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Abstract

We study a dynamically evolving random graph which adds vertices and edges using pref-
erential attachment and is “attacked by an adversary”. At time t, we add a new vertex xt and
m random edges incident with xt, where m is constant. The neighbors of xt are chosen with
probability proportional to degree. After adding the edges, the adversary is allowed to delete
vertices. The only constraint on the adversarial deletions is that the total number of vertices
deleted by time n must be no larger than δn, where δ is a constant. We show that if δ is
sufficiently small and m is sufficiently large then with high probability at time n the generated
graph has a component of size at least n/30.

1 Introduction.

Recently there has been much interest in understanding the properties of real-world large-scale
networks such as the structure of the Internet and the World Wide Web. For a general introduction
to this topic, see Bollobás and Riordan [7], Hayes [21], Watts [30], or Aiello, Chung and Lu [3]. One
approach is to model these networks by random graphs. Experimental studies by Albert, Barabási,
and Jeong [1], Broder et al [12], and Faloutsos, Faloutsos, and Faloutsos [19] have demonstrated that
in the World Wide Web/Internet the proportion of vertices of a given degree follows an approximate
inverse power law, which means that the proportion of vertices of degree k is approximately Ck−α

for some constants C, α. The classical models of random graphs introduced by Erdős and Renyi
[18] do not have power law degree sequences, so they are not suitable as models for these networks.
This has driven the development of various alternative models of random graphs.

One approach is to generate graphs with a prescribed degree sequence (or prescribed expected
degree sequence). This is proposed as a model for the web graph by Aiello, Chung, and Lu in [2].

An alternative approach, which we will follow in this paper, is to sample graphs via some generative
procedure which yields a power law distribution. There is a long history of such models, outlined
in the survey by Mitzenmacher [25]. We will use an extension of the preferential attachment model
to generate our random graph. The preferential attachment model has been the subject of recently
revived interest. It dates back to Yule [31] and Simon [29]. It was proposed as a random graph
model for the web by Barabási and Albert [4] and by Kumar, Raghavan, Rajagopolan, Sivakumar,
Tomkins and Upfal [23]. Bollobás and Riordan [8] showed that at time n, with high probability
(meaning with probability tending to 1 as n tends to ∞ and abbreviated whp), the diameter of
this graph is asymptotically equal to log n

log log n . Bollobás, Riordan, Spencer and Tusnády [11] showed
that the degree sequence of this graph follows a power law distribution whp.

An evolving network such as a P2P network sometimes loses vertices. Bollobás and Riordan [9],
[10] consider the effect of deleting vertices from the basic preferential attachment model of [4], [8],
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after the graph has been generated. Cooper, Frieze, and Vera [17] consider the effect of random
edge and vertex deletion while the graph is generated. Chung and Lu [13] independently consider a
similar model. In this paper we also consider the deletion of vertices while the graph is generated,
but the deletions are adversarial, not random. In our model there is an (adaptive) adversary who
decides which vertices to delete after each time step.

We will study process P, which generates a sequence of graphs Gt = (Vt, Et), for t = 1, 2, . . . , n. It
is defined as follows:

Formal Definition of Process P

Time step t = 0: G0 = (∅, ∅).

Time step t ≥ 1: We add vertex xt to Gt−1.

If E(Gt−1) is empty, we add m loops incident to xt.

Otherwise: Add m random edges (xt, yi)i=1,2,...,m

incident with xt, where each yi is chosen from Vt−1

by preferential attachment, meaning for v ∈ Vt−1,

Pr(yi = v) =
degt−1(v)

2|Et−1|
,

where degt−1(v) denotes the degree in Gt−1.

After the addition of xt and the m edges, the adver-
sary chooses a (possible empty) set of vertices and
deletes all of them. The adversary does not have
any knowledge of future random bits.

The only constraint the adversary has is that by time n the number of vertices he or she has deleted
is at most δn, where δ is a sufficiently small constant.

We follow the convention of counting both ends of a loop when counting degree, so the degree of
an isolated vertex with a single loop is 2.

2 Results.

All the asymptotic notation is with respect to n, and all other parameters are considered to be
fixed.

