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Abstract

We study a simple Markov chain, known as the Glauber dynamics, for generating a random
k-coloring of an n-vertex graph with maximum degree ∆. We prove that, for every ǫ > 0, the
dynamics converges to a random coloring within O(n log n) steps assuming k ≥ k0(ǫ) and either:
(i) k/∆ > α∗ + ǫ where α∗ ≈ 1.763 and the girth g ≥ 5, or (ii) k/∆ > β∗ + ǫ where β∗ ≈ 1.489
and the girth g ≥ 7. Our work improves upon, and builds on, previous results which have similar
restrictions on k/∆ and the minimum girth but also required ∆ = Ω(log n). The best known
result for general graphs is O(n log n) mixing time when k/∆ > 2 and O(n2) mixing time when
k/∆ > 11/6. Related results of Goldberg et al apply when k/∆ > α∗ for all ∆ ≥ 3 on triangle-free
“neighborhood-amenable” graphs.

1 Introduction

Markov Chain Monte Carlo (MCMC) is an important tool in sampling from complex distributions.
It has been successfully applied in several areas of Computer Science, most notably computing the
volume of a convex body [6], [17], [19] and estimating the permanent of a non-negative matrix [15].
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One particular problem that has attracted significant interest is that of generating a (nearly) random
proper k-coloring of a graph G = (V,E) with maximum degree ∆. Recall that it is straightforward to
construct a proper k-coloring when k > ∆. Our interest is to sample a coloring uniformly at random
from the space of all proper k-colorings. Our goal is to do this random sampling in time polynomial
in the number of vertices n = |V |, even though the number of colorings is often exponential in n. This
sampling problem is a well-studied problem in Combinatorics (e.g., see [2]) and Statistical Physics
(e.g., see [22]).

This paper studies the (heat-bath) Glauber dynamics, which is a simple and popular Markov chain
for generating a random coloring. Let K denote the set of proper k-colorings of the input graph
G with maximum degree ∆. For technical purposes, the state space of the Glauber dynamics is
Ω = [k]V ⊇ K where [k] = {1, 2, . . . , k}. We will often refer to an element of Ω as a coloring. From
a coloring Zt ∈ Ω, the evolution Zt → Zt+1 is defined as follows:

(a) Choose v = v(t) uniformly at random from V .

(b) Choose color c = c(t) uniformly at random from the set of colors [k] \ Zt(N(v)) available to v,
namely:

A(Xt, v) = [k] \Xt(N(v)),

The set N(v) denotes the neighbors of vertex v.

(c) Define Zt+1 by

Zt+1(u) =

{

Zt(u) u 6= v

c u = v

It is straightforward to verify that for any graph where k ≥ ∆ + 2 the stationary distribution is
uniformly distributed over the set K (see, e.g., [14]). For δ > 0, the mixing time Tmix(δ) is the
number of transitions until the dynamics is within variation distance at most δ of the stationary
distribution, assuming the worst initial coloring Z0. When δ is omitted from the notation, we are
referring to the mixing time Tmix = Tmix(1/2e). The choice of constant 2e is somewhat arbitrary, and
it follows by a straightforward boosting argument (see, e.g., [18]) that Tmix(δ) ≤ Tmix(1/2e) ln(1/2δ)
for any δ > 0.

Jerrum [14] proved that the Glauber dynamics has mixing time O(n logn) provided k/∆ > 2. This
leads to the challenging problem of determining the smallest value of k/∆ for which a random k-
coloring can be generated in time polynomial in n. Note, Hayes and Sinclair [11] have shown that
for constant degree graphs Ω(n log n) steps are necessary, i.e., Tmix = Ω(n log n).

Vigoda [25] gave the first significant improvement over Jerrum’s result, reducing the lower bound
on k/∆ to 11/6 by analyzing a different Markov chain. His result implied O(n2) mixing time for

2



the Glauber dynamics for the same range of k/∆. There has been no success in extending Vigoda’s
approach to smaller values of k/∆, and it remains the best bound for general graphs.

Dyer and Frieze [4] introduced an approach, known as the burn-in method, which improved the lower
bound on k/∆ for the class of graphs with large maximum degree and large girth. It is within this
context that this paper is written. We will prove that the Glauber dynamics is efficient for a much
wider range of girth and maximum degree than has been done before.

The task in a theoretical analysis of MCMC algorithms is to show that a given Markov chain converges
rapidly to its steady state. The time to get “close” in variation distance is called the mixing time.
One of the most useful tools for doing this is coupling. We take two copies (Xt, Yt) of a Markov chain
M and then bound the variation distance dt between the t-step distribution and the steady state
distribution via the coupling inequality:

dt ≤ Pr(Xt 6= Yt). (1)

We are free to choose our coupling and we endeavour to minimise the RHS of (1). Often we define
a distance function dist between states such that Xt 6= Yt implies dist(Xt, Yt) ≥ 1 and then try to
prove that our coupling satisfies

E(dist(Xt+1, Yt+1) | Xt, Yt) ≤ α dist(Xt, Yt) (2)

for some α < 1.

One must consider all possible Xt, Yt and so it would seem that we have to take a worst-case pair here.
We should point out that path coupling [3] does ameliorate this, in that it allows us to only consider
the case where dist(Xt, Yt) = 1. In the burn-in method, we allow the chains to run uncoupled for a
sufficient amount of time (the burn-in period) so that only typical pairs of states need be considered.
Using this idea Dyer and Frieze reduced the bound to k/∆ ≥ α for any α > α∗ where

α∗ ≈ 1.763

is the root of
α = e1/α.

They required lower bounds on the maximum degree ∆ = Ω(log n) and on the girth g = Ω(log∆).
Under these assumptions, Dyer and Frieze proved that after the burn-in period, the colorings Xt

and Yt satisfy certain properties in the local neighborhood of every vertex, so called local uniformity
properties. Assuming these local uniformity properties they were able to avoid the worst case pair
in (2).

With the same restrictions on the maximum degree and girth, Molloy [21] improved the lower bound
to k/∆ ≥ β for any β > β∗ where

β∗ ≈ 1.489
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is the root of
(1− e−1/β)2 + βe−1/β = 1.

The girth assumptions were the first to be (nearly) removed. Hayes [8, 9] reduced the girth require-
ments to g ≥ 5 for k/∆ > α∗ and g ≥ 7 for k/∆ > β∗. Subsequently, Hayes and Vigoda [12] (using
a non-Markovian coupling) reduced the lower bound on k/∆ to (1 + ǫ) for all ǫ > 0, which is nearly
optimal. Their result requires girth g > 10. The large maximum degree restriction remained as a se-
rious bottleneck for extending the burn-in approach to general graphs. The assumption ∆ = Ω(log n)
is required in all of the improvements so far that rely on the burn-in approach.

