
Weighted tree games

Patrick Bennett∗ Alan Frieze†

Abstract

We consider a variation on Maker-Breaker games on graphs or digraphs where the edges have random
costs. We assume that Maker wishes to choose the edges of a spanning tree, but wishes to minimise his
cost. Meanwhile Breaker wants to make Maker’s cost as large as possible.

1 Introduction

We consider a variation on Maker-Breaker games on graphs or digraphs where the edges have costs. Maker-
Breaker games were intoduced in Erdős and Selfridge [3] and in Chvátal and Erdős [2]. In a traditional
Maker-Breaker game, there are two players Maker and Breaker. There is a board X, typically the complete
graphKn and Maker and Breaker take turns in choosing elements ofX. Maker has the goal of choosing a set of
edges that contain some particular structure, e.g. a spanning tree and Breaker has the goal of preventing this.
Typically, Breaker can choose b elements to each element chosen by Maker. If both players play optimally
then there is a threshold b∗ to the bias b such that if b < b∗ then Maker wins and if b ≥ b∗ then Breaker wins.
It is clear that there is a rich choice for X and structures in X. For an excellent introduction to this topic
see Beck [1] or Hefetz, Krivelevich, Stojaković and Szabo [7]

We now assume that each edge has a random cost. These costs are known to both players before the game
starts. Maker’s goal is build some some structure, e.g. a spanning tree, but wishes to minimise her total
cost. In a play of the game, Maker chooses an edge for her structure and then Breaker deletes b edges. If
Maker is unable to build the desired structure at all we say the cost is infinity. Maker will have to avoid
this situation to get a meaningful result. So, given any Maker-Breaker game in the traditional sense, one can
make a weighted version where the object of Maker is to optimize the cost of the structure she can build.
In this paper we use the standard asymptotic notation, i.e. o(), O(), and asymptotics are as n → ∞ unless
otherwise noted. We say an event En happens with high probability (w.h.p.) if P(En) → 1.

We begin with a simple case that does not involve graphs: let N = {1, 2, . . . , } be the set of positive integers.
Maker in her turn has to choose an i ∈ [n] and irrevocably assign a value to f(i) ∈ N. We let Mt denote the
set of elements i ∈ [n] that have been selected in this way by Maker after t rounds of play. Breaker in his
turn selects i1, i2, . . . , ib ∈ [n] = {1, 2, . . . , n} and j1, j2, . . . , jb ∈ N and makes jr unavailable to Maker for the
value of f(ir), r = 1, 2, . . . , b. We let Bt denote the set of pairs (i, j) for which Breaker has made f(i) = j
unavailable to Maker after t rounds. Thus M0 = B0 = ∅ and in round t, Maker adds one element to Mt to
create Mt+1 and Breaker adds b pairs to Bt to create Bt+1.

∗Research supported in part by Simons Foundation Grant #426894.
†Research supported in part by NSF grant DMS1952285

1

Let ϕ(f) =
∑︁n

i=1 f(i). Maker’s aim is to keep ϕ as small as possible and Breaker has the opposite intention.
Our first result is the following.

Theorem 1. If Breaker goes first then Maker can choose f such ϕ(f) ≤ (b + 1)n and this is optimal. If
Maker goes first then Maker can choose f such ϕ(f) ≤ (n− 1)b+ n and this is optimal

In preparation for more complicated scenarios, suppose that we replace N by [m] i.e. we insist that f(i) ≤ m.

Theorem 2. Suppose that m >
∑︁n

i=1 1/i. Then Maker can choose f such f(i) ≤ m for i ∈ [n] and
ϕ(f) ≤ (b+ 1)n and this is optimal.

Suppose next that instead of paying j = f(i), Maker pays X(i, j) where the X-values are independent uniform
[0, 1] random variables and j ranges over [m] where m = ρ−1n and where m >

∑︁n
i=1 1/i = (1 + o(1)) log n.

