Broadcasting in Random Graphs.

Alan Frieze^{*} Michael Molloy[†]

February 23, 2002

Abstract

We do a probabilistic analysis of the problem of distributing a single piece of information to the vertices of a graph G. Assuming that the input graph G is $G_{n,p}$, we prove an $O(\ln n/n)$ upper bound on the edge density needed so that with high probability the information can be broadcast in $\lceil \log_2 n \rceil$ rounds.

1 Introduction

Let G = (V, E) be a graph, and for $v \in V$, let N(v) denote the set of v's neighbours in G. We will study the problem of distributing a piece of information i, residing initially at one given vertex v_0 , to the rest of the vertices. At each time step, any vertex knowing i can share it with *one* of its neighbours.

^{*}Department of Mathematics, Carnegie-Mellon University. Supported in part by NSF grants CCR9024935 and CCR9225008.

[†]Department of Mathematics, Carnegie-Mellon University. Supported in part by NSF grant CCR9225008.

Let $V_t, t = 0, 1, 2, ...$ denote the set of vertices which have i at the beginning of step t. Thus $V_0 = \{v_0\}$.

Clearly $|V_{t+1}| \leq 2|V_t|$, and so if |V| = n then it takes at least $\nu = \lceil \log_2 n \rceil$ rounds before every vertex has *i*. For the purposes of this paper let a graph have property \mathcal{B} if is possible to distribute a piece of information in ν rounds, from every possible starting vertex.

We will study the probability that the random graph $G_{n,p}$ has property \mathcal{B} . Observe first that if c < 1 is constant and $p \leq c \ln n/n$ then $\mathbf{whp}^1 \ G_{n,p}$ has isolated vertices and so does not have \mathcal{B} . In terms of an upper threshold for p, Scheinermann and Wierman [4] and Dolan [1] showed that if $p \geq c(\ln n)^2/n$ for some constant c > 0 then $G_{n,p}$ has \mathcal{B} whp Recently Gerbessiotis [3] reduced the upper bound to $c(\ln \ln n) \ln n/n$.

In this paper we give a simple proof of

Theorem 1 There exists a constant c > 0 such that if $p \ge c \ln n/n$ then $G_{n,p}$ has \mathcal{B} whp.

Proof In the proof we assume $p = 18 \ln n/n$. We define a *broadcast tree* T rooted at a vertex $v \in [n]$. The tree defines an increasing sequence of sets $\{v\} = W_0 \subset W_1 \subset \ldots \subset W_{\nu} = [n]$. Here $|W_t| = 2^t$ for $0 \le t < \nu$. The edges of T consist of matchings $M_0, M_1, \ldots, M_{\nu-1}$, where M_t is a perfect matching between W_t and $W_{t+1} \setminus W_t$ for $0 \le t < \nu - 1$, and $M_{\nu-1}$ is a matching of $W_{\nu} \setminus W_{\nu-1}$ into $W_{\nu-1}$.

¹An event \mathcal{E}_n is said to occur **whp** (with high probability) if $\mathbf{Pr}(\mathcal{E}_n) = 1 - o(1)$ as $n \longrightarrow \infty$.

Given a broadcast tree rooted at v one can clearly distribute the information by sending it along M_t in round t.

We prove the theorem by proving

 $\Pr(\exists \text{ broadcast tree rooted at vertex } 1) = 1 - o(n^{-1})$

We decompose $G_{n,p}$ as the union of independent copies of G_{n,p_1} , G_{n,p_2} , G_{n,p_3} , where $p_2 = p_3 = (4.5 \ln n)/n$ and $1 - p = (1 - p_1)(1 - p_2)(1 - p_3)$. Note that this yields $p_1 \ge (9 \ln n)/n$.

We (try to) construct our tree in three phases, where in Phase i, we use the edges of G_{n,p_i} , i = 1, 2, 3.

Phase 1

Here we use a simple greedy approach to construct $W_1, W_2, \ldots, W_{\nu-2}$.

In the following algorithm when a vertex $v \in W_t$ needs to find a vertex w to be matched to in M_t it searches for the *next* vertex in order that (i) is not in W_t , and (ii) is in N(v). The pointer s_v keeps track of where we are in v's list.

GREEDY SEARCH

begin

 $s_v := 0$ for all $v \in [n]$; $W_0 := \{1\}$; for t = 0 to $\nu - 3$ do begin $W_{t+1} := W_t$;

	for $v \in W_t$ do	
	begin	
A:	$s_v = s_v + 1;$	
	if $s_v > n$ then FAIL;	
B:	if $s_v \in W_{t+1}$ then goto A;	
C:	$\mathbf{if} (v, S_v) \notin G_{n, p_1} \mathbf{ then go to } \mathcal{I}$	A;
	$W_{t+1} := W_t \cup \{s_v\}$	
	end	

end

end

Phase 2

Find a matching $M_{\nu-2}$ of $W_{\nu-2}$ into $[n] - W_{\nu-2}$ using the edges of G_{n,p_2} . $W_{\nu-1}$ is equal to the set of vertices covered by $M_{\nu-2}$.

Phase 3

Find a matching $M_{\nu-1}$ of $[n] - W_{\nu-2}$ into $W_{\nu-1}$ using the edges of G_{n,p_3} .

Probability of Failure

If Phase 1 fails then s_v reaches n + 1 for some $v \in [n]$. Now $|W_{\nu-2}| < n/2$ and so for this v, Statement B has caused a jump to A less than n/2 times. So we must have executed Statement C at least n/2 times and there have been at most $\nu - 3$ cases where an edge of G_{n,p_1} was found. Now when C is executed, the edge (v, s_v) has not been previously examined, and so occurs with probability p_1 independently of the history of the process so far. Thus if $B(\cdot, \cdot)$ denotes a binomial random variable then

$$\mathbf{Pr}(\text{Phase 1 fails}) \leq n\mathbf{Pr}(B(n/2, p_1) \leq \nu - 3)$$
$$= o(n^{-1})$$

on using the Chernoff bound $\Pr(\mathcal{B}(m,q) \le (1-\epsilon)mq) \le e^{-\epsilon^2 mq/2}$.

The failure probabilities for Phases 2 and 3 can be estimated as in Erdős and Rényi [2]. For both Phases we must match $\leq n/2$ vertices into $\geq n/2$ vertices. Thus our failure probability is dominated by that for no perfect matching in a random bipartite graph with n/2 + n/2 vertices and edge probability p_2 . This is $o(n^{-1})$ as required, completing the proof of our theorem.

Of course we do not believe that 18 is the correct constant. One can easily reduce it by being a little more careful with estimates. It does seem however that our method will not give us the least constant and we leave it at 18 for readability.

References

- P.Dolan. Spanning Trees in Random Graphs, Random Graphs Volume
 A.M.Frieze and T.Luczak (Editors), John Wiley and Sons (1992), 47-58.
- [2] P.Erdős and A.Rényi, On random matrices, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1964) 455-461.
- [3] A.Gerbessiotis. *Broadcasting in Random Graphs*. Discrete Mathematics, to appear.

 [4] E.Scheinerman and J.Wierman. Optimal and Near-Optimal Broadcasting in Random Graphs. Discrete Applied Math 25 (1989), 289-297.