We significantly improve the maximum degree assumption, only requiring ∆ to be a sufficiently large
constant, independent of n. When ∆ is constant, in a typical coloring a constant fraction of the
vertices do not satisfy the desired local uniformity properties. This is the main obstacle our proof
overcomes.

Subsequent to the publication of the conference version of this paper [5], Goldberg, Martin and
Paterson [7] proved related results. They proved a certain decay of correlations property, which
roughly implies that for any triangle-free and neighborhood-amenable graph with maximum degree
∆ ≥ 3, when k > α∗∆ the Glauber dynamics has mixing time O(n2). The neighborhood amenability
property they consider is related to the more common amenability property of infinite graphs, and
very roughly, says that the volume of increasing balls around any vertex increases sub-exponentially
with the radius.

We prove the following theorem.

Theorem 1. Let α∗ ≈ 1.763 and β∗ ≈ 1.489 be the constants defined earlier. For all ǫ > 0, there
exist ∆0, C

∗ > 0, such that for every graph G on n vertices with maximum degree ∆ > ∆0 and girth

g, if either:

(a) k ≥ (1 + ǫ)α∗∆ and g ≥ 5, or

(b) k ≥ (1 + ǫ)β∗∆ and g ≥ 7,

then for all δ > 0, the mixing time of the Glauber dynamics on k-colorings of G satisfies

Tmix(δ) ≤ C∗n log(n/δ).

Using now classical results of Jerrum et al [16], the above rapid mixing results imply a fully-
polynomial approximation scheme (FPRAS) for counting k-colorings under the same conditions.
Recent work of Štefankovič et al [23] designs such an approximate counting algorithm with running
time O∗(n2).
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There are several recent results with a more refined picture for trees or planar graphs. Martinelli,
Sinclair and Weitz [20] have significantly stronger results for the complete tree with degree ∆. They
showed O(n logn) mixing time for k ≥ ∆ + 3, even for any boundary condition which is a fixed
coloring of the leaves of the complete tree. For planar graphs with maximum degree ∆, Hayes et al
[10] were able to achieve polynomial mixing time for k ≪ ∆, in particular, they showed polynomial
mixing time when k > 100∆/ log∆. More recently, Tetali et al [24] have shown that on the complete
tree the mixing time of the Glauber dynamics has a phase transition at k ≈ ∆/ log∆.

The heart of our proof analyzes a simple coupling over Tm = Θ(n) steps for an arbitrary pair of
colorings which initially differ at a single vertex v0. We prove that the expected Hamming distance
after Tm steps is at most 3/4. We do this by breaking the analysis into two scenarios. In the advanta-
geous scenario, during the entire Tm steps, the Hamming distance stays small and all disagreements
are close to v0. If both of these events occur, after an initial burn-in period of Tb < Tm steps, every
updated vertex near v0 will have certain local uniformity properties (the same properties used by
[4, 21, 8]). It will then be straightforward to prove that the Hamming distance decreases in expecta-
tion over the final Tm − Tb steps. In the disadvantageous scenario where one of the events fails, we
use a crude upper bound on the Hamming distance.

2 Preliminaries

For Xt, Yt ∈ Ω, let Xt⊕Yt denote their difference and we use Dt to denote this set of “disagreements”,
namely:

Dt = Xt ⊕ Yt = {v : Xt(v) 6= Yt(v)}.

For vertex v, let d(v) denote its degree and N(v) denote its neighborhood. For vertex v and integer
R ≥ 1, we denote the ball of radius R around v by

BR(v) = {w ∈ V : dist(v, w) ≤ R}

where dist(v, w) is the graph distance between v and w, i.e., the length of the shortest path from v
to w. For a coloring Xt and vertex v, let

A(Xt, v) = [k] \Xt(N(v)),

denote the set of available colors for v in Xt.

For an event E , we will use the notation 1(E) to refer to the {0, 1}-valued indicator variable for the
event E , i. e.,

1(E) =
{

1 if E
0 if E .
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To prove Theorem 1, we will use path coupling [3] for T = Cn log(n/δ) steps of the Glauber dynamics.
Therefore, for all X0, Y0 ∈ Ω where |X0 ⊕ Y0| = 1, we will define a T -step coupling such that

E(|DT |) = E(|XT ⊕ YT |) ≤
δ

n
. (3)

Then, for any X0, Y0 ∈ Ω, since the maximum possible Hamming distance is n, it follows by path
coupling that

Pr (XT 6= YT ) ≤ E(H(XT , YT )) ≤ δ,

after which Theorem 1 follows by the coupling inequality, (1).

The following two technical results are elementary, but will be useful in the proof of Theorem 11.

Lemma 2. Suppose v, w are vectors of length n, whose coefficients are both sorted in the same order.

Then
n
∑

i,j=1

viwj ≤ n

n
∑

i=1

viwi.

Proof. Since the ordering of coefficients is the same in both v and w, we have (vi − vj)(wi −wj) ≥ 0
for all i, j. Rearranging, this implies viwi + vjwj ≥ viwj + vjwi. Summing this over all pairs (i, j)
with i < j implies the desired result.

We will use the following corollary of the above lemma.

Lemma 3. Suppose X1, . . . , Xn, τ ≥ 0, and let X =
∑n

i=1Xi. Then

X1(X ≥ nτ) ≤
n
∑

i,j=1

Xi1(Xj ≥ τ) ≤ n
n
∑

i=1

Xi1(Xi ≥ τ).

Proof. The first inequality is just a union bound, noting that X ≥ nτ implies some Xi ≥ τ . The
second inequality comes from applying Lemma 2 with vi = Xi and wi = 1(Xi ≥ τ), which clearly
have the same sorted order.

3 Proof of Rapid Mixing

3.1 Coupling Analysis

For a pair of colorings X and Y , let X = Z0 ∼ Z1 ∼ Z2 ∼ · · · ∼ Zℓ ∼ Y = Zℓ+1 denote a shortest
path between X and Y along pairs of colorings that differ at a single vertex, i.e., H(Zi, Zi+1) = 1
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for all 0 ≤ i ≤ ℓ. Note that the intermediate Zi need not be proper colorings; this is standard in
the application of the path coupling technique [3] to colorings, and it is the reason why the Glauber
dynamics was defined with state space Ω = [k]V instead of the set K of proper colorings. This is the
path used for the purposes of the path coupling approach of Bubley and Dyer [3]. We refer to the
colorings Z1, . . . , Zℓ as interpolated colorings for X and Y .

