering V,. Suppose now that we only consider loopless 
sequences of edges. This is the same as proceeding as above except that the 
edges e;, i I m*, cannot be used. We show that 

Pr(n0 loop in e,, e2,. . . , e,. is used in the construction of BIP) 

2 (1 - o(l))eT2’ (4.6) 

and then we can infer the result that we actually want. 
We have to estimate the probability that no edge (i, u(i)) is chosen. But 

referring to the discussion of the distribution of 8’ we see that, using (4.5) 
this probability is at least 

and (4.6) follows. 0 

5. DETAILS OF PHASE 2 

We inherit from Phase 1 the permutation + plus the associated set of 
edges F, which we now denote by c#+ Fl, respectively. Let m2 = 
15~1 log n/6]. 

PHASE 2 OF DHAM. 

being 
+2 := &; F2 := F,; 
A:fori=ltom,do 
begin 

if e, = (x, y) and x, y are in different cycles of 
F2 ad e = (+21(~), +2(xN = (z, w) E E,,,, then 

begin 
F2 := (F2 U {e;, e}) - {<x9 w),(z, v)}; 
+2po =y; +2(z); = Y 

end 
end 

end{if no patches are made we arrive here} 
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Let C,, C,, . . . , Cz denote the cycles defined by F2, $I*, at the end of 
Phase 2, where IC,( 2 IC,l 2 .*. 2 1 Cr, I. We know that r, I 2 log n a.a. 
and the aim now is to show that 1 C, 1 = n - o(n) a.a. 

Let now m3 = [2n log n/31 and LARGE = {u E V,: d+(o, E,,) r I, 
and d-(u, EmJ 2 1,). 

LEMMA 5.1. ILARGE! 2 n - n.5 a.a. 

Proof: Consider D,,, p3, 

~(1 V, - LARGEIin Dn,pJ) I 2n BS(O, 1,; n - 1, ~3) = O(n1’3+0(1))a 

Hence 1 V, - LARGEI 2 n1i2 a.a. in D”,+. Now apply (2.4). 0 

The edges in the set (Em0 - E,J n ELARGE (where ELARGE = 
LARGE x LARGE - {(u, u): u E LARGE}) are only slightly conditioned 
by the construction of El, assuming that (4.5) holds. In this case we have, 
given E’, 

if m2 < i < m,, and e, = (u, w) where u, w  E LARGE then 
e, is equally likely to be any edge in ELARGE which has not (5 .l) 
occurred previously. 

Now comes a “preparatory” lemma. 

LEMMA 5.2. The following holds a.a.: 

S G V,, sO = [n/G] I (S( I n - so implies (5.2) 

I{h w) E Em3: v E s, w  e s} 1 2 ISl(n - ISl)logn/2n. 

Proof: We consider the corresponding result for D,,*,. If S is fixed and 
s = JS( then the number of edges from S to I’, - S in D,,p, is dis- 
tributed as B(s(n - s), p3). Now Pr(B(s(n - s), p3) I 3s(n - s)p,/4) I 
e-s(n-s)p3/32 on using (2.la). Applying (2.3) we find Pr((5.2) fails) I 
3,/*2 ne-d”-%dP3/32 = o(l). q 

We can now prove 

LEMMA 5.3. lc,( 2 no = In - fi/lOgn] U.a. 

Proof. Throughout the lemma we condition on the value of El U E,,+. 
We assume this is such that rl I 2 log n, (LARGE! 2 n - n1i2, (4.5) and 
(5.2) hold, and where each u E V, is incident with at most 6 log n edges in 
El U E,,. These conditions have been shown to hold a.a. We shall also 
assume that I E 2l 2 n log n/12, where E 2 = { ei E ELARGE: m3 < i I 
m2} (the probability that e, E ELARGE for m3 < i I m2 is 1 - o(1) 
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regardless of em3 + r, . . . , ei- r and given our assumptions). None of our 
assumption affects (5.1) which we invoke to do our calculations. Partition 
E2 into sets E’(k), k = 1,2,. . . , r, of roughly equal size, at least n/24 by 
assumption, so that if e, E E2(k) and ej E E2(k + 1) then i < j. Let 
uk = min{i: e, E E2(k)}. 