We assume that these values are known to the players at the start of the game.

Theorem 3. In this uniform random scenario, Maker can pay at most µ>1(b)(b + 1 + o(1))ρ, w.h.p., where

µ>1(b) is the solution to log(b+1)+1
b+1

= µ− 1− log µ in (1,∞). (Note that µ>1(b) = 1 + O(log
1/2 b

b1/2
) as b → ∞.)

This is asymptotically optimal in the sense that w.h.p. for sufficiently large b Breaker can force Maker to pay
at least µ<1(b)(b + 1 − o(1))ρ where µ<1(b) is the solution to log(b+1)+1

b+1
= µ − 1 − log µ in (0, 1) . Note that

the upper and lower bounds differ only in their o(1) terms.

Now we turn to a more complex problem. Here the board is the set of edges of the complete (loopless)

digraph K⃗n. There is an n × n cost matrix C. For each i ∈ [n] we have C(i, i) = ∞ and the sequence of
values C(i, j), j ∈ [n] \ {i} is an independent uniform random permutation of [n − 1]. Maker’s aim is to
construct a spanning arborescence T of low total cost, where the cost C(T) =

∑︁
(i,j)∈E(T) C(i, j). (A spanning

arborescence is a spanning tree whose edges have been oriented towards one vertex, the root.)

After t rounds, Maker will have selected a set of t edges Mt that induce a digraph where each vertex has
out-degree at most one. Furthermore, these edges induce a forest when edge orientation is ignored. Similarly,
Breaker will have selected a set Bt of bt edges where Mt ∩Bt = ∅.
Theorem 4. W.h.p., over the random choice of C, Maker can construct an arborescence T of cost C(T) ≤(︁
b/θ∗ + b+ 1 + o(1)

)︁
n, where θ∗ ≈ 0.2938.... (θ∗ is the solution to (1 + θ∗) log(1 + θ∗)− θ∗ log θ∗ = log 2.)

We doubt that this is optimal for Maker.

Conjecture: W.h.p. Maker can construct an arborescence T of cost C(T) ≤ (b+ 1 + o(1))n.

We base this conjecture on the fact that if f : [n] → [n] is a uniform random mapping then the digraph with
edge-set {(i, f(i))} is almost a random arborescence, i.e. it differs from a arborescence by O(log n) edges. (This
follows from Joyal’s proof [9] of Cayley’s formula for the number of spanning trees in Kn. Joyal describes a
1 to n2 mapping from spanning trees to maps from [n] → [n].)

Theorem 5. If the costs of the edges (i, j) are independent uniform [0, 1] random variables then Maker can
pay at most µ>1(b/θ∗ + b)(b/θ∗ + b+ 1) + o(1), w.h.p.

We now consider the undirected versions of Theorem 4 and Theorem 5. I.e., now we have a weighted complete
graph and Maker wishes to build a low cost spanning tree. We note that Hefetz, Kupferman, Lellouche and
Vardi [8] considered a worst-case version of this problem, in the context of finding a maximum weight spanning
tree.

In the following theorem the edges of the complete graph are given independent uniform [0, 1] costs.

2

Theorem 6. Maker can build a spanning tree of cost at most 2µ>1(2b/θ∗ +2b)(2b/θ∗ +2b+1)+ o(1), w.h.p.

2 Mappings

2.1 Proof of Theorem 1

Proof. Maker’s strategy is simply to choose an arbitrary i /∈ Mt and put f(i) = ri(t) and so that Mt+1 =
Mt ∪ {i}. Note that f(i) is at most 1 plus the number of pairs (i, j) that have been taken by Breaker. Since
Breaker takes b pairs per turn, the total amount f(1) + · · · + f(n) paid by Maker is at most n plus b times
the number of turns Breaker takes. If Breaker goes first then Breaker gets n turns and Maker pays at most
n+ bn. If Maker goes first then Breaker gets n− 1 turns and Maker pays at most n+ b(n− 1).