We use the following one-step coupling, which is also used in many of the previous works which apply
path coupling. Since we use path coupling we only need to analyze pairs of colorings that initially
differ at a single vertex v, which we refer to as neighboring colorings.

At every time t we choose a random vertex v = v(t), and update v in both chains Xt and Yt. We
couple the available colors for v so as to maximize the probability that Xt+1(v) and Yt+1(v) have the
same color. More precisely, for each color c ∈ A(Xt, v) ∩ A(Yt, v), we set Xt+1(v) = Yt+1(v) = {c}
with probability 1/max{|A(Xt, v)|, |A(Yt, v)|}. With the remaining probability, each chain colors
independently from the remaining distribution over their available colors for v.

The heart of our coupling analysis will be to show that for a pair of “nice” neighboring colorings
the expected Hamming distance after O(n) steps is small. By “nice” neighboring colorings we
mean colorings that have certain local uniformity properties in the local neighborhood around the
disagreement. This is formalized in Section 3.2. We use that any coloring, after O(n log∆) steps of
the Glauber dynamics is likely to be “nice”, then we can use that the Hamming distance is likely to
contract after O(n) steps.

3.2 Local Uniformity Properties

A key element in our proof is that for a “nice” initial coloring, after O(n) steps of the Glauber
dynamics, a vertex will have certain local uniformity properties with high probability. To this end,
we use the following definition of heaviness from Hayes [9]. The rough idea is that if no color appears
too often in the local neighborhood of a vertex v then we only need to recolor most (all but a small
constant fraction) of the local neighborhood of v in order for the coloring of N(v) to appear close to
random. To recolor most of N(v) requires O(n) steps, rather than O(n log∆) steps if we needed to
recolor all of the local neighborhood of v.

Definition 4. We say that a coloring X is ρ-heavy for color c at a vertex v if at least ρ∆ vertices
within distance 2 of v receive color c under X, or at least ρ∆/ log∆ neighbors of v receive color c
under X.

To be considered “nice” at a vertex v, a coloring should not be heavy for any colors at any vertices
too close to v. We formalize this notion as follows.
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Definition 5. Let X be a coloring, let ρ > 0, and let v be a vertex. We say v is ρ-suspect for radius
R if there exists a vertex w within distance R of v and a color c such that X is ρ-heavy at w for c.
Otherwise, we say that, in X, v is ρ-above suspicion for radius R.

For a pair of colorings X,Y and a vertex v where X(v) 6= Y (v) we say that v is a ρ-suspect dis-

agreement if there exists a vertex w within distance R of v and a color c such that either X or Y is
ρ-heavy at w for c. Otherwise, we say that v is a ρ-above suspicion disagreement for radius R.

We next make an easy but crucial observation about the above definitions. For a pair of colorings
X and Y , recall that for the purposes of path coupling we consider the shortest path between X
and Y along neighboring colorings, namely, X = Z0 ∼ Z1 ∼ Z2 ∼ · · · ∼ Zℓ ∼ Y = Zℓ+1. This
sequence of colorings Z1, . . . , Zℓ we called interpolated colorings for X and Y . A key aspect of the
above definitions is that “niceness” is automatically inherited by interpolated colorings, as we now
formally state.

Observation 6. If X and Y are colorings, neither of which is ρ-heavy for color c at vertex v, then
no interpolated coloring is 2ρ-heavy at v. Likewise, if v is ρ-above suspicion disagreement for radius

R, then in every interpolated coloring v is 2ρ-above suspicion for radius R.

The first basic local uniformity result says that from any initial coloring X0, for any vertex v, after
O(n log∆) steps of the Glauber dynamics, v is not 200-heavy at v with high probability. In this
paper, an event is said to occur with high probability if its failure probability is exp(−Ω(∆γ)) for
some positive constant γ.

Lemma 7 ((17) of Lemma 26 in Hayes [9]). Let δ > 0, let ∆0 = ∆0(δ), let Cb = Cb(δ) and let

k ≥ (1 + δ)∆. Let G = (V,E) have girth ≥ 5 and maximum degree ∆ > ∆0. Let (Xt)t≥0 be the

discrete-time Glauber dynamics on G. Let v ∈ V and c ∈ [k]. Let X0 be an arbitrary coloring. Then,

Pr
(

(∀t ∈ [3n log∆, n exp(∆/Cb)]) Xt is 4-above suspicion for radius ∆9/10 at v
)

≥ 1− exp(−∆/Cb). (4)

Moreover, as the next lemma states, if the initial coloring is not 400-heavy at vertex v, this property
is maintained, and even improves slightly after O(n) steps with high probability.

Lemma 8 ((18) of Lemma 26 in Hayes [9]). Let δ > 0, let ∆0 = ∆0(δ), let Cb = Cb(δ) and let

k ≥ (1 + δ)∆. Let G = (V,E) have girth ≥ 5 and maximum degree ∆ > ∆0. Let (Xt)t≥0 be the

discrete-time Glauber dynamics on G. Let v ∈ V and c ∈ [k]. Let X0 be a coloring that is 400-above
suspicion for radius R ≤ ∆9/10 at v. Then,

Pr ((∀t ∈ [Cbn, n exp(∆/Cb)]) Xt is 4-above suspicion for radius R− 2 at v)

≥ 1− exp(−∆/Cb). (5)
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Recall, A(Xt, v) is the set of available colors for v in Xt. The local uniformity properties concern the
available colors and the number of “unblocked” neighbors for a pair of colors. For colors c1 6= c2,
w ∈ V , v ∈ N(w), coloring Xt, let

1(U(Xt, w, v, c1, c2)) =

{

1 if {c1, c2} 6⊂ Xt(N(w) \ {v})
0 otherwise

be the indicator variable for the event that w is unblocked for c1 or c2, i.e., at least one of c1 and c2
does not appear on N(w) \ {v}.

Finally, we describe the main burn-in result. For an initial coloring X0 which is 400-above suspicion
at a vertex v for sufficiently large constant radius, after O(n) steps of the Glauber dynamics certain
local uniformity properties hold for v with high probability. In particular, it has close to the expected
number of available colors as if its neighbors were colored independently, and close to the expected
number of neighbors that are unblocked for a pair of colors c and c′.