Let A, denote the event { 1 C, 1 < n, when i first reaches ak in loop A of 
Phase 2 and no patch is made for i = uk, ak + l,.. ,, ak+r - 1)-C, 
refers to the “current” largest cycle. We show 

Pr(A,) I e-w, k= 1,2 ,I.., r2. (5.3) 

Hence Pr( U p-rAk) = o(1) which implies the lemma as at most r, - 1 
patches can be made in Phase 2. 

Proof of (5.3). Fix k and suppose that when i first reaches ak, 1 C, ( < 
n,. Then, where { Cj} denote the current cycles, there exists a smallest t 
such that 

n - no I i ICr,-J 5 no. 
i=o 

LetS= ‘Jf,oC,-,,T~={(u, w)EE,~: UES, w~S},T,={(~,‘(W),~,(O)): 
(v, w) E To} and T2 = {e = (u, w) E T,: u, w  E LARGE}. Then (5.2) im- 
plies 

IT,1 = ITo1 2 n,(n - n,)logn/2n (5.4a) 

and then 

IT21 2 ITI1 - 12n”210gn, (5.4b) 

as for a given u there are at most 12 log n neighbours of &(u), ‘p;‘(u). But 
if A, occurs then E2( k) n T2 = 0. But then (5.1) implies that 

Pr(E2(k) n T, = 0) I (1 - IT,I/n(n - l))‘E*‘k”. 

Using (5.4) and jE2(k)l 2 n/24 gives (5.3). II 

6. DETAILS OF PHASE 3 

We a.a. start Phase 3 with cycles C,, C,, . . . , Cr,, where I C, I = IZ - o(n) 
and r2 I 210g n. 
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PHASE 3 OF Dfb!M. 

for i = 2 to rz do {merge Ci into (the current) C, } 
begin 

suppose Ci = (x,, x2,. . . , xk, x~+~ = x1) as a sequence of vertices 
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for j = 1 to k do 
begin 

FINDCYCLE (Ci, xi, x~+~, C,, outcome); 
if outcome = success then goto A 

end {j - loop} 
terminate - failure 

A: end (i - loop} 
terminate - success 

end; 

procedure FINDCYCLE (Ci, xi, x~+~, C,, outcome); 
begin 

outcome: = failure; 
suppose C, =(y1,y2,..., yP) and the out-neighbours 
Yi,, Yi,, * * * 7 Yi,: 
if 1 = 0 then return else 
begin 

Pg 7 itxj+19 x~+2, * *. 7 x1P. * * > xjT Yi,? Yi,+l, * *. 3 Yi,-1): 

,...,I) 

= inkal set of paths (see Fig. 4) 
END,, := {yi,pl:t = 1,2,. .., I}; 

for t  = 1 to T = 
210gn 

1 1 3 log log n 
do 

begin 
suppose ptml = {PI, P2,. . . , P,}; 
pt:= 0;END,:= 0; 
for r = 1 to s do 
begin 

of xi are 

FIGURE 4 
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suppose P, = (u,, u2,. . . , 24,); 
if (uq, UJ E E,,,. then 
begin 

terminate FINDCYCLE successfully with 
c, = (Ul, u2, * -. 2 uq, Ul> 

end else 
begin 
construct all possible paths obtainable from P, in the following 
way (see Fig. 3); 

if (uq, u,) E E,,,. and (uII-i, ub) E E,,,, where b > a then 
pl := P, u {ROTATE(P,, u, b)}; END, := END, U { ubpl} 

where ROTATEJP,, a, b) = (u,, u2,. . ., u,-~, ub, ub+l,. . . , ug, 
U 

A’ 
. . ..ub-1 > 

end {r-loop} 
end {t-loop} end. 

We must show that Phase 3 a+ succeeds. Let m2, LARGE be as in 
Section 5. Fonsider the subgraph H of D,,,, induced by LARGE. Now the 
edges of H can be partitioned into E 3 U E 4, where E 3 consists of those 
edges that are in ELARGE but do not belong to E,,,,. Now, assuming (4.5), 
whatever E 4 is, E 3 is a random 1 E ‘1 - subset of the remaining possible 
edges-see (5.1). But, given E4, we obtain the same distribution for fi by 
choosing a random 1 E 3 1 - subset ES of ELARGE and then adding in 
E 4 - E 3 plus further randomly chosen edges. 