Theorem 1. For any sufficiently small constant δ there exists a sufficiently large constant m =
m(δ) and a constant θ = θ(δ, m) such that whp Gn has a “giant” connected component with size
at least θn.

In the theorem above, the constants are phrased to indicate the suspected relationship, although
we do not attempt to optimize them. Our unoptimized calculations work for δ ≤ 1/50 and m ≥
δ−2 × 108 and θ = 1/30.

The proof of Theorem 1 is based on an idea developed by Bollobas and Riordan in [10]. There they
couple the graph Gn with G(n, p), the Bernoulli random graph, which has vertex set [n] and each
pair of vertices appears as an edge independently with probability p. We couple a carefully chosen
induced subgraph of Gn with G(n′, p).
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To describe the induced subgraph in our coupling, we now make a few definitions. We say that
a vertex v of Gt is good if it was created after time t/2 and the number of its original edges that
remain undeleted exceeds m/6. By original edges of v, we mean the m edges that were created
when v was added. Let Γt denote the set of good vertices of Gt and γt = |Γt|. We say that a vertex
of Gt is bad if it is not good. Notice that once a vertex becomes bad it remains bad for the rest of
the process. On the other hand, a vertex that was good at time t1 can become bad at a later time
t2, simply because it was created at a time before t2/2.

Let
p =

m

1500n

and let ∼ denote “has the same distribution as”.

Theorem 2. For any sufficiently small constant δ there exists a sufficiently large constant m =
m(δ) such that we can couple the construction of Gn and random graph Hn, with vertex set Γn,
such that Hn ∼ G (γn, p) and whp |E(Hn) \ E(Gn)| ≤ e−δ2m/106

mn.

In Section 4 we prove Theorem 2. In Section 5 we prove a lower bound on the number of good
vertices, a key ingredient for the proof of Theorem 1.

3 Proof of Theorem 1.

We will prove the following two lemmas in Section 5.

Lemma 1. Let G obtained by deleting fewer than n/100 edges from a realization of Gn,c/n. If
c ≥ 10 then whp G has a component of size at least n/3.

Lemma 2. Whp, for all t with n/2 < t ≤ n we have γt ≥
t
10 .

With these lemmas, the proof of Theorem 1 is only a few lines:

Let G = Gn and H = G(γn, p) be the graphs constructed in Theorem 2. Let G′ = G ∩ H. Then
E(H)\E(G′) = E(H)\E(G) and so whp |E(H)\E(G′)| ≤ e−δ2m/106

mn. By Lemma 2, whp |G′| =
γn ≥ n/10. Since m is large enough, p = m/1500n > 10/γn and e−δ2m/106

mn < n/1000 ≤ γn/100.
Then, by Lemma 1, whp G′ (and therefore G) has a component of size at least |G′|/3 ≥ n/30. 2

4 The Coupling: Proof of Theorem 2.

We construct G[k] ∼ Gk and H[k] ∼ G(γk, p) for k ≥ n/2 inductively. G[k] will be constructed by
following the definition of the process P and H[k] will be constructed by coupling its construction
with the construction of G[k].

For k = n/2, we only make the size of H[k] correct and do not try to make the edge structure look
like G[k]; we just take H[n/2] to be an independent copy of G(γn/2, p) with vertex set Γn/2.

For k > n/2, having constructed G[k] and H[k] with G[k] ∼ Gk and H[k] ∼ G(γk, p), we construct
G[k + 1] and H[k + 1] as follows: Let G[k] = (Vk, Ek), and let νk = |Vk|, ηk = |Ek| and recall that
the number of good vertices is denoted γk = |Γk|.

If γk < k
10 then we call this a failure of type 0 and generate G[n] and H[n] independently. (By

Lemma 2 the probability of occurrence of this event is o(1).)
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Otherwise we have γk ≥ k
10 . In this case, to construct G[k + 1] process P adds vertex xk+1 to G[k]

and links it to vertices t1, . . . , tm ∈ Vk chosen according to the preferential attachment rule. To
construct H[k + 1], let {t1, . . . , tr} = {t1, . . . , tm} ∩ Γk be the subset of selected vertices that are
good at time k. Let ε0 = 1/120. If r, the number of good vertices selected, is less than (1 − δ)ε0m
then we call this a type 1 failure and generate H[k + 1] by joining xk+1 to each vertex in H[k]
independently with probability p.