The following is from Hayes [9]. Part 1 of the following lemma is Lemma 25 in [9], and Part 2 is the
second part of Corollary 34 in [9].

Lemma 9 (Hayes [9]). Let δ, γ > 0, let ∆0 = ∆0(δ, γ), Cb = Cb(δ, γ), and let k ≥ (1 + δ)∆. Let

G = (V,E) have maximum degree ∆ > ∆0. Let (Xt)t≥0 be the discrete-time Glauber dynamics on

G. Let v ∈ V and let d(v) denote its degree.

1. If the girth of G is ≥ 5, then for arbitrary X0:

Pr

(

(∃t ∈ [n ln(1/γ), n exp(∆/Cb)]) :
|A(Xt, v)|

k
≤ (1− 10γ)e−d(v)/k

)

≤ exp(−∆/Cb).

2. If the girth of G is ≥ 7, and X0 is 400-above suspicion for radius R = R(γ, δ) at v, then for

every pair of colors c1, c2:

Pr



(∃t ∈ [Cbn, n exp(∆/Cb)]) :
∑

w∈N(v)

1(U(Xt, w, v, c1, c2))

|A(Xt, w)|
≥ (1 + γ)

d(v)(1− (1− e−∆/k)2)

k exp(−∆/k)





≤ exp(−∆/Cb). (6)

3.3 Disagreement Percolation

A basic tool used in several of our proofs will be the notion of propagation of disagreements. If
for some t, v = v(t) we have Xt(v) = Yt(v) and Xt+1(v) 6= Yt+1(v) then there exists a neighbor
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w of v which propagates its disagreement to v in the following sense: in chain X we chose color
c(t + 1) = Yt(w) or in chain Y we chose c(t + 1) = Xt(w). In this way, if we initially had a single
disagreement X0 ⊕ Y0 = {v0}, then a disagreement at time t can be traced back via a path of

disagreements to v0.

3.4 Weak analysis for worst-case pair of colorings

For a worst-case pair of neighboring colorings, the following result states some upper bounds on the
Hamming distance after O(n) and O(n log∆) steps of the coupling. Part 4 of the lemma states that
after O(n log∆) steps, any remaining disagreements are likely to be “nice”.

Lemma 10. For every 0 < ǫ < 1, every C ≥ 3, there exists ∆0 > 0 such that for any graph G on n
vertices with maximum degree ∆ > ∆0 and girth g ≥ 5, any k > 1.45∆, the following hold.

Let X0, Y0 be colorings which disagree at a single vertex v. Let T = Cn/ǫ. Then,

1. E(|XT ⊕ YT |) ≤ exp(3C/ǫ).

2. E(|XT log∆ ⊕ YT log∆|) ≤ ∆3C/ǫ

3. Let ET denote the event that at some time t ≤ T , |Xt ⊕ Yt| > ∆2/3. Then,

E(|XT ⊕ YT |1(ET )) < exp(−
√
∆).

4. Let ST log∆ denote the set of disagreements of (XT log∆, YT log∆) that are 200-suspect for radius
2∆3/5. Then, E(|ST log∆|) ≤ exp(−

√
∆).

Proofs of Lemmas 10.1 and 10.2. For parts 1 and 2, we will just bound the rate of spreading of
disagreements. In each time step, the number of expected disagreements increases by at most a
factor of 1 + ∆

n(k−∆) ≤ exp(3/n). This holds regardless of the history on previous steps. (There is a

≤ ∆/n chance that v(t) is the neighbor of a particular disagreement and then a ≤ 1/(k−∆) chance
that the disagreement spreads to v(t)). Hence, expanding out the conditional probabilities, it follows
by induction that, after t steps, the expected number of disagreements is at most exp(3t/n). Plugging
in the values t = T = Cn/ǫ and t = T log∆ = Cn log∆/ǫ establishes parts 1 and 2 respectively.

Proof of Lemma 10.3. Recall, for Xt, Yt ∈ Ω, their difference is denoted by

Dt = {w : Xt(w) 6= Yt(w)}.
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Denote their Hamming distance by Ht = |Dt|. Also, denote their cumulative difference by

D≤t =
⋃

t′≤t

Dt,

and denote their cumulative Hamming distance by H≤t = |D≤t|.

We will prove that for every integer 1 ≤ ℓ ≤ n, for T = Cn/ǫ,

Pr (H≤T ≥ ℓ) ≤ exp(−ℓe−4C/ǫ). (7)

For 1 ≤ i ≤ ℓ, let ti be the time at which the i’th disagreement is generated (possibly counting the
same vertex multiple times). Denote t0 = 0. Let ηi := ti− ti−1 be the waiting time for the formation
of the i’th disagreement. Conditioned on the evolution at all times in [0, ti], the distribution of ηi
stochastically dominates a geometric distribution with success probability ρi and range {1, 2, . . . },
where

ρi =
min{i∆, n− i}

(k −∆)n
.

This is because at all times prior to ti we have Ht ≤ i and thus the set H≤t increases with probability
at most ρi at each step, regardless of the history. The numerator in the expresion for ρi is an
upper bound on the number of vertices that are non-disagreeing neighbors of disagreements and the
denominator is a lower bound on the probability of choosing a fixed such vertex and then choosing a
color that increases the number of disagreements. Hence η1+· · ·+ηℓ stochastically dominates the sum
of independent geometrically distributed random variables with success probabilities ρ1, ρ2, . . . , ρℓ.
Now for any real x ≥ 0,

Pr(ηi ≥ x) ≥ (1− ρi)
⌈x⌉−1 ≥ exp

{

− ρi
1− ρi

x

}

≥ e−2ρix

since ρi ≤ 1/(k −∆).

Thus η1+ · · ·+ηℓ stochastically dominates the sum of exponential random variables with parameters
2ρ1, 2ρ2, . . . , 2ρℓ. Now ρi ≤ iρ where ρ = ∆

(k−∆)n and so η1 + · · · + ηℓ stochastically dominates the
sum of exponential random variables ζ1, ζ2, . . . , ζℓ with parameters 2ρ, 4ρ, . . . , 2ℓρ.

Now consider the problem of collecting ℓ coupons, assuming each coupon is generated by a Poisson
process with rate 2ρ. The delay between collecting the i’th coupon and the i + 1’st coupon is
exponentially distributed with rate 2(ℓ − i)ρ. Hence the time to collect all ℓ coupons has the same
distribution as ζ1 + · · · + ζℓ. But the event that the total delay is less than T is nothing but the
intersection of the (independent) events that all coupons are generated in [0, T ]. The probability of
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this is

(

1− e−2Tρ
)ℓ

< exp

(

−ℓ exp

(

− 2C∆

(k −∆)ǫ

))

< exp

(

−ℓ exp

(

−5C

ǫ

))

since k > 1.45∆.