Furthermore we can obtain ES by independently including each edge of 
ELARGE with probability p = log n/7n and excluding it with probability 
1 - p, then randomly adding or deleting edges to get a set of the required 
size. Since lE3/ = n log n/6 a.a. we will a.a. be adding edges. 

To summarise, we can a.a. consider 3 to be a supergraph of a graph H 
distributed as D,,, where h = 1 LARGE) = n - o(n) and the edges of H 
occur independently of the outcome of Phase 1 or 2. 

We need to be able to show that (END,1 grows sufficiently rapidly with t 
inside FINDCYCLE. Unfortunately this is quite technical and requires 
several preliminary lemmas and constructions. 

Let C,(i) denote the cycle C, after Ci has been merged in Phase 3 for 
i 2 2. Let C,,,, = C, = (ui, u2,. . . , u,,~, ul) at the start of Phase 3 and let 
n2 = ILARGE n V(C,,,,)I = n - o(n). 

Let pi = [(log n)2/logloglog nl and partition the path P,,,, = 
(up u2,. - *, u,~) into consecutive blocks A,, A,, . . . , A,1 each containing 
ln2/p1j or ln2/p11 large vertices. For 1 z M = (1,2,..., pi} let A, = 
U,,,A,. For each I c M, 111 = l~i/lO] we let B, = {u E LARGE: 
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I{ w  E LARGE f~ A,: (u, W) E E(H)} 1 I log n/75} (= those u with sub- 
stantially fewer than the expected number of out-neighbours in A,). 

LEMMA 6.1. The folIowing holds with probability 1 - o(n-‘): 

I G M, 111 = [j4.,/10], implies lBIl I n”.99999. 

Proof: For a fixed I and positive integer k, 

Pr(lB,j 2 k) I 
0 

; BS(O&wV75~; b,/~,h,/lOl, P)~ 

exp{ -:. & . k. klogn} 

2 ( n”.999985e/k) k. 

Hence 

Pr(31: lBIl 2 no.99999 ) < 2Pl(n-0.000005e)n0.99999 = o(n-‘). 

Next let ~1 2 = [log n/log log log log n]. 

LEMMA 6.2. The following holds with probability 1 - o(n-‘): 3 I E M, 
111 = [p/10], u E LARGE and disjoint sets 

A = {aI, az ,..., ap2} c LARGE, B = {b,, b,,..., bcL2} c B, 

such that 

(0, aj> E E(H) and ((bi, ai) E E(H) or ai = &(bi)), 

i = 1,2 ,***, l-2. 

Proof For a fixed I c M, u E LARGE, A, B c LARGE, where ai = 
+2(bi) for i = 1,2,..., k, the probability that the remaining conditions are 
satisfied is at most 

P~~z-~BS(O, [log n/75]; [n,/~,][~,/lOl, p)“’ I p2pz-kn-0~m1p2. 

Thus 

Pr(31, u, A, B as in the lemma) I 2% ( ,f2) Eo( p21?1 k)p2’2-k~-o’m1p2 

< 2’1 E (logn)2”‘-kn-0.00001P2 
k=O 

= o(n-‘). 
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LEMMA 6.3. Let 0 < (Y < 1 be fixed. Then D,,,, satisfies the following with 
probability 1 - o(n-‘): #A, B L V, such that (i) (A( I a0 = cuee3n/logn, 
(ii) IBI I arlAllogn/2, and (iii) [{(u, w) E J!&: u E A, w E B}I 2 
LvlAllogn. 

Proof: We prove the result for Dn,p, and apply (2.3): 

(1 + o(l))e3k logn 
= 

2an 

= o(n-‘). 

Finally, a calculation similar to that for Lemma 4.1 yields 

LEMMA 6.4. The following hoI& with probability 1 - o(n-.3): 

u, w  E SMALL = V, - LARGE implies dist( u, w; GDml) 2 10. (6.1) 

We can now get down to proving that Phase 3 a.a. succeeds. We 
implicitly assume that (4.2) and the conditions of Lemmas 6.1-6.4 hold, but 
see Remark 2 below. 

