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Abstract

The greedy and nearest-neighbor TSP heuristics can both have
log n approximation factors from optimal in worst case, even just for n
points in Euclidean space. In this note, we show that this approxima-
tion factor is only realized when the optimal tour is unusually short.
In particular, for points from any fixed d-Ahlfor’s regular metric space
(which includes any d-manifold like the d-cube [0, 1]d in the case d
is an integer but also fractals of dimension d when d is real-valued),
our results imply that the greedy and nearest-neighbor heuristics have
additive errors from optimal on the order of the optimal tour length
through random points in the same space, for d > 1.

1 Introduction

Papadimitriou [6] showed that finding an optimum Traveling Salespesron
Tour is NP-hard even for points in Euclidean space, while Arora [1] and
Mithcell [5] give polynomial-time approximation schemes for the Euclidean
TSP. In practice these have resisted efficient implementations, and in prac-
tice, Euclidean TSP approximation still leans heavily on heuristics which
are not known to be asymptotically optimal. For metric TSP, Christofides
algorithm achieves an approximation ratio of 1.5, which saw slight improve-
ment with the recent breakthrough of Karlin, Klein, Gharan, and Shayan
[4].

Perhaps the simplest heuristics to find a tour through n points are the
Nearest Neighbor heuristic, which grows (and in the end, closes) a path
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by jumping at each step to the nearest unvisited point, and the Greedy
heuristic, which at each step chooses the shortest available edge which would
not create any vertices of degree 3 or close a cycle unless on the nth step.
For n points in an arbitrary metric space, each of these heuristics is known
to give a tour within log n of optimal [2, 3], and examples are known which
realize these approximation ratios, even just in Euclidean space. But our
main result implies that for n points in the unit square whose optimal tour
has length Ω(

√
n) (as is the typical case), the Greedy and Nearest Neighbor

heuristics will both return a tour whose length is within a constant factor
of optimal.

We will prove our results not just for full-dimensional Euclidean space
but for any sufficiently regular metric space with dimension d > 1; the
point of this generality is to emphasize that for greedy or nearest-neighbor
algorithms to have poor approximation ratios on some input, it is really
necessary that the the input admits an unexpectedly short tour given the
space its points are taken from, rather than, say, just because the input was
actually chosen from a lower dimensional subset of the space than expected.

A metric space M equipped with a measure µ is d-Ahlfor’s regular if
there are constants C,D so that

Crd ≤ µ(B(p, r)) ≤ Drd (1)

for all p ∈ M and 0 < r ≤ diam(M). Here B(p, r) is the ball of radius r
centred at p. Simple examples of regular metric spaces include subspaces
of Euclidean space like unit cubes under Lebesgue measure (having inte-
ger dimensions) or fractals like the Sierpinski gasket under the Hausdorff
measure (having intermediate dimensions)—for example, the metric space
induced in Euclidean space by any fractal generated by an iterative function
system satisfying the open set condition is Ahlfor’s regular for some d, for
the Hausdorff measure of appropriate dimension.

We will prove the following about optimal TSP tours in Ahlfor’s-regular
spaces:

Theorem 1. Suppose x1, x2, . . . is a sequence of i.i.d points drawn from a
d-Ahlfor’s regular probability measure on the metric space M. Then there
exists a constant C so that for Xn = {x1, . . . , xn}, the length of the optimal

tour through Xn has length at least Cn1− 1
d for all sufficiently large n, with

probability 1.

Our main result for the nearest-neighbor and greedy heuristics is then
the following:
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Theorem 2. If the bounded metric space M admits a d-Ahlfor’s regular
measure, then there is a constant C and an n0 such that for any n points in
M with n ≥ n0, the nearest-neighbor and greedy algorithms produce a tour
of length at most Cn1− 1

d .

2 Proofs

Proof of Theorem 1. Let D be the constant from (1) guaranteed to exist for

(M, µ). Let r =
(

1
Dn

)1/d
. For any fixed i, let Zi be the indicator for the

event Ei that xi is the unique point from Xn in B(xi, r). Then

Pr(Ei) ≥ (1−Drd)n−1 ≥ e−1.