This completes the proof of (7).

We can now bound the expected Hamming distance at time Tm as follows:

E(HT1(E)) ≤ E(H≤T1(E))

=
n
∑

ℓ=∆2/3

ℓ Pr (H≤T = ℓ)

= ∆2/3Pr
(

H≤T ≥ ∆2/3
)

+
n
∑

ℓ=∆2/3+1

Pr (H≤T ≥ ℓ)

< ∆2/3
∑

ℓ≥∆2/3

Pr (H≤T ≥ ℓ)

< ∆2/3
∑

ℓ≥∆2/3

exp(−ℓe−5C/ǫ) by (7)

=
∆2/3 exp(−∆2/3e−5C/ǫ)

1− exp(−e−5C/ǫ)

The above quantity is at most exp(−
√
∆), for sufficiently large ∆. This completes the proof of

Lemma 10.3.

Proof of Lemma 10.4. To prove part 4, we will use the burn-in result of Lemma 7. We divide the
analysis into two cases: those vertices inside and outside BR(v) for R =

√
∆.

Let us start with the vertices inside BR(v). We apply Lemma 7 to each vertex w ∈ BR(v), at time
T ′ := T log∆ < n exp(∆/Cb) for ∆ sufficiently large, concluding that, w is 4-above suspicion for
radius 2∆3/5 in XT ′ and YT ′ with probability at least 1 − 2 exp(−∆/Cb) > 1 − exp(−∆3/4) for ∆
sufficiently large. Hence, if D′

T ′ is the set of disagreements of (XT ′ , YT ′) that are 200-suspect for
radius 2∆3/5, we have shown that:

E(|D′
T ′ ∩BR(v)|) ≤ exp(−∆3/4)|BR(v)| ≤ exp(−4

√
∆). (8)

To bound the number of disagreements outsideBR(v), we observe that each disagreement inDT ′ \BR(v)
comes from a path of disagreements starting at v, and having length at least R. Hence, by a union

12



bound, we have:

E(|D′
T ′ \BR(v)|) ≤ E(|DT ′ \BR(v)|)

≤
∑

ℓ≥R

∆ℓ

(

T log∆

ℓ

)(

1

n(k −∆)

)ℓ

≤
∑

ℓ≥R

(

eT log∆

.45ℓn

)ℓ

≤
(

1

10

)

√
∆

by choice of R and ∆0

≤ exp(−2
√
∆) (9)

Summing the above bounds (8) and (9) on E(|DT ′ \BR(v)|) and E(|D′
T ′ ∩BR(v)|), respectively, gives

the desired upper bound on |D′
T ′ |, assuming ∆0 is sufficiently large.

3.5 Analysis for “nice” pairs of colorings

Lemma 10.4 shows that from a worst-case pair of colorings that differ at a single vertex, after
O(n log∆) steps, all disagreements are likely to be “nice” in the sense of being above suspicion.
The heart of our rapid mixing proof will be the following result, which shows that for a pair of
neighboring colorings that are “nice” (namely, above suspicion), there is a coupling of O(n) steps
of the Glauber dynamics where the expected Hamming distance decreases. Also, at the end of this
O(n) step coupling, it is extremely unlikely that there are any disagreements that are not “nice”.

Theorem 11. There exists C ′ ≥ 3, and for every ǫ > 0, there exists ∆0, such that for every graph

G = (V,E) on n vertices with maximum degree ∆ > ∆0 and girth g, if either:

(a) k ≥ (1 + ǫ)α∗∆ and g ≥ 5, or

(b) k ≥ (1 + ǫ)β∗∆ and g ≥ 7,

then the following hold. Suppose X0, Y0 differ only at v and v is 400-above suspicion for R, where

∆3/5 ≤ R ≤ 2∆3/5. Let Tm = C ′n/ǫ. Then,

1. E(|XTm ⊕ YTm |) ≤ 1/3.

2. Pr
(

there exists a 200-suspect disagreement for R′ = R− 2
√
∆ at time Tm

)

≤ 2 exp(−
√
∆)

We will prove the above theorem in the next section.

13



3.6 Proving “contraction” of the coupling for a worst-case pair of colorings

Tying together Lemma 10 and Theorem 11, we show that for a worst-case initial pair of colorings
that differ at a single vertex, after O(n log∆) steps of the coupling, the expected Hamming distance
is small.

Lemma 12. There exists a constant C ′ > 0, for every ǫ > 0, there exists ∆0, such that for every

graph G = (V,E) on n vertices with maximum degree ∆ ≥ ∆0 and girth g, if either:

(a) k ≥ (1 + ǫ)α∗∆ and g ≥ 5, or

(b) k ≥ (1 + ǫ)β∗∆ and g ≥ 7,

then the following holds. Let X0, Y0 be colorings which disagree at a single vertex v that is 400-above
suspicion for R = 2∆3/5. Let T = C′n log∆

ǫ . Then,

E(|XT ⊕ YT |) ≤
1√
∆
.

Proof. The high level idea is to apply Theorem 11 a number of times. Let Tm = C ′n/ǫ. First, we
start from (X0, Y0), and run Tm steps. We use Theorem 11 to analyze the coupling for these first
Tm steps. In the event that the number of disagreements has not dropped to zero after these Tm

steps, we interpolate a sequence of intermediate colorings, Z0, . . . , Zd, so that each Zi, Zi+1 differ at
a single vertex, and then apply path coupling. Then for each pair of colorings Zi, Zi+1 that differ
at a single vertex vi, to analyze the performance of the coupling over the next Tm steps, we apply
Theorem 11 if vi is 400-above suspicion, and otherwise we apply Lemma 10. At the end of these Tm

steps we apply path coupling again and repeat the above procedure.

For colorings interpolated at time iTm, we will use R = Ri = 2∆3/5 − 2i
√
∆ in our applications of

Theorem 11.

Let E ′
i denote the event that, at some time t ≤ iTm, the Hamming distance between Xt and Yt

exceeds ∆2i/3. (Note, E ′
1 = ETm where ET was defined in the statements of Lemmas 10.3.) Let Si

denote the event that, at some time t ≤ iTm, there exists a 200-suspect (for radius Ri) disagreement
of Xt and Yt. Recall, that if Xt and Yt have no 200-suspect disagreements, then the interpolated
pairs of neighboring colorings have no 400-suspect disagreements.

