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Limit Distribution for the Existence of Hamiltonian Cycles
in Random Bipartite Graphs

A. M. FRIEZE

A random bipartite graph D with 2n vertices is generated by allowing each of the n? possible
edges to occur with probability p=(logn+loglog n+e,)/n

We show that
0 C, == —ix
31'1:5 P{ D contains 2 Hamiltonian cycle) —'{: = L, =&
1 L, == a0

INTRODUCTION

Komlés and Szemerédi [2] showed that if the edges of a random labelled graph G(n, p)
on n vertices are drawn independently with probability p=p,=(log n+loglogn+e¢,)/n
and HAM denotes the event that G(n, p) has 2 Hamiltonian cycle, then

0, Cp == =20,
lim P(HAM)={¢" >  &=§ (1.1)
el 1, Oy =+ 100
=P”:i P(D2)

where D2 is the necessary event that each vertex of G(n, p) has degree at least 2.

Independently Korsunov [3] proved the same result for ¢, = +20.

This tightened Posd's result [5] that p=a log n/n for a sufficiently large is enough to
ensure that G{n, p) 15 almost surely Hamiltonian.

An elegant result of MeDiarmid [4] shows that if D{n, p) is a random vertex labelled
digraph with n vertices in which each arc is drawn independently with probability p then

P(D(n, p)is Hamiltonian) = P(Gin, p) is Hamiltonian) (1.2)

from which one can, for example, show that D(n, p) is almost surely Hamiltonian if
¢, =+ +20 above,

In this paper we look at random vertex labelled bipartite graphs B(n, p) in which there
are 2n vertices partitioned into 2 sets V; and V. of size n and in which the edges are
drawn independently with probability p. [tis very pleasing, though perhaps not surprising,
that a result similar to (1.1} can be proved.

2. Mamv REsuLT

For ease of reference we next list some notation and define some events needed later.

Notation. Let G be a graph. V(G), E(G) denote the vertex and edge sets of G,
respectively.
ForSc ViG),ds(S)=|{we 8: (v, w)e E{G) forsome ve S} andforv e V, dg(v) = the
degree of v in G
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A path P of G has no repeated edges, distinct endpoints and I/{ P) edges. A cycle C
has I{C) edges,

L[G}=max{f{?}: P is a path of a)

We will be concerned with a bipartite graph BG with vertex partition V), V. where
n=|V|=|v,] always,

We assume that the vertices in V; are painted black and that the vertices in V; are
painted white. Terms like black sets, white sets and unichromatic se¢ts have their obvious
meaning.

The following lemma describes some properties of BG that hold almost surely,

Lemma 1. Assume loglog n+c, > 0. Ler o pertex be small if dyclv) =log n/10 and
large otherwise.

The following hold almost strely:

(a)

(i) nlog n=|E(BG)|=2n log n,

(ii) dgclv)=4 logn for all ve V,u V.,

(iii) BG contains fewer than n"/? small vertices,

(b} Let F= E(BG), be such that no small vertex is incident with an edge of F and no
large vertex is incident with more than log n/200 edges of F. Then

(iv) H=(V,u V,, E(BG)~-F) is connected,

(v) dy(S)=2|8|-n, Jor all  unichromatic S, 1=[8|=2n/5 where n =

Hoe ViU Vi dao(n) =1}.

Proor (OuTLing). (a) can be proved by routine caleulation and (b) follows easily
once one has established Properties analogous to Section 1 of Komlés and Szemersdi [2].

Let N denote the set of BG satisfying the conditions of Lemma 1.
We now define the following events:

BG e D2 if and only if dys(v)=2, for all pe V.

BGe LC if and only if a longest cycle of RG has as many vertices as a longest path of BG,
BG = ODD if and only if L(BG) is odd.

BGe EVEN if and only if L(BG) is even.

BG e HAM if and only if BG contains a Hamiltonian cycle.

We now give some lemmas, whose proofs are either omitted or left until after the proof
of the main theorem, :

In the following lemmas, the probability of an edge being included in BG is P=
(log n+log log n +c,)fn.

LEningas 2.
ﬁ: Cn -,
lim P(BGe D2) = AR C,=*C,
oy 1, Cp = 00,

Proor. Use inclusion-exclusion as in Erdds and Rényi [1].

LEnmna 3.
lim P(BGe N D2~ 1LC)=0, ifloglog n+c, - +ao,

R
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Proor. Given later.

The main resuit follows easily from these lemmas.

THEOREM.
0, £, —* —t0,
lim P(BGeHAM) =+ 7%, C, =,
S 1, C, = 00,

Proor. We first note that the probabilities in Lemma 2 are obviously upper bounds
for the probability of BG being Hamiltonian. We can therefore assume ¢, # —o0. On the
other hand LC~» N n D2 < HAM because

(1) BG& N n D2 implies that BG is connected. (put F= & and n, =0in Lemma 1(b)).