Consider any C,, i 2 2 and the first i such that both xj, xj+r E LARGE. 
By Lemma 6.4 such a i a.a. exists, We show that for such an i, j 

Pr(FINDCYCLE fails) = O(n-‘1) for some constant q > 0. (6.2) 

It follows then that 

Pr(Phase 3 fails) = O(n-‘llogn) + o(1) = o(1) 

and Theorem 2 will follow. 
We now consider such an execution of FINDCYCLE. 

Proof of (6.2). The following observation is crucial. 
At any stage the paths constructed are of the following form: we take 

Pinitia, and delete O((log n)2/log log n) edges, permute the subpaths around 
and rejoin them with new edges (ROTATIONS) or paths (from the cycles 



HAMILTON CYCLES IN RANDOM DIGRAPHS 197 

c,, c,, * * - f cr,,. 
Thus if n IS large, 

If we partition the vertices of a constructed path P into 
consecutive sets St, S,, . . . , S, each containing at least 
In 2/9] vertices of LARGE u V( Ctiti) then for each 
i = 1,2,..., 9, Sj contains a complete block A,, where (6.3) 

jr,1 = l~i/lO] for some I;, each A,, t E Ii appears on P as 
it did on P,,,. 

Let a constructed path P = (zi, z2,. . . , zp) be good if zp E LARGE and 
3 I E M, 111 = l@OJ, and r < s I p/2 with s - r I p/9 such that 
A,E {~~,z~+~,-..,z~}andz,~B, 

Let now ~p~ denote those paths of p, which are good. Let EfiD1 = {u E 
END,: i, contains a path fromAxj+i to u }. By deleting paths, ifpecessary, 
we assume that for each u E END, there is a unique such P, E p,. 

We first show 

Pr(Jt$,I I logn/8) = O(n-‘1). (6.4) 

Consider C,(i - 1) = (wi, w,, . . . , w&. If we partition it into subpaths 
Sl, s,, -. * 9 S, then as in (6.3) we find a complete A,, II,1 = lpl/lO] 
contained in each S,. For each w,, at least 4 of these A,‘s will be in the first 
half of the path (xi+i, . . . , xi, w/+i, . . . , w4,. . . , w,) if (xi, wI+J E E,.. 
Now we can assume that I B, U BI, U - - - U Br,l I 9n”.99999 by Lemma 
6.1. Thus C,(i - 1) contains a set L of n - o(n) large vertices w, such that 
if (xj, w,+i) exists then the path produced is good. Since the H-edges xi to 
V(C,(i - 1)) n LARGE exist independently with probability log n/7, (6.4) 
follows easily from (2.la). 

Remark 2. The definition of LARGE depends only on the first m3 
edges and so is independent of H. On the other hand, assuming the 
conditions of Lemmas 6.1-6.4 does (mildly) condition H. However, 

I Pr( xi has < log n/8 “good” neighbours I 

IL( 2 n, = no - 9n”.99999 - 6) + Pr(lLI < nl) 

I (1 -p)“’ + o(n-.3), 

where we can use (1 - p)“’ as the H-edges incident with xi are indepen- 
dent of L, and L will be large assuming the conditions of Lemmas 6.1-6.4. 
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The (almost) final piece in the jigsaw is, assuming the conditions of the 
previous lemmas, 

1 <IEI%D,I I n/(456e3(log II)‘) implies 

1 Er;TD,+ r 1 2 (log n/152)‘1 EfiDJ . (6-5) 

To prove this let IEfiD,( I n/(456e3(log n)2). Let u E EfiD,, P, = 

(z 1, z2,*-., zp) and r, s, Z be as in the definition of a good path. 

Case 1. r > p/9. Partition P, into subpaths S,, S,, . . . , S, containing 
complete blocks Zt, I,, . . . , 1s as in (6.3). Let 

F,(U) = { Zk: (6 Zk) E E(H), zk E A,, 

zk-r E LARGE - B,, and (zkel, zk) E C,(i - l)} 

and 

4(u) = {z&l: zk E &(u)}. 