Since the number of good vertices |Γk| = γk ≥ k/10 and any v ∈ Γk is still incident to at least m/6
of its original edges and |E(G[k])| ≤ mk, we have

Pr [ti ∈ Γk] =
∑

v∈Γk

degG[k](v)

2|E(G[k])|
≥

k

10

m

6

1

2mk
= ε0.

So, by comparing r with a Binomial random variable, we obtain an exponential upper bound on
the probability of a type 1 failure:

Pr [r ≤ mε0(1 − δ)] ≤ Pr [Bi(m, ε0) ≤ (1 − δ)mε0] ≤ e−δ2ε0m/2.

If we do not have a type 1 failure, then for every i = 1, . . . , m and for every v ∈ Γk,

Pr [ti = v] =
degG[k](v)

2|E(G[k])|
≥

m

12mk
=

1

12k

For each i = 1, . . . , r we choose si ∈ Γk ∪ {⊥} such that for each v ∈ Γk we have Pr [si = v] = 1
12k .

We couple the selection of the si’s with the selection of the ti’s such that if si 6=⊥ then si = ti. Let
X =

∣

∣{i : si 6=⊥}
∣

∣. Then X ∼ Bi
(

r, γk
12k

)

. Let Y ∼ Bi (γk, p). Then

E[X] = r
γk

12k
≥ (1 − δ)ε0m

γk

12n
≥ (1 + δ)γkp ≥ (1 + δ)E[Y ].

Since E[X] ≥ (1 + δ)E[Y ], the probability that Y ≤ X is at most the probability that X or Y
deviates from its mean by a factor of δ/2. And, since

E[X] ≥ E[Y ] = γkp ≥
k

10

m

1500n
≥

m

30000
,

by Chernoff’s bound, Pr[X ≤ (1 − δ/2)E[X]] and Pr[Y ≥ (1 + δ/2)E[Y ]] are at most e−δ2m/106

.
We say we have a type 2 failure if Y > X, so we have a type 2 failure with probability at most
2e−δ2m/106

.

Conditioning on X, the si’s are a subset S1 of Γk of size X chosen uniformly at random from all of
these subsets. We choose S2 uniformly at random between all the subsets of Γk of size Y , coupling
the selection of S2 to the selection of S1 such that S2 ⊆ S1 when Y ≤ X. Now, to generate H[k+1],
we join xk+1 to every vertex in S2 (deterministically).

After the adversary deletes a (possible empty) set of vertices in G[k], we delete all the vertices H[k]
that don’t belong to Γk+1, possibly including xb(k+1)/2c, simply because of its age.

For k ≥ n/2 this process yields an H[k] with vertex set Γk and identically distributed with G(γk, p),
so we have H[n] ∼ G (γn, p).

We call an edge e in H[n] misplaced if e is not an edge of G[n]. We are interested in bounding
the number of misplaced edges. Misplaced edges can only be created when we have a failure. The
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probability of having a type 1 or 2 failure at step k is at most 3e−δ2m/106

. Let Mk denote the
number of misplaced edges created between good vertices when we have a failure of type 1 or 2
at step k. Then Mk is stochastically smaller than Y ∼ Bi(γk, p), a binomial random variable with
E[Y ] = γkp ≤ (k/2)(m/1500n) ≤ m/3000.

Let M denote the total number of misplaced edges at time n. Then M ≤
∑n

k=n/2 Mk and therefore

E [M ] ≤
n
∑

k=n/2

E [Mk]

≤
n
∑

k=n/2

3e−δ2m/106

m/3000

= e−δ2m/106

mn/2000.

The bounds we have estimated for Mk are independent of the history at each step in the construction
so Chernoff’s bound is sufficient to prove that M is concentrated around its mean. 2

5 Bounding the number of good vertices: Proof of Lemma 2.

We now prove Lemma 2, which is restated here for convenience.