Both results are optimal. For i /∈ Mt we let ri(t) = min {j : (i, j) /∈ Bt} be the minimum of the possible values
for f(i) available to Maker at the end of round t. Let δi(t) be the indicator for i /∈ Mt. We use the following
potential

Φ(t) =
n∑︂

i=1

ri(t)δi(t).

We observe that Breaker on his turn can increase Φ by at least b by choosing the pairs (i, j) for some i /∈ Mt

and for j ranging through the b smallest values such that (i, j) is not yet taken, making ri(t+ 1) ≥ ri(t) + b.
Thus, if Breaker goes first we now have

−n =
n−1∑︂
i=0

(Φ(t+ 1)− Φ(t)) ≤
n−1∑︂
i=0

(b− ri(t)) = nb−
n−1∑︂
i=0

ri(t) ≥ nb−
n∑︂

i=1

f(i),

which proves our result is optimal in this case. The case where Maker goes first is similar. This completes
the proof of Theorem 1.

2.2 Proof of Theorem 2

Proof. Here Maker has to be more careful, since she must prevent Breaker from taking all the pairs (i, j)
for any i. Maker will exploit a version of the Box Game of Chvátal and Erdős [2]. In this game there are
n disjoint sets A1, A2, . . . , An, the boxes. The elements of the Ai are called balls. There are two players,
BoxMaker and BoxBreaker. In each round BoxMaker removes p balls from A =

⋃︁n
i=1Ai and BoxBreaker

removes q boxes. BoxMaker’s goal is to remove all the balls from some box before BoxBreaker is able to
remove that box. In the context of our mapping game, we let Ai = {(i, j), j ∈ [m]}. Maker takes the role of
BoxBreaker with q = 1 and Breaker takes the role of BoxMaker with p = b. After t rounds there will be n− t
boxes remaining and their contents will have been reduced. We will assume that BoxMaker (Breaker) goes
first and the BoxBreaker (Maker) always chooses a remaining box Ai of minimum size (and puts f(i) equal
to the smallest element left in Ai).

Theorem 3.4.1 of [7] shows that if |Ai| = m >
∑︁n

i=1 1/i then the above strategy for BoxBreaker (Maker)
guarantees her a win the BoxGame, i.e. she prevents Breaker from taking all the pairs (i, j) for any i. Also,
by the analysis of Section 2, she will end with a value of ϕ(f) ≤ (b+1)n. This completes the proof of Theorem
2.

3

2.3 Proof of Theorem 3

Proof. Assume without loss of generality that X(i, j+1) ≥ X(i, j) for 1 ≤ j ≤ m for all i (in other words, to
form the sequence X(i, 1), . . . , X(i, n) we generate m random values and then put them in decreasing order).
For an upper bound we assume that Maker tries to choose f so as to minimise

∑︁n
i=1 f(i), i.e. she essentially

plays the game in Theorem 1. We need the following lemma from Frieze and Grimmett [5].

Lemma 7. Suppose that k1 + k2 + · · ·+ kM ≤ aN , and Y1, Y2, . . . , YM are independent random variables with
Yi distributed as the kith smallest of N independent uniform [0,1] random variables. If µ > 1 then

P
(︃
Y1 + · · ·+ YM ≥ µaN

N + 1

)︃
≤ eaN(1+logµ−µ). (1)

(The lemma in [5] is given in terms of a logN instead of aN . We have replaced a by aN/ logN .)

Now naively, we could observe that E[X(i, j)] = j/(m+1) and then, at least in expectation, we could replace
a cost of j in the model of Theorem 1 by j/(m+ 1), giving us a bound that is asymptotic to b+ 1. We must
however take account of the variability in X(i, j) and so we are forced to take a union bound over Maker’s
possibilities. This leads to the claimed inflated constant.