Let Z = Z1 + · · · + Zn. Thus E(Z) ≥ e−1n. Let B be the event that there
exists i such that B(xi, r) contains more than log2 n points from Xn other
than xi. Then

Pr(B) ≤ nPr(Bin(n,Drd) ≥ γ) ≤
(
n

γ

)
(Drd)γ ≤

(
e

γ

)γ

≤ n− logn.

If B does not occur then changing the value of one xi only changes the value
of Z by at most log2 n. If B does occur then Z could change by at most n.
We will now use Warnke’s Typical bounded differences inequality [7] to show
that Z is concentrated around its mean.

Theorem 3 (Warnke). Let X = (X1, . . . , XN ) be a family of independent
random variables with Xk taking values in a set Λk. Let Γ ⊆

∏
j∈[N ] Λj

be an event and assume that the function f :
∏

j∈[N ] Λj → R satisfies the
typical Lipschitz condition: there are numbers ck, k ∈ [N ] and dk, k ∈ [N ]
such that whenever x, y differ only in the kth coordinate, we have

|f(x)− f(y)| ≤

{
ck if x ∈ Γ.

dk otherwise.

Then for all numbers γk, k ∈ [N ] with γk ∈ (0, 1),

Pr(|f(X)− E(f(X))| ≥ t) ≤

2 exp

{
− t2

2
∑

k∈[N ](ck + γk(dk − ck))2

}
+ Pr(X /∈ Γ)

∑
k∈[N ]

γ−1
k .
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We will apply this theorem with f = Z,N = n,X = {x1, . . . , xn},Γ = Bc

and ck = γ, dk = n, γk = log2 n, γk = n−2 for k ∈ [n]. This yilelds

Pr(Z ≤ E(Z)− n2/3) ≤ 2 exp

{
− n4/3

n(log2 n+ 1)2

}
+ n3−logn = o(1).

So, w.h.p. there are at least n/3 of the xi that are at least r from their
nearest neighbor. Theorem 1 follows immediately.

Proof of Theorem 2. Consider any nearest-neighbor or greedy tour x1, . . . , xn
through the point-set X = {x1, . . . , xn} ∈ M. We define a sequence of open
balls B1, . . . , Bn−1, where Bi is centered at xi and has radius dist(xi, xi+1).
Observe that when the edge from {xi, xi+1} is selected, there can be no
other vertices xj which would be available for selection but are closer to xi
than dist(xi, xi+1). This implies that the family B = {Bi} has the following
property:

(⋆) For any distinct balls Bi, Bj ∈ B, we have either that the Bi doesn’t con-
tain the center of Bj or that Bj doesn’t contain the center of Bi (according
to whether i < j or j < i, respectively).

Now we partition B into sets B1,B2, . . . , where each Bj consists of every
ball D ∈ B whose radius r satisfies 1

2j
< r ≤ 1

2j−1 .
Now each family Bi consists of balls whose radii differ by at most a factor

of 2. In particular, as (⋆) implies that the distance between the center of
two balls in B is at least the minimum of the radii of the two balls, within
each family Bi, we know that the distance between the centers of two balls
is at least half the maximum of the radii of the two balls. In particular, if
we define families B̃i by rescaling the balls in each family Bi by a factor of
1
2 , then each family B̃i is a family of disjoint balls. As such, we have from
the condition (1) that

|Bk| ≤ C2kd, (2)

for a fixed constant C depending only on the metric space M.
In particular, we can bound the total length L of the nearest neighbor

tour by the radii r(B) of the balls B ∈ B as follows:

L ≤
∑
B∈B

r(B) =
∑
k≥1

∑
B∈Bk

r(B) ≤ C0

k0∑
k=1

2k(d−1) ≤ C0
2k0d(1−1/d)

2d−1 − 1
, (3)

where k0 is smallest integer for which the bound C2k0d on |Bk0 | from (2)
exceeds n. We have thus that for any d > 1 and a constant C1 depending
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on the metric space M but not the point set X, that

L ≤ C1n
1− 1

d ,

proving the theorem.
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