Lemma 2. Whp, for all t with n/2 < t ≤ n we have γt ≥
t
10 .

Proof Let zt denote the total number of edges created after time t/2 that have been deleted
by the adversary, up to time t. Let ν ′

t and η′t be the number of vertices and edges respectively in Gt

that were created after time t/2. Notice that η′
t = 1

2mt − zt and ν ′
t ≤ t/2. Also, since each vertex

contributes at most m edges, and bad vertices (not in Γt) contribute at most m/6 edges, we have
η′t ≤ mγt + m

6 (ν ′
t − γt). So

γt ≥
6η′t − mν ′

t

5m
≥

3mt − 6zt − mt/2

5m
=

t

2
−

6zt

5m
,

So if zt ≤ mt/3 then γt ≥ t/10. Thus, to prove the lemma, it is sufficient to show that

Pr

[

zt ≥
mt

3

]

≤ e−δ2mn/10. (1)

To show Inequality (1) holds, we will couple our process with another process P? in which the
adversary deletes no vertices until time t and then deletes the same set of vertices as in P.

Fix t ≥ n/2. We begin by showing that with

t0 = 1000δn,

Pr [zt(P) ≥ zt(P
?) + mt0] = O

(

ne−δ2mn/7
)

. (2)

Generate Gs for s = 1, . . . , t by process P. Let D1, D2, . . . be the sequence of vertex sets deleted
by the adversary in this realization of P. Let D =

⋃t
τ=1 Dτ denote the set of vertices deleted by

the adversary by time t.

5



We define G?
s inductively. To begin, fuuubgenerate G?

t0 according to preferential attachment. Then,
for every s with t0 ≤ s < t: For Gs = (Vs, Es) and G?

s = (V ?
s , E?

s ), let Xs = E?
s \ Es be the set of

edges that have been deleted by the adversary’s moves.

Selecting a vertex by preferential attachment is equivalent to choosing an edge uniformly at random
and then randomly selecting one of the end points of the edge. So we can view the transition from
Gs to Gs+1 as adding xs+1 to Gs, and then choosing m edges e1, . . . , em. Then for each i select a
random endpoint yi of ei, and add an edge between xs+1 and yi.

To construct G?
s+1, we first add xs+1 to G?

s+1, and then to choose y?
1, . . . , y

?
m we apply the following

procedure, for each i:

• With probability 1 − |Xs|/(ms) we set e?
i = ei and y?

i = yi

• With probability |Xs|/(ms), we choose e?
i uniformly at random from Xs. Notice that e?

i

has already been deleted from Gs by the adversary and therefore it is incident to at least
one deleted vertex, vi ∈ D. Now, we randomly choose y?

i from the two end points of e?
i . If

the total degree Ts of the vertices Vs ∩ D that P will delete in the future is at most ms/2
then Pr [yi ∈ D] ≤ 1/2 and we couple the (random) decisions in such way that if yi is going
to be deleted by time t then y?

i = vi. Otherwise we say we have a failure and choose y?
i

independently of yi.

In the coupling, after time t0 and before the first failure, an edge incident with xs+1 and destined
for deletion in P is matched with an edge incident with xs+1 and destined for deletion in P?. So,
until the first failure, Ts is bounded by T ?

s , the corresponding total degree of Vs ∩ D in G?
s. In

Lemma 3 below, we prove that Pr [T ?
s > sm/2] = O

(

e−δ2mn/6
)

and therefore the probability of

having a failure is O
(

ne−δ2mn/6
)

= O
(

e−δ2mn/7
)

.

To repeat, if there is no failure and if ei is deleted in P before time t we have two possibilities: xs+1

is deleted or yi is deleted. In either case, xs+1 or y?
i will be deleted by time t in P? and therefore

e?
i will be deleted, and Equation (2) follows.

We will show that

Pr

[

zt(P
?) ≥

mt

4

]

≤ O(e−δ2mn), (3)

and then Inequality (1) follows from Equation (2).