There are at most
(︁
(b+1)n−1

n−1

)︁
≤
(︁
(b+1)n

n

)︁
choices for the f(i) ≥ 1 that add up to (b + 1)n. Let F denote this

set of choices. For a fixed µ > 1 we have

P

(︄
∃f ∈ F :

n∑︂
i=1

X(i, f(i)) ≥ µ(b+ 1)ρ

)︄
≤
(︃
(b+ 1)n

n

)︃
e−(b+1)n(1+log µ−µ)

≤ (e(b+ 1))ne−(b+1)n(1+log µ−µ)

=
(︂
(b+ 1)e1−(b+1)(1+log µ−µ)

)︂n
= o(1), (2)

if µ > µ>1(b).

We now go about proving that Breaker can force Maker to pay at least µ<1(b)(b + 1 − o(1))ρ. Of course
Breaker can play so that

∑︁n
i=1 f(i) ≥ (b + 1)n. The argument of Lemma 4.2(b) of [5] can be used to prove

that for 1/2 < µ < 1 and k1 + k2 + · · ·+ kM ≥ aN ,

P
(︃
Y1 + · · ·+ YM ≤ µaN

N + 1

)︃
≤ eaN(1+logµ−µ). (3)

Indeed, let Y := Y1 + · · ·+ YM , y = µaN
N+1

and t := (µ−1 − 1)(N + 1). Note that 0 < t < N + 1. We have

P(Y ≤ y) = P
(︁
e−tY ≥ e−ty

)︁
≤ etyE

[︁
e−tY

]︁
. (4)

Now, following the proof of Lemma 4.2(b) of [5], we have

E
[︁
Y j
i

]︁
=

∫︂ 1

0

yki+j−1(1− y)N−ki =

(︃
N

ki

)︃
ki
(j + ki − 1)!(N − ki)!

(N + j)!
≤ (ki + j − 1)j

(N + 1)j
.

Since |t/(N + 1)| < 1, by Newton’s binomial formula we have

E
[︁
e−tYi

]︁
≤

∞∑︂
j=0

(−t)j

j!
· (ki + j − 1)j

(N + 1)j
=

(︃
1 +

t

N + 1

)︃−ki

.

4

Therefore

E
[︁
e−tY

]︁
≤
(︃
1 +

t

N + 1

)︃−aN

.

Picking up from (4), we have

P(Y ≤ y) ≤ ety
(︃
1 +

t

N + 1

)︃−aN

= eaN(1+logµ−µ).

Thus, just as in (2) we have for µ < µ<1(b)

P

(︄
∃f ∈ F :

n∑︂
i=1

X(i, f(i)) ≤ µ(b+ 1)ρ

)︄
≤
(︂
(b+ 1)e1−(b+1)(1+logµ−µ)

)︂n
= o(1)

This completes the proof of Theorem 3.

3 Arborescences

3.1 Proof of Theorem 4

Proof. First we describe Maker’s strategy. Let Ft denote the set of oriented trees induced by Mt. Each of
these trees/components will have a root and Maker must choose an edge leaving one of these roots and going
to a different component in Ft. This situation is almost like the setup for Theorem 2, where each vertex i ∈ [n]
(except for one) must choose an out-neighbor f(i) ∈ [n]. However our present situation is complicated by the
graph structure, i.e. an arborescence cannot have any cycle. Maker’s strategy for Theorem 2 was to always
take the minimum available f(i) for some i, but in our present situation it is possible that this minimum f(i)
would correspond to an edge that would create a cycle, forcing Maker to take some slightly more expensive
edge. Our proof will focus on the “extra” amount paid by Maker on these steps where the cheapest edge
cannot be chosen.

On Maker’s turn, if there is no root of any component on at most n/2 vertices such that Breaker has taken
at least nβ edges leaving the root, we call this a normal turn for Maker. Here 0 < β < 1 is a constant to
be determined later. On a normal turn, Maker always chooses the root i of the smallest component K (in
case of a tie, say choose the least indexed root). Maker then chooses the edge (i, j) /∈ Bt that (i) minimises
C(i, k), k /∈ Bt and (ii) does not point into K. We call this the sensible choice from root i.