Let Hi = |Xt ⊕ Yt| be the total number of disagreements at time t = iTm. We will bound the
Hamming distance by considering the above events in the following manner:

E(Hi+1) ≤ E(Hi+11(E ′
i)) +E(Hi+11(Si)) +E(Hi+11(E ′

i)1(Si)) (10)

14



We now consider the summands on the right-hand side of (10) one by one.

In the following, the phrase “by path coupling” conveys the idea that if there are k disagreements
at time iTm, then by applying the path coupling approach, we can bound the expected number of
disagreements at time (i+ 1)Tm by kL where L is the bound obtained by assuming that k = 1.

E(Hi+11(E ′
i)) = E(E

(

Hi+11(E ′
i) | X≤iTm , Y≤iTm

)

)

= E(E (Hi+1 | XiTm , YiTm)1(E ′
i))

≤ exp(3C ′/ǫ)E(Hi1(E ′
i)), by path coupling and Lemma 10.1,

≤ exp(3C ′/ǫ)
(

E(Hi1(E ′
i−1)) +E(Hi1(E ′

i)1(E ′
i−1))

)

(11)

It remains to bound the two terms in the right-hand side of (11). The first term, E(Hi1(E ′
i−1)), we

will handle by induction. Now observe that, for E ′
i−1 and E ′

i to both occur, at least one of the pairs

of neighboring colorings at time (i− 1)Tm must expand to Hamming distance ≥ ∆2/3 by time iTm.
Hence we can bound E(Hi1(E ′

i)1(E ′
i−1)) by using Lemma 10.3 in the following manner. Recall that

for the pair of colorings X(i−1)Tm
, Y(i−1)Tm

, our coupling applies path coupling to this pair, so that we
consider a sequence of neighboring colorings, namely, pairs of colorings that differ at a single vertex.
Let W0,W1, . . . ,WHi−1 denote this sequence of neighboring colorings. Let Hi,j denote the Hamming
distance at time Ti from the j-th disagreement at time Ti−1 (i.e., from the pair Wj−1,Wj). Then we
have

Hi ≤
Hi−1
∑

j=1

Hi,j (12)

by the triangle inequality, and

E ′
i ⊆ E ′

i−1 ∪
Hi−1
⋃

j=1

E ′
i,j , (13)

where E ′
i,j is the event that Hi,j ≥ ∆2/3, in other words, the event ETm from the statement of

Lemma 10.3. Therefore, we have the following:

Hi1(E ′
i)1(E ′

i−1) ≤
Hi−1
∑

j=1

Hi,j

Hi−1
∑

k=1

1(E ′
i,k)1(E ′

i−1) by (12) and (13)

≤
∆2(i−1)/3
∑

j,k=1

Hi,j1(E ′
i,k) by definition of E ′

i−1

≤ ∆2(i−1)/3
∆2(i−1)/3
∑

j=1

Hi,j1(E ′
i,j),
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where the last step follows from Lemma 3, applied with Xj = Hi,j , and τ = ∆2/3.

Now applying Lemma 10.3 to each disagreement, starting at time (i− 1)Tm for Tm steps, we have:

E(Hi1(E ′
i)1(E ′

i−1)) ≤ ∆4(i−1)/3 exp(−
√
∆).

Returning to (11), we now have that:

E(Hi+11(E ′
i)) ≤ e3C

′/ǫ
(

E(Hi1(E ′
i−1)) + ∆4(i−1)/3 exp(−

√
∆)

)

.

Therefore, by induction, since H0 = 1, it follows that

E(Hi+11(Ei)) ≤ e3iC
′/ǫ∆4i/3 exp(−

√
∆). (14)

Now for the second summand in the right-hand side of (10):

E(Hi+11(Si)) = E(E
(

Hi+11(Si) | Hi

)

)

≤ 1

3
E(Hi1(Si)) by path coupling and Theorem 11.1

≤ 1

3
E(Hi1(Si−1)) since Si ⊆ Si−1

≤ 3−(i+1) by induction, noting that H0 = 1. (15)

Now for the third and final summand in the right-hand side of (10):

E(Hi+11(Si)1(E ′
i)) = E(E (Hi+1 | XiTm , YiTm)1(Si)1(E ′

i))

≤ E(e3C
′/ǫHi1(Si)1(E ′

i)) by path coupling and Lemma 10.1

≤ ∆2i/3e3C
′/ǫPr

(

Si \ E ′
i

)

by definition of E ′
i

To bound Pr (Si \ E ′
i) we apply Theorem 11.2 to each pair of neighboring colorings that arises at

times jTm for all j = 0, 1, . . . , i−1. Since we assume event E ′
i does not occur, there are at most ∆2i/3

neighboring pairs of colorings that we need to consider for each j. For each of these neighboring pairs
of colorings, we use Theorem 11.2 to bound the probability that it creates a 200-suspect disagreement
within Tm steps. Then taking a union bound over all of the ≤ i∆2i/3 neighboring pairs that we need
to consider, we then have that:

E(Hi+11(Si)1(E ′
i)) ≤ ∆2i/3e3C

′/ǫi∆2i/32 exp(−
√
∆). (16)

Plugging (14), (15), and (16) into (10) we have

E(Hi+1) ≤ 3−(i+1) + poly(∆i/ǫ) exp(−
√
∆). (17)

For sufficiently large ∆0 = ∆0(ǫ), for ∆ > ∆0 and i = log∆, the right-hand side of (17) is at most
1/
√
∆, which completes the proof of the lemma.
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3.7 Proof of Main Theorem 1

Finally, we prove the mixing time is O(n logn) by analyzing the coupling for O(n logn) steps for an
arbitrary pair of initial colorings.

Proof of Theorem 1. Let us define a weighted Hamming metric ρ on the space of colorings as follows.
ρ(Xt, Yt) equals the sum of the usual Hamming distance plus A times the number of 200-suspect
disagreements for radius 2∆3/5. Here A = ∆3C′/ǫ+1/2, and we will require ∆ to be large enough that

A ≤ exp(
√
∆)√

∆
,

which is always true for sufficiently large ∆.

Let T = C ′n(log∆)/ǫ.

Claim: For any i ≥ 0,

E
(

ρ(X(i+1)T , Y(i+1)T ) | XiT , YiT
)

≤ 2√
∆
ρ(XiT , YiT ).