To prove Inequality (3) let s be such that t/2 ≤ s ≤ t and xs 6∈ D. We want to upper bound
the probability in the process P? that an edge created at time s chooses its end point in D. For
i = 1, . . . , m,

Pr
[

y?
i ∈ D

∣

∣T ?
s

]

=
T ?

s

2ms
.

By Lemma 3 (below), we have Pr [T ?
s ≥ mt/2] ≤ O(e−δ2mn) so

Pr [y∗i ∈ D] ≤
1

4
+ o(1).

Therefore zt(P
?) is stochastically dominated by Bi

(

mt
2 , 1

4 + o(1)
)

. Inequality (3) now follows from
Chernoff’s bound. This completes the proof of Lemma 2. 2
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Lemma 3. Let A ⊂ {x1, . . . , xt}, with |A| ≤ δn. Let t ≥ 1000δn and let Gt be a graph generated
by preferential attachment (i.e. the process P, but without an adversary). Let TA denote the total
degree of the vertices in A. Then

Pr [∃A : TA ≥ mt/2] = O
(

e−δ2mn
)

.

Proof Let A′ = {x1, . . . , xδn} be the set of the oldest δn vertices. We can couple the con-
struction of Gt with G′

t, another graph generated by preferential attachment, such that TA′ ≥ TA.
Therefore Pr [TA ≥ mt] ≤ Pr [TA′ ≥ mt], and we can assume A = A′.

Now we consider the process P in δ−1 rounds, Each round consisting of δn steps. Let Ti be the
total degree of A at the end of the ith round. Notice that T1 = 2δmn and T2 ≤ 3δmn. For i ≥ 2, fix
s with iδn < s ≤ (i + 1)δn. Then the probability that xs chooses a vertex in A is at most Ti+δmn

2iδmn .

So given Ti, the difference Ti+1 − Ti is stochastically dominated by Yi ∼ Bi
(

δmn, Ti+δmn
2iδmn

)

.

Therefore, for i ≥ 2,

Pr
[

Ti+1 > 3i2/3δmn
]

≤ Pr
[

Ti+1 ≥ 3i2/3δmn
∣

∣Ti ≤ 3(i − 1)2/3δmn
]

+ Pr
[

Ti > 3(i − 1)2/3δmn
]

≤ Pr
[

Ti+1 ≥ 3i2/3δmn
∣

∣Ti = 3(i − 1)2/3δmn
]

+ Pr
[

Ti > 3(i − 1)2/3δmn
]

.

For i ≥ 2,

E[Yi+1|Ti = 3(i − 1)2/3δmn] =

(

3(i − 1)2/3 + 1

2i

)

δmn ≤
4

3
i−1/3δmn

and, since 3(i2/3 − (i − 1)2/3) ≤ 2i−1/3 and i ≤ δ−1, by Chernoff’s bound we have

Pr
[

Ti+1 ≥ 3i2/3δmn
∣

∣Ti = 3(i − 1)2/3δmn
]

≤ e−δ4/3mn/9.

Hence, for any k ≤ δ−1,

Pr
[

Tk > 3(k − 1)2/3δmn
]

≤
k−2
∑

i=2

e−δ4/3mn/9 ≤ e−2δ2mn.

Now, if t ≥ t0 then k = b t
δnc ≥ 103 and so

3(k − 1)2/3δmn ≤ tm/2.

Thus
Pr [Tt ≥ tm/2] ≤ e−2δ2mn.

We inflate the above by
(

n
δn

)

to get the bound in the lemma. 2

Proof of Lemma 1 If after deleting n/100 edges the maximum component size is at most n/3
then Gn,c/n contains a set S of size n/3 ≤ s ≤ n/2 such that there are at most n/100 edges joining
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S to V \ S. The expected number of edges across this cut is s(n − s)c/n so when 1 − ε = 9
200c we

have n/100 ≤ (1 − ε)s(n − s)c/n and by applying the union bound and Chernoff’s bound we have

Pr [∃S] ≤

n/2
∑

s=n/3

(

n

s

)

e−ε2s(n−s)c/(2n)

≤

n/2
∑

s=n/3

(ne

s
e−ε2(n−s)c/(2n)

)s

= o(1).

2
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