(2) Any connected subgraph in LC is Hamiltonian, for if a longest cycle € of BG was
not @ Hamiltonian cycle then we could derive a longer path from the fact that C is
connected to the rest of the graph.

The rest then follows easily from Lemmas 1, 2, 3

P(BGeHAM)= P(BGeLCn N nD2), by the above,
=P(BG=s NnD2)—a(1), by Lemma 3,
=P(BGeD2)-o(1), by Lemma 1.

Now use Lemma 2.

We turn now to the proof of Lemma 3. We first give a form of a result of Posd on the
endpoints of a set of longest paths in a graph that has been known to T. 1. Fenner and
the author for some time, but has not, as vet, found any application.

Let P=(u,, vy,..., 1) be a longest path in a graph G. Then if (1, v,) € E(G) where
t<k—1 then we find that P'=(u,, v,,..., 1, Uiy Uk—ts- - - 4 Ueq) i5 als0 a longest path.

We say that P'is obtained from P by a flip. There may be several ways of flipping P
and we can obviously generate many longest paths by sequences of flips.

Starting with P, = P above we derive a sequence of longest paths Py, Py, Ps, ... all with
vy as one endpoint. The other endpoint w; of P, is the one distinet from Uy. Al any stage
of our procedure we will have produced a sequence o =(F,, P, P,,..., P.), the first
5 of which will have been scanned. Initially we have ay=(PF,;) with P, unscanned. In
general we take the first unscanned path P, if, however, s = m we terminate this Pprocess.
Let ¢y, Qy,..., Q. be the paths that can be generated from P, by flipping. We add to
the sequence o, any path whose other endpoint is not 2 member of W, = {Wo, Wiaenoy Wal.
Let END(v,)= W.. when we terminate, which must happen eventually as W, cannot
grow indefinitely,

Lemmad. Letw beavertexof P v, ¢ END{r,) and suppose that there exists w = END{1,)
such that (v, w) = E(G).
Then {r,_, .., }nEND(u,) # & (assume v, =)

Proor. Let s=min(r: (w,, 5,) = E{G)). If W, £ {t,_), U241} then clearly {v,_,, v,.,}
W, = &. But this means that the edge (w,, 1,) can be used to flip P.. But the neighbour(s)
of v, on P, must be v,_,, v,.,. Forif not, the sequence of flips used to obtain P, must
have deleted one of the edges (r,_,, 1), (v, v,_;). But when an edge is deleted one of its
vertices becomes an endpoint. Thus in this case one of T;_y, 0y, Uy has already been an
endpoint. The lemma follows from this contradiction.
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CoROLLARY,
da(END(1y)) < 2|END( tg)|

Now for any v e END{u,) there is a longest path of G with ¢ as an endpoint. We may
clearly carry out the same construction keeping v as a fixed endpoint, thus CTeating a set
END{ ) of other endpoints to o

In summary, we create a set END ={v,}u END(v,) such that for each v= END there
is a set END{v) satisfying

JG{ENDI[L'-}}{QlEND{uH (2.1a)
If te END and we EN D(v) then v and w are the endpoints of some longest path (2.1b)

In the next lemma we have a bipartite graph BGe EVEN., Let END etc. be as abave,
For 12 END let ®(v) be the vertex adjacent to v on all of the paths produced during
the construction of END(¢). The definition of flip and the fact that these longest paths
have an even number of edges justifies this definition.

LEMMA 5. If X = @(END) then ve X implies |®@~'(x)|=2 and hence |X|=|END|/2.

ProoF. Let Pbe the original longest path used to Start our construction. Let e END
and x = ®(v). Our result will follow if we show that v and x are adjacent on P, If v =,
then (u,, x) is a terminal edge of P. If v # g, let Q=(p, ..., x v)bethe first path generated
that has v as an endpoint. If (x, v} is not an edge of P then (x v} was added during a
previous flip. But then one out of x and v was already an endpoint at this stage. Since
I(P) is even, all vertices in END are the same colour as ty, which implies x & END(z,)
and hence that v has already been an endpoint—contradiction, Thus (x, ¢} is an edge of
P and our result follows,

The arguments used in previous work depend on showing that END is large and that
for each ve END, END(v) is large and that there are enough edges to ensure that with
high probability there is an edge of the form (v, w) where we END(v). However in the
bipartite case if L(BG) is even then obviously this cannot be dope., Overcoming this
difficulty is the main problem solved in this paper. In fact it suffices to prove

Lemua 6.
lim P(BGe EVENA D2~ MNi=0.