Note that Lemmas 6.1, 6.2, and 6.4 imply 

IF,( u)I 2 log n/75 - T - /A~ - 1 2 log n/76 

For Zk-1 E F2( u) let 

for n large. (6.6) 

F3(zk-1) = {Z,: 1 ’ k (zk-1, Z,) E E(H), ZI E AI93 ZI-1 

E LARGE - B,, and (z,-t, z!) E C,(i - 1)) 

and 

F&k-l) = { z,-l: z/E F,@k-1)). 

Similarly to (6.6) we have 

IF3( zk-l) ( 2 log n/76 for n large. (6.7) 

The important point to note is that 

if zk E F,(u), z, E F3(zk-r) then ROTATE (P,, k, l) 

is a good path with Z = Z,. (6.8) 

(This would not necessarily be true if we had used 8, say, in place of 9 in 
(6.3).) 
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Case 2. r I p/9. We replace I, by I, throughout the above argument. 
Let @k =~u~~~, i F(u) for ,k = 1,2. Now by (6.6) there are at least 

(log n/76) ] END,] edges from END, to @i. Hence by Lemma 6.3 with (Y = $ 
and by (4.2), 

(log n/152)]END,I I Ia11 I (610g n)]EfiD,] I n/(76e310gn). 

But ( Q21 = ]@i ] since z E ip,iff z’ E Q,, where z’ is the successor of z on 
C,(i - 1). Putting ip, = UuEE~D,UzEF2cuj&(~), for k = 3,4, we see by 
(6.7) that there are at least (log n/76) [$I edges from $ to Q3. 

Hence, by Lemma 6.3, 

I @3 I 2 (log n/76)1 %I . 

Also la’41 = IQ31 by the argument for ]$] = IQ,]. Finally a4 E EfiD,+i 
by (6.8) and so (6.5) follows. 

Thus there exists 7 I T,- 1 such that IEND,] 2 [n/(456e3(log n)2]. 
Choose a subset END of END, of exac$y this size and apply Fe preceding 
argument using END in place of END, to show that JEND,,, I, 2 fin 
for some constant /3 > 0. Now the existence of an edge in H from END, to 
xj+i is independent of the previous history, at the time of checking (see 
Remark 2). Hence 

Pr(FINDCYCLE fails) 5 (1 - p)‘” I ~8’~. 

and Theorem 2 has been proved, except for the claimed running time. 

Running time of DHAM. We analyse this assuming that those events 
proved to occur a.a. actually occur. We can always put a time limit on 
DHAM to achieve the O(nr5) running time with certainty. We assume that 
D,,,* is processed in adjacency list form. 

Phase 1. It takes O(n log n) time to construct BIP assuming O(1) time 
to obtain a random bit. (To construct u we need to be able to find the kth 
largest from a set of integers where k is randomly chosen.) This takes 
O(logn) time, using a height balanced tree-see, for example, Aho, 
Hopcroft, and Ullman [l]. The running time of the algorithm in [8] is 
O(n’.‘) since BIP has at most 20n edges. 

Phase 2. We make O(log n) executions of the loop beginning at A. It 
takes O(1) time to see if an edge belongs to F2 and O(log n) time to see if it 
belongs to Em,. The vertex sets of the cycles of e2 partition V, and the 
operations required on these sets is UNION and FIND-see, for example, 
[l]. It follows that O(n(log n)3) time is sufficient for this phase. 

Phase 3. Our assumptions imply that it takes at most 2 executions of 
FINDCYCLE to merge a Cj into C,. Each execution of FINDCYCLE 



200 A. M. FRIEZE 

generates 0((6 log n)T) = O(n4’3+0(1) ) paths altogether. There is a natural 
tree structure to the set of paths produced where a path is the father of all 
the paths produced from it by one double-rotation. The description of the 
algorithm suggests a breadth-first search of this tree. It is, however, more 
efficient to explore this tree by depth-first search. We can then keep a single 
path, as a doubly linked list and create the next son in O(1) time. 
Backtracking takes O(1) time per level and we obtain a running time of 
O(n 4/3+0(1)) for the whole of Phase 3. 0 

It is easy to see that Theorem 1 follows from Theorem 2. Let 
e,, e2,. . . , e,(,-,) be a random permutation of E(DK,) and m = n log n + 
c,n. Theorem 1 states the limiting value of Pr(DHAM finds a hamilton 
cycle in 0,). Now given m -C m* then this is zero and given m 2 m* then 
the preceding proof shows that this probability tends to one (or only allow 
DHAM to use the first m* edges). The value of lim, _ ,Pr(m 2 m*) is easy 
to compute and is in fact (implicitly) done in [7]. 