If it is not a normal turn we say it is an emergency turn. On an emergency turn, Maker picks some component
on at most n/2 vertices from which Breaker has removed at least nβ edges, and Maker makes the sensible
choice out of this root. We will argue that w.h.p. this strategy gets Maker an arborescence whose total cost
is at most (b/θ∗ + b+ 1 + o(1))n.

Consider the event to the contrary, i.e. that the total cost in the end is say (b/θ∗ + b + 1 + 3ε)n for some
fixed ε > 0, meaning that the extra cost paid for edges pointing within components is (b/θ∗ + 3ε)n, over and
above the (b+1)n achievable for Theorem 2. We bound the probability of this event as follows. First it is at
most π1 + π2 + π3, defined as follows. π1 is the probability that we pay an extra εn on normal steps falling in
the first n0 steps, where n0 = n− nα for some 0 < α < 1. π2 is the probability of paying εn on normal steps
after step n0. π3 is the probability of paying bn/θ∗ + εn on emergency steps.

5

First we bound π1. Let N1 be the set of normal steps in the first n0 steps. We take the union bound over
choices for numbers at, t ∈ N1 where the intended meaning of the at is as follows. At step t, Maker takes
an edge from a root to another arborescense, paying an extra at because of edges pointing into its own
component. So we have

∑︁
t at = εn, and the number of choices for the at is

(︁
εn+|N1|−1
|N1|−1

)︁
= exp{O(n)}.

We will also take the union bound over sequences xt, t ∈ N1 which will mean the following. At step i, if v
is the root that Maker is taking an edge from and Maker chooses the edge of cost rt, xt = rt − 1 − at. In
other words, the reason Maker has to choose the edge of cost rt = 1 + at + xt is because among the edges of
smaller cost, at of them point into v’s component and xt edges have been taken by Breaker. In particular,
knowing xt and at tells us the cost rt of the edge that Maker will choose at step t. We have

∑︁
t xt ≤ bn, and

the number of choices for the xt is exp{O(n)}.

Having fixed the at and xt we will reveal the random digraph step by step as the game progresses. More
specifically, on Maker’s turn at step t ≤ n − 1 we see the current component structure which uniquely
determines the root, say v from which Maker will take an edge. We reveal the costs of all edges coming from
v, which determines which edge Maker will take (i.e. the lowest cost edge which is not taken by Breaker and
which does not point into v’s component). Recall that among all the edges from v not taken by Breaker, the
at lowest in cost all point into v’s component. The size of the smallest component is at most

⌊︁
n

n−t+1

⌋︁
and so

each out-edge has probability at most
n

n−t+1
−1

n
= t

n(n−t+1)
of pointing into the component. There are at most(︁

at+xt

at

)︁
choices for the costs of the at edges pointing within the component. Thus we bound

π1 ≤ exp{O(n)}
∏︂
t∈N1

(︃
at + xt

at

)︃(︃
t

n(n− t+ 1)

)︃at

≤ exp{O(n)}
∏︂
t∈N1

(︃
e

(︃
1 +

xt

at

)︃)︃at (︃ t

n(n− t+ 1)

)︃at

≤ exp{O(n)}
∏︂
t∈N1

(︃
t

n(n− t+ 1)

)︃at

≤ exp{O(n)}
∏︂
t∈N1

(︃
n− nα

n1+α

)︃at

≤ n−αεn+o(n) = o(1). (5)

We bound π2 similarly. Let N2 be the set of normal steps after step n0. We choose numbers at, t ∈ N2 adding
up to εn and there are at most

(︁
εn+nα

nα

)︁
= exp{o(n)} choices here. Likewise there are exp{o(n)} choices for

the xt, i ∈ N2 where
∑︁

t∈N2
xt ≤ nα+β. To bound the number of choices for the interior edges we can instead

choose Breaker’s edges and there are at most nxt ways to do that. So

π2 ≤ exp{o(n)}
∏︂
t∈N2

nxt

(︃
t

n(n− t+ 1)

)︃at

≤ exp{o(n)}n
∑︁

t∈N2
xt

1

2
∑︁

t∈N2
at

≤ exp{o(n)} × nnα+β × 2−en = o(1)

assuming only that α + β < 1.