Proof of Claim: Let s denote the number of 200-suspect disagreements for radius 2∆3/5 forXiT , YiT ,
and let t denote the total number of disagreements. So

ρ(XiT , YiT ) = sA+ t.

Similarly, let s′ denote the number of 200-suspect disagreements for radius 2∆3/5 for X(i+1)T , Y(i+1)T ,
and t′ the total number of disagrements. So

ρ(X(i+1)T , Y(i+1)T ) = s′A+ t′.

By Lemma 10.4 and path coupling, we have the following bound on s′:

E(s′) ≤ t exp(−
√
∆).

By path coupling, and applying Lemma 10.2 to the ≤ s 200-suspect disagreements and Lemma 12
to the ≤ (t− s) non-suspect disagreements we have

E(t′) ≤ s∆3C′/ǫ + (t− s)
1√
∆
.
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Putting these together, we have

E
(

ρ(X(i+1)T , Y(i+1)T ) | XiT , YiT
)

≤ s∆3C′/ǫ + (t− s)
1√
∆

+ t exp(−
√
∆)A.

≤ ∆3C′/ǫs+
2√
∆
t

≤ 2√
∆
ρ(XiT , YiT ).

This completes the proof of the Claim.

Now, by induction and the Claim, we have, for all i ≥ 0,

E(ρ(XiT , YiT )) ≤ ρmax

(

2√
∆

)i

,

where ρmax = n + nA is the maximum possible value of ρ. Finally, we observe that if C1 is

sufficiently large relative to C ′ then for i∗ =
C1 log(n/δ)

C′ log∆ , we have that E(ρ(Xi∗T , Yi∗T )) ≤ δ. Since,
by Markov’s inequality, Pr (XiT 6= YiT ) ≤ E(ρ(XiT , YiT )), the theorem follows with Tmix(δ) ≤ i∗T =
C1n log(n/δ)

ǫ .

4 Proof of Theorem 11: Analysis of a “nice” pair of colorings

Fix v and R as defined in the statement of Theorem 11. Recall, for Xt, Yt ∈ Ω, their difference is
denoted by

Dt = {w : Xt(w) 6= Yt(w)}.
Denote their Hamming distance by Ht = |Dt|. Also, denote their cumulative difference by

D≤t =
⋃

t′≤t

Dt,

and denote their cumulative Hamming distance by H≤t = |D≤t|.

The main work is to prove part 1.

Proof of Theorem 11.1. Let δ = .45, γ = ǫ/20 and let Cb = Cb(δ, γ) from Lemma 9. Finally, let

Tb = max{Cbn, n ln(1/γ)}.
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Since Tm ≤ n exp(∆/Cb) for all ∆ sufficiently large, we can apply Lemma 9 to conclude that the
desired local uniformity properties hold with high probability for all t ∈ I := [Tb, Tm]. For times
t ∈ I we will prove that the expected Hamming distance decreases.

Hence, for t ≥ Tb, we define the following bad events:

• E(t) denote the event that at some time s ≤ t, Hs > ∆2/3.

• B1(t) denotes the event D≤t 6⊆ B√
∆(v).

• For part (a) of Theorem 11, let B2(t) denote the event that there exists a time Tb ≤ τ ≤ t and
z ∈ B√

∆(v) such that

A(Xτ , z) < Θ0 := (1− ǫ/2)k exp(−d(z)/k).

For part (b) of Theorem 11, let B2(t) denote the event that there exists a time Tb ≤ τ ≤ t,
z ∈ B√

∆(v) and colors c1, c2 such that

∑

w∈N(z)

1(U(Xτ , w, z, c1, c2))

A(Xτ , w)
≥ Ψ0 := (1 + ǫ/2)

d(z)(1− (1− exp(−∆/k))2)

k exp(−∆/k)
.

Then we let
B(t) = B1(t) ∪ B2(t),

and finally we define our good event to be

G(t) = E(t) ∩ B(t).

For all of these events when the time t is dropped, we are referring to the event at time Tm.

We will bound the Hamming distance by conditioning on the above events in the following manner,

E(HTm) = E(HTm1(E)) +E(HTm1(E)1(B)) +E(HTm1(G))
≤ E(HTm1(E)) + ∆2/3Pr (B) +E(HTm1(G)). (18)

From Lemma 10.3 we know that:

E(HTm1(E)) < exp(−
√
∆). (19)

For the second term in the right-hand side of (18) we will prove that:

Pr (B) < exp(−
√
∆). (20)
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Finally, for the third term in the right-hand side of (18) we will prove that:

E(HTm1(G)) < 1/9. (21)

Plugging (19), (20), and (21) into (18) we have that E(HTm) < 1/3 for ∆ sufficiently large, which
completes the proof of Part 1 of Theorem 11.

It remains to prove (20) and (21).

Proof of (20). We can bound the probability of the event B1 by a standard paths of disagreement
argument. Let ℓ =

√
∆. Recall, we are looking at the probability of a paths of disagreement from v

of length at least ℓ within Tm = C ′n/ǫ steps, hence:

Pr (B1) ≤ ∆ℓ

(

Tm

ℓ

)(

1

n(k −∆)

)ℓ

< (∆C ′e/(k −∆)ǫℓ)ℓ

< exp(−2
√
∆), (22)

for ∆ sufficiently large since k > 1.45∆ and ℓ =
√
∆.

To bound B2 we will use Lemma 9. Recall from the beginning of the proof of Theorem 11.1, we set
δ = .45, γ = ǫ/20, and for Cb = Cb(δ, γ) from Lemma 9 we set Tb = max{Cbn, n ln(1/γ)}. Note the
interval of times I := [Tb, Tm] we are interested in is covered by Lemma 9. Moreover, the hypothesis
of Theorem 11 says v is 400-above suspicion for radius R ≥ ∆3/5. Hence, for ∆ sufficiently large,
every z ∈ B√

∆(v) is 400-above suspicion for the constant radius R′(γ, δ) required by the hypothesis
of Part 2 of Lemma 9. Therefore, the desired bound on the local uniformity property of a vertex z
fails with probability that is exponentially small in ∆. More precisely, we have that:

Pr (B2) ≤
(

k

2

)

exp(−∆/Cb)∆
√
∆+1 ≤ exp(−2

√
∆) for ∆ sufficiently large. (23)

Summing the bounds in (22) and (23) implies (20).

We now prove inequality (21) that E(HTm1(G)) < 1/9.