Outline Proof of Theorem 3. The idea is to (i) construct k disjoint sets 
F,, F2, “. , Fk where each 4 is the set of edges of a set of vertex disjoint 
cycles covering V,, (ii) split the edges of (Em0 - E,,) I? ELARGE into k 
sets of roughly equal size E,, E,, . . . , E, and use Ej to patch up the cycles 
in Fj as above, for i = 1,2,. . . , k. 

To construct F,, F2,. . . , Fk we apply Phase 1 k times. It is straightfor- 
ward to show that we a.a. succeed in constructing k permutations 
+i, $2, . . . , +k. If we consider a fixed i, then our randomising method (i.e., 
use of a) ensures that $J; is sampled uniformly and so a.a. has at most 
2 log n cycles. As k is constant +i, +2,. . . , c$~ will a.a. all have at most 
2 log n cycles. The remaining proof goes through much as before with only 
trivial changes to constants. 

7. TRAVELLING SALESMAN PROBLEMS 

Proof of Theorem 4. Given an instance of this problem let the edges of 
DK, be ordered e,, e2,. . . , e+-,,, where w(e,) I w(e,+i) for i = 
1,2,. . . ) n(n - 1) and w(e) is the weight of edge e. Note that our assump- 
tion implies that each such ordering is equaIly likely. If E,,,, D,,,, m* are as 
before then we have 

ALGORITHM DBOT. 

begin 
apply DHAM to 0,. 

end 

It is clear that if DHAM succeeds then it solves BTSP and Theorem 2 states 
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that it a.a. does. To obtain O(n2) running time we do not sort all the edges 
but instead build a heap out of them and generate them in increasing order 
of weight until m* is reached. This does require O(n*) time a.a. •I 

Outline Proof of Theorem 5. We shall assume throughout the B(n) = 
[an/log nl for some constant (Y > 0. We can assume (Y 2 1 for if not then it 
is easy to see that we can use a.a. DHAM to construct a Hamilton cycle 
using edges of length zero only. 

We shall describe DTSPSOLVE part formaliy and part informally. 
DTSPSOLVE first, independently, randomly colours each element of V, x 

V, red or blue with probability +. E’ is the set of red edges and E b the set 
of blue edges produced. Also let Erk = { e E E’: w(e) I k } for k = 
O,l,..., B(n) - 1. Define Ebk similarly and let Ek = Erk U Ebk. Note 
that Dk = (V,, Ek) is distributed as Dn,Ck+l)p, where p = l/B. 

The strategy now is similar to that of [9]. We let 

X= {UE V,:&(U,E,~) ~I,ord-(u,EFo) 11,). 

Now let 

S= {Fc E(DK,): (i) F’ d m uces a set of vertex disjoint paths, 

(ii) each x E X is an interior vertex of one such path, 

(iii) each edge of F is incident with a vertex of X.} 

We first try to compute a minimum total weight member of 9 and then 
extend it, using zero-length red edges, to a set of O(log n) vertex disjoint 
cycles covering V,. More formally, 

PHASE 1. 

begin 
u := a random permutation of V,; 
for e f V, x V, do G(e) := w(C) where (u, I?) = (a, u(w)) as before; 
let e,, e2,. . . , e,2 be random ordering of V, X V,; 
E’t := El- := a. 