Finally we bound π3. Let N3 be the set of emergency steps. Note first that there are at most bn1−β

emergency steps, so we take the union bound over at most nbn1−β
= exp{o(n)} choices for N3. We fix

numbers at ≥ nβ, t ∈ N3 adding up to say an where a = b/θ∗ + ε, there being exp{o(n)} choices. We also fix
numbers xt, t ∈ N3 adding up to say X ≤ bn, there being exp{o(n)} choices. Since on an emergency step we

6

always have a root of a component on at most n/2 vertices, the probability of an edge landing in the same
component is at most 1/2. Thus we bound π3 by

exp{o(n)}
∏︂
t∈N3

(︃
at + xt

at

)︃(︃
1

2

)︃at

≤ 2−an+o(n)
∏︂
t∈N3

e(at+xt) log(at+xt)−at log(at)−xt log(xt). (6)

Suppose now that we fix the values for at, t ∈ N3. Let

ϕ =
∑︂
t∈N3

f(at, xt) where f(a, x) = (a+ x) log(a+ x)− a log(a)− x log(x).

We argue next that to maximise ϕ we must have xt/at taking the same value for all t ∈ N3. Consider the
function g(x) = f(a, x) + f(b, L− x) for some a, b, L > 0. Then

g′(x) = log(a+ x)− log(x)− log(b+ L− x) + log(L− x).

g′′(x) = − a

x(a+ x)
− b

(L− x)(b+ L− x)
< 0.

So, g is strictly concave and its derivative vanishes when (a + x)(L − x) = x(b + L − x) equivalently when
a
x
= b

L−x
. Thus, if we fix at, t ∈ N3 and maximise over xt, t ∈ N3 then we have xt = θat for t ∈ N3 where

θ = X/an ≤ b/a. We can therefore bound the product in (6) by∏︂
t∈N3

e(at(1+θ)) log(at(1+θ))−at log(at)−θat log(θat) =
∏︂
t∈N3

eat((1+θ) log(1+θ)−θ(log θ)) = ean((1+θ) log(1+θ)−θ log θ). (7)

Now recall that θ∗ ≈ 0.2938... is defined as the root of (1 + θ∗) log(1 + θ∗)− θ∗ log θ∗ = log 2. Since a > b/θ∗

we have θ∗ > b/a ≥ θ and so (1 + θ) log(1 + θ)− θ log θ < log 2. Now by (6) and (7) we have π3 = o(1).

We finally note that with the above Maker strategy, if a component reaches size greater than n/2 then its
root will become the root of the final arborescence. This completes the proof of Theorem 4.

3.2 Proof of Theorem 5

Proof. As in Theorem 3, Maker just tries to minimise the sum of the ranks in the order statistics of the
X(i, j)’s. By Theorem 4, w.h.p. Maker can achieve a rank sum of at most s := σn where σ = b/θ∗+b+1+o(1).
The number of choices of ranks which have sum s is

(︁
s−1
n−1

)︁
≤
(︁
s
n

)︁
. Using Lemma 7 and the union bound, the

probability that the total cost of our arborescence exceeds µs
n
= µσ is at most(︃

s

n

)︃
e−s(1+log µ−µ) ≤

(︂es
n

)︂n
e−s(1+logµ−µ)

=
(︂
σe1−σ(1+logµ−µ))

)︂n
= o(1) (8)

assuming that µ > µ>1(b/θ∗ + b) = (1 + o(1))µ>1(σ − 1). Thus, w.h.p. the cost of our arborescence is at
most

µσ = (1 + o(1))µ>1(σ − 1)σ = µ>1(b/θ∗ + b)(b/θ∗ + b+ 1) + o(1),

completing the proof.