Proor, Let Pz=af(nlog r) where a=305 (it is preferable to carry a around in
formulae so that one can easily see later why a particular value was chosen) and let
P1=(p—2p,+p3)/(1—p.)%. We generdte the edges of BG as follows: E, is a random
subset of V;x V, where ee VixV, is independently included in E, with probability 1
and excluded with probability 1 —p,: E, is a random subset of Vi % ¥;— E, with inclusion
probability p,; E, is a random subset of Vix ua—(E,u E;) with inclusion probability p,.
E{BG]I'—-EbuESu E,. E,, E,, E, are referred to as blue, green and yellow edges
respectively. BG, is the graph (Viu Vs, E,).

One can easily confirm that the edge probability of BG is P as required.

Such a colouring of BG is said to be good and BG is said to be well-coloured if

L(BG,) = L(BG). (2.2a)

every small vertex of BG is incident with blue edges only, (2.2b)
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o large vertex has more than log n/200 incident edges that are coloured
green or yellow. (2.2c)

Let GOOD denote the event that the colouring chosen is good. The crux of the proof
is the following pair of inequalities which hold for large n:

P{GDDD{BGENﬁDZnEVE:\Ej?:(l— 3a ) (2.3)
(logn)
P((BGe N n D21 EVEN) A GOOD) = ¢ /76 logn_ (2.4)

It follows immediately from (2.5) and (2.6) that

3 a7 : :
P(HGeEvENmnznms(l— = ,) i/ IO ET A
(log n)
ae(iu’—a:_-'?ﬁ:-n-'l,nu-'ﬂ

for large n. The lemma follows immediately.

ProoF oF 2.3. We shall prove the stronger result that for any BG,e N,
z 3a \"
P{GGOD|BG=BG‘}}=? 1 e, {25]
(log n)

from which (2.3) follows easily.
Let P be any longest path of BG,. Routine calculations show that the r.hs. of (2.5) is
a lower bound for the probability that the edges of P are blue and (2.2b), (2.2¢) hold.

ProoF oF 2.4. We first note that condition (2.2b) and (2.2c) of a good colouring
ensure via Lemma 1 that if BG & N ~ D2 is well-coloured then for large n, H = BG,, satisfies

Sc V, § unichromatic and |S|=2n/5 implies d,(5)=2|5|. (2.6a)
H is connected. (2.6b)
Let us now write
P{GOOD A (BGe N n D2~ EVEN))
= L P(GOODn(BGs N ~nD2nEVEN)|BG, = H)P(BG,=H), (2.7)

=

Hedl

where (1 is the set of graphs with n vertices which can be derived from a graph in
N D21 EVEN by deleting edges.
Now let H be fixed member of £2. We will show that for large n

Py = P(GOODA (BGe N A D2~ EVEN)|BG, = H) =%/ T6los n (2.8)

from which (2.4) follows, on using (2.7).
We next describe the probability Py in the following way: given H =11, let BG be
obtained by adding random edges X = E,uE, to H Then

Py =F((a) BGe N ~nD2n EVEN,
(b) L(H)=L(BG),
{c) (2.2b) and (2.2¢) hold).
Now clearly P, =01l H 2 EVEN, using conditions (2) and (b), and by the above, P, =0
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also if H does not satisfy (2.6). So assume now that H € EVEN and H satisfies (2.6). Let
Qu = P(L(H) = L(BG))
Clearly P, = Q,; and we shall show that
Qu e/l n (2.9)

from which (2.8) and the lemma follows.
Now instead of adding X to H all ar once, we add random edges E, to H to create
4 graph H" and then add further random edges to H” to create BG.

Let OUT={u: there exists a longest path P of H" such that (i) v is not
a vertex of P, (ii) the endpoints of P are both coloured
differently to v}

We show next that
P((|OUT| < an/30log n) ~ (L(H")= L(H)) = g o"/120log = {2.10)
PUL(BG) = L(H))  (|OUT|= an/30lag n)) < o~ */7S1esn (2.11)
Since L(BG) = L(H) implies L{ H") = L{H) we deduce from this pair of inequalities that

P(L(BG)=L{H))=e a/1M0kgn 4  ~e*n/7510g" n
which implies (2.9) for large n.

ProoF oF (2.10). Let P pe a longest path of H and let END, END(¢) for v END
and the function & be as defined in Lemmas 4 and 5. As (2.6) holds we know from (2.1a)
that [END|=2n/5 and further from Lemma 5 that [X|=n/5 where X = $(END).