A: for i = 1 to n’ do 
begin 
if d+(uj, El+) I loglogn and e, E E” then E’+ := E’+ U {gi}; 

{where ei = ( ui, w;) 
end; 

B: for i = 1 to n2 do 
begin 
if e, e El+ and d-(a(~,), El-) I loglog n and ei E E” then E’- := 
E’- u{gl} 
end 
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E’ := El+ ” El-. 

compute F* where F* = min{ $( F): F E 9} and t;(F) = C, E .$(e); 
Y, := {U E vJ:,:3e = (u, w) E Fc} and Y, := {w E I’,,: 3e = (u, w) E 
F*}; 
BIP := bipartite graph (V, - Yo, V, - Y,, A) where (u, w) E A iff 
(u, w) E E’; 
apply the algorithm of Even and Tarjan [S] to find a maximum 
matching M of BIP; 
if M is not a perfect matching then DTSPSOLVE has failed else 
F’ := 44; (as a set of edges of a graph with vertex set V,.) 
output F = {e: e^ E F’ U F*} = {(u, $J(u)): u E V,}, say. 

end 

Assuming Phase 1 is successful we then (Phase 2) randomly choose half 
the edges of E ho and use them to try to patch together cycles as in Phase 2 
of DHAM. We then (Phase 3) use the remaining edges of Ebo to try to 
finish the patching as in Phase 3 of DHAM. 

We now state as a lemma, some properties which can be proved by 
straightforward calculation. 

LEMMA 7.1. The following hold a.a.: 

1x1 I n1-1/2a. 

Zfp = [2cwl then 

(7.la) 

G+(Dq,s-(Dq 2 logn/3, (7.lb) 

A+(D2”), A-(02“) I 12logn, (7.lc) 

GD2p does not contain any cycle C with 1 V(C) n XI 2 []C]/lO], (7.ld) 

GD2’ does not contain a tree with more than 6a uertices at 
least one third of which are in X. (7.le) 

Now (7.la) implies that 9# 0. If we succeed in constructing a Hamilton 
cycle C* then w(C*) = w(p) and for any Hamilton cycle C, w(C) 2 
w( F*)-just delete all edges of C not incident with a vertex in X to obtain 
a member of 9. 

(7.lb) and (7.le) imply that F* c E2P, for any e 4 F* O E2p could be 
replaced by 2 edges of E” to yield an F of smaller weight. Thus to compute 
E* we need only look at the edges E* of E 2p which are incident with X. 

(7.ld) implies that E* induces a forest in GD”. Let T be a tree in this 
forest. All its leaves are in V, - X, by (7.lb). If x E X is adjacent to t 2 3 
leaves in T then there are either 2 2 edges of T directed into x from a leaf 
or 2 2 edges of T directed from x to a leaf. But we can then remove the 
larger weight edges to leave at most one edge directed from a leaf to a given 
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x E X or from a given x E X to a leaf. Assume this done. Then (7.l.e) 
implies that the remaining tree has at most 12cy vertices-if it has k 
nonleaf vertices then at least [k/2] + 1 are in X. We can deal with each 
such tree in O(1) time and hence compute F* in o(n) time. 

We henceforth assume that the search for F* is restricted to the subgraph 
induced by the vertices Y = X u N( X, GD”‘). 

This leaves the lengths of blue edges joining 2 vertices in 
V,- Y unconditioned by Phase 1. (7.2) 

We must now show that Phase 1 a.a. succeeds. Now if BIP does not have 
a perfect matching then by Hall’s theorem there exists K c V, - Y,, 
L E V, - Y,, 1 LI = lK1 - 1, and N( K, BIP) c L. Suppose first as in the 
proof of Lemma 4.2 that llvl I n/2. Then either (7.le) fails or, since 
K n X = 0 each u E K makes at least log log n - 3a choices in the L in 
the construction of El. The probability of the latter event -+ 0 by a similar 
calculation to that in Lemma 4.2(a). For )X1 > n/2 we note that the 
equivalent of (4.5) holds and we can finish as we did in Lemma 4.2(a). 

We can argue as in Lemma 4.2(b) that the permutation $I output is 
equally likely to be any permutation of V,-it does not matter to the 
theorem if we allow loops in the construction of E’. 

The arguments that Phase 2 and Phase 3 work a.a. are as for DHAM 
except for trivial changes in constants, which now depend on (Y, the use of 
(7.ld) in place of Lemma 6.4, and I’, - Y in place of LARGE (see 7.2). 
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