7

4 Spanning Trees

4.1 Proof of Theorem 6

Proof. We reduce this to Theorem 5. We replace each edge {i, j} with a pair of directed edges (i, j), (j, i).

Each directed edge (i, j) is given a random cost ˆ︁C(i, j), which is an independent copy of the [0, 1] random
variable Z where P(Z > x) = (1 − x)1/2 ≤ 1 − x

2
for 0 ≤ x ≤ 1. If Z1, Z2 are two independent copies of Z,

then min{Z1, Z2} is distributed as a uniform [0, 1] random variable. This is a nice idea, employed by Walkup
[10] in bounding the expected value of a random assignment problem. Note that Z is dominated by 2U [0, 1]
where U [0, 1] is uniform on [0, 1].

Given the above construction, Maker builds a spanning arborescence. Thus we look to Theorem 5, but we
must make some adjustments. Using Z in place of U [0, 1] at most doubles the cost of each selected edge.
Also, if Breaker deletes (i, j) then he must also delete (j, i). So we double Breaker’s power by replacing b by
2b. Thus, our upper bound here is twice what we get from Theorem 5 by replacing b with 2b.

5 Final thoughts

We have studied an interesting class of Maker-Breaker games where Maker’s goal is build something cheaply.
Our results are not all tight and we believe that there is a general meta theorem that states for many
such games, the existence of Breaker increases the cost of the optimum solution by a factor of (b + 1)
on average. More precisely, suppose that if there is no Breaker and that Maker choosing optimally, can
w.h.p. build a structure of cost Z∗. Then in the presence of Breaker, Maker can build a structure of cost
(b + 1 + o(1))Z∗. As open problems we could list, in preceived order of difficulty, the following structures:
mappings; spanning arborescences; spanning trees; perfect matchings in the bipartite graph Kn,n; perfect
matchings in Kn; Hamilton cycles in Kn i.e. a version of the TSP; hypergraph versions of these.

References

[1] J. Beck, Combinatorial Games: Tic-Tac-Toe Theory, Encyclopedia of Mathematics and its Applications
114, Cambridge University Press, 2008.

[2] V. Chvátal and P. Erdős, Biased Positional Games, Annals of Discrete Mathematics 2 (1978) 221-229.

[3] P. Erdős and J. Selfridge, Ona combinatorial game, Journal of Combinatorial Theory A 14 (1973) 298-
301.

[4] A.M. Frieze, On the value of a random minimum spanning tree problem, Discrete Applied Mathematics
10 (1985) 47-56.

[5] A.M. Frieze and G. Grimmett, The shortest path problem for graphs with random arc-lengths, Discrete
Applied Mathematics 10 (1985) 57-77.

[6] A.M. Frieze and M. Karoński, Introduction to random Graphs, Cambridge University Press, 2015

[7] D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabo, Positional Games, Birkhauser, 2014.

8

https://www.math.cmu.edu/~af1p/BOOK.pdf

[8] D. Hefetz, O. Kupferman, A. Lellouche and G. Vardi, Spanning-tree games, 43rd International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS18).

[9] A. Joyal, Une théorie combinatoire des séries formelles, Advances in Mathematics 42 (1981) 1-82.

[10] D.W. Walkup, On the expected value of a random asignment problem, SIAM Journal on Computing 8
(1979) 440-442.

9

	Introduction
	Mappings
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Arborescences
	Proof of Theorem 4
	Proof of Theorem 5

	Spanning Trees
	Proof of Theorem 6

	Final thoughts