Proof of (21). We will bound the expected change in H(Xt, Yt) using path coupling. Thus, let
W0 = Xt,W1,W2, . . . , Wh = Yt be a sequence of colorings where h = H(Xt, Yt) and Wi+1 is obtained
from Wi by changing the color of one vertex wi from Xt(wi) to Yt(wi). We maximally couple Wi and
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Wi+1 in one step of the Glauber dynamics to obtain W ′
i ,W

′
i+1. More precisely, both chains recolor

the same vertex, and maximize the probability of choosing the same new color for the chosen vertex.

Consider a pair Wi,Wi+1. With probability 1/n both chains recolor wi to the same color, and the
distance decreases by one. Consider z ∈ N(wi), and let c1 = Wi(wi) and c2 = Wi+1(wi). Note, color
c1 is not valid for z in Wi, however, it is valid in Wi+1 if c1 6∈ Wi+1(N(z) \ {wi}). Similarly, color c2
is valid in Wi+1, but it is valid in Wi if c2 6∈ Wi(N(z) \ {wi}). If at least one of these two cases hold,
with probability at most 1/nmin{A(Wi, z), A(Wi+1, z)}, vertex z is recolored to different colors in
the two chains. Otherwise z will be recolored the same in both chains. Therefore, given Wi,Wi+1,

E(H(W ′
i ,W

′
i+1))−H(Wi,Wi+1) ≤ − 1

n
+

1

n

∑

z∈N(wi)

1(U(Wi, z, wi, c1, c2))

min{A(Wi, z), A(Wi+1, z)}
(24)

In any coloring every vertex has at least k − ∆ available colors. Since k − ∆ ≥ ∆/3, we have the
following trivial bound. Given Wi,Wi+1,

E(H(W ′
i ,W

′
i+1))−H(Wi,Wi+1) ≤ − 1

n
+

∆

n

3

∆
=

2

n
. (25)

Therefore, given Xt, Yt,

E(H(Xt+1, Yt+1))−H(Xt, Yt) ≤
2

n
H(Xt, Yt). (26)

This bound will only be used for the burn-in phase of Tb steps. We will need to do significantly
better for the remaining Tm − Tb steps of an epoch.

Assume that G(t) holds. We will bound the distance in (24) separately for part (a) and part (b) of
Theorem 1.

Suppose G has girth ≥ 5 and k = (1+ ǫ)α∗∆, ǫ < .3. (Note, the choice of the constant .3 is arbitrary
and to prove the theorem it suffices to consider the case when ǫ is upper bounded by any constant.)
For all 0 ≤ i ≤ h, z ∈ BR(v), all t ∈ [Tb, Tm − 1], assuming G(t) occurs, we have that:

A(Wi, z) ≥ A(Xt, z)−∆2/3 ≥ Θ0 −∆2/3.

where the first inequality comes from assuming E(t) occurs, and the second inequality comes from
assuming B2(t) occurs. Hence, for t ∈ [Tb, Tm], given Wi,Wi+1, and assuming G(t) occurs we have
that:

E(H(W ′
i+1,W

′
i )−H(Wi+1,Wi)) ≤ − 1

n
+

∆

(Θ0 −∆2/3)n
≤ − ǫ

4n
(27)
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Similarly, suppose G has girth ≥ 7 and k = (1 + ǫ)β∗∆, ǫ < .3. For all 0 ≤ i ≤ h, z ∈ BR(v), c1, c2 ∈
[k], all t ∈ [Tb, Tm − 1], assuming G(t) occurs:

∑

y∈N(z)

1(U(Wi, y, z, c1, c2))

min{A(Wi, y), A(Wi+1, y)}
≤

∑

y∈N(z)

1(U(Xt, y, z, c1, c2))

A(Xt, y)−∆2/3
+

∆2/3

k −∆
≤ Ψ0 +∆−1/4, (28)

since A(Xt, y) ≥ k −∆ > ∆/3. Plugging (28) into (24) proves (27) for part (b) of the theorem.

Therefore, for parts (a) and (b) of the Theorem, for t ∈ [Tb, Tm − 1], given Xt, Yt, assuming G(t)
holds:

E(H(Xt+1, Yt+1)−H(Xt, Yt)) ≤ − ǫ

4n
H(Xt, Yt). (29)

Let t ∈ [Tb, Tm − 1]. Then

E(Ht+11(G(t))) = E(E (Ht+11(G(t)) | X0, Y0, . . . , Xt, Yt))

= E(E (Ht+1 | X0, Y0, . . . , Xt, Yt)1(G(t)))
≤ (1− ǫ/4n)E(Ht1(G(t)))
≤ (1− ǫ/4n)E(Ht1(G(t− 1)))

The above derivation deserves some words of explanation. In brief, the first equality is Fubini’s
Theorem, the second is because G(t) is determined by X0, Y0, . . . , Xt, Yt. The first inequality uses
(29), and the second inequality uses G(t) ⊂ G(t− 1).

By induction, it follows that

E(HTm1(G)) ≤ (1− ǫ/4n)Tm−Tb E(HTb
1(G(Tb))).

And by (26) and the exact same argument for t ∈ [0, Tb − 1],

E(HTm1(G)) ≤ (1− ǫ/4n)Tm−Tb (1 + 2/n)Tb H0. (30)

The result follows from the choice of constants (note, H0 = 1).

This completes the proof of Theorem 11.1. Now we will prove Part 2 of Theorem 11.

Proof of Theorem 11.2. Consider the event B′
1 that DTm 6⊂ B√

∆(v). Recall (from the proof of part
1 of this theorem) the event B1 is defined as the event D≤Tm 6⊂ B√

∆(v). Hence, by (22) we have:

Pr
(

B′
1

)

≤ Pr (B1) ≤ exp(−
√
∆),
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Hence, we can assume the disagreements are contained in B√
∆(v). By the hypothesis of Theorem 11,

each vertex w ∈ B√
∆(v) is 400-above suspicion for radius R−

√
∆ in both X0 and Y0. Therefore, by

Lemma 8, each vertex w ∈ B√
∆(v) is 4-above suspicion for radius R−

√
∆− 2 in XTm and YTm with

probability at least 1 − exp(−∆/Cb). Therefore, all w ∈ B√
∆(v) are 4-above suspicion for radius

R −
√
∆ − 2 in XTm and YTm with probability at least 1 − exp(−

√
∆). We have proven that all

disagreements between XTm and YTm are 4-above suspicion for radius R−
√
∆− 2 with probability

≥ 1− 2 exp(−
√
∆), which proves Theorem 11.2.
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