For xe X Jet FIN{x}=L_J“.a-={x,ENDI{u} and let A(x) be the event: there exists
we FIN{x) such that (x, w)e E(H"). The important point to note is that if Alx) occurs
and L(H")=L(H) then @ '(x)<QUT. To see this, suppose xe X, ye & (x) and
L{H")= L(H). Let Q=(to,0y,..., 1) be a longest path of H obtained from P by a
sequence of flips such thar ta=), ty=x and (x, o) e E(H"). As I{2) is even, there is a
vertex z of a different colour 1o ¥ and not lying in Q. As H is connected there is a path
R from z 10 some vertex v; of Q not containing any other vertex of (. Now r = 0 otherwise
(2 is not a longest path of H*, If C is the cycle (v, ts,..., 1, 1) let @, be the path
obtained by deleting the edge (1, Uer) Of Q and let : be the catenation of @, and R.
Clearly I{Q.) = I{ Q) and s0 Q. is a longest path of H". A= tpisnoton ¢, and the endpoint
z of ( is of a different colour to v, we have U= OUT as was to be shown,

We show next that with high probability, A(x) occurs for a large number of x.

Suppose first e X and there does not exist (x, w)e E(H) with weFIN({x). Since
IFIN(x)|=2n/5 we find that PrA(x))=1~(1-p,)*"*= a/3logn for n large. On the
other hand for x & X with (xwle E(H), we FIN{x) we have Pr{A(x))=1. These events
are all independent and so using [X|=n/5 and standard inequalities for the tails of the
binomial distribution we have

Pr(l{xe X: A(x) oceurs)| = an/30 log n)= g o/ 120lag

which proves (2.14). To complete the proof of our lemma it only remains now to give
the proof of (2.11):

PrROOF OF (2.11). Assume L(H")= L(H). If xc OUT let P(x) denote some longest
path of H" not passing through x Let Bix) denote the set of endpoints obtainable by a
sequence of flips as in Lemma 4. Note that IB(x)|=2n/5 because of {2.1a) and (2.6).
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Now L{(BG) = L(H") only if none of the edges added to H" join an x=OUT to some
¥ € B(x). But the probability of this occurring is clearly no more than

(1 _plj:ﬂET.-"I‘EMu;r. = c—a’u:?: Tog” n
which proves (2.11) and completes the lemma
The proof of our theorem can now be completed with:

ProorF oF LEmma 2. Because of Lemma 6 we need only prove
lim P(BGe NnD2nODDALC) =0 (2.12)

-

We use an edge colouring argument as in Lemma 6, but things are fortunately much
simpler and much of the proof can be lifted from the previous proof. We construct BG
as in Lemma 6, but now we can absorb E, into E, to make a blue-green graph with
approximately twice as many green edges as before. Let BG,, be as before and let a good
colouring be as defined in (2.2). The proof of (2.5) goes through as before.

To prove Lemma 3 we have only to prove

P(GOOD~(BGe Nn D2~ 0ODD A LC)) =g o/ 3loen (2.13)
and then (2.12) will follow immediately. Now
P(GOOD A (BGs NnD2~ODDALC))

= ¥ P(GOODnN(BGe NnD2nODDnLC)|BG,=H)P(BG,=H) (2.14)
Hecid*

where (2’ is the set of graphs with n vertices which can be derived from a graph in
N nD2nODDALC by deleting edges. Now let H be a fixed member of £2°. We will
show that for large n

Py = P(GOODN (BGe NnD2nODDnLC)|BG, = H)<e ="/*&n (3 15)

from which (2.13) follows on using (2.14).
We next describe the probability of Py in the following way: given H e 1Y, let BG be
obtained from H by adding random edges E, to H. Then

Py =P((a) BGe NnD2nODDALC,
(b) L(H)=L(BG),

() (2.2b) and (2.2¢) hold.

Now clearly Py =0 if H20DD and also Py =0 if H does not satisfy (2.6). So assume
now that H £ ODD and that H satisfies (2.6). Let

@ = P((a) L(H)= L(BG) and (b) BGeLC)= P,

Now let P be any longest path of H and let the sets END, END(v) for v € END be
as defined in Lemma 4. As (2.6) holds we deduce that these sets are all at least 2n/5 in
size. Now in order to have L(H) = L{(BG) and BG = LC the following event must occur:
no edge of X joins a vertex v= END 1o a vertex we ENDi{wv). A

But the probability of this happening is less than or equal to (1 — p,)?¢"/25-2nlegn) ;14
the lemma follows.

We note that McDiarmid’s results apply equally well to random bipartite graphs and
hence (1.2) is valid when D(n, p) is a random bipartite digraph. We note also that it is
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straightforward to modify this proof to give one for (1.1). In particular we do not nesd
to prove Lemma 6 in this case.
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