
Fast Monte-Carlo Algorithms for finding Low-Rank Approximations

Alan Frieze∗ Ravi Kannan† Santosh Vempala‡

August 18, 2009

Abstract

We consider the problem of approximating a given m × n matrix A by another
matrix of specified rank k, which is much smaller than m and n. The Singular Value
Decomposition (SVD) can be used to find the “best” such approximation. However,
it takes time polynomial in m, n which is prohibitive for some modern applications.
In this paper, we develop an algorithm which is qualitatively faster, provided we may
sample the entries of the matrix according to a natural probability distribution. In many
applications such sampling can be done efficiently. Our main result is a randomized
algorithm to find the description of a matrix D∗ of rank at most k so that

||A − D∗||2F ≤ min
D,rank(D)≤k

||A − D||2F + ε||A||2F

holds with probability at least 1 − δ (where ||.||F is the Frobenius norm). The algo-
rithm takes time polynomial in k, 1/ε, log(1/δ) only and is independent of m and n. In
particular, this implies that in constant time, it can be determined if a given matrix of
arbitrary size has a good low-rank approximation.

∗Supported in part by NSF grant CCR-9530974. Department of Mathematical Sciences, Carnegie Mellon

University, Pittsburgh, PA 15213. Email: af1p@andrew.cmu.edu.
†Computer Science Department, Yale University, New Haven, CT 06511. Email: kannan@cs.yale.edu.
‡Department of Mathematics, M.I.T., Cambridge, MA 02139. Email: vempala@math.mit.edu

1

1 Introduction

Real-world data often has a large a number of attributes (features/dimensions). A natural
question is whether in fact it is generated by a small model, i.e., with a much smaller
number of parameters than the number of attributes. One way to formalize this question
is the problem of finding a low-rank approximation, i.e., given an m × n matrix A, find a
matrix D of rank at most k so that ||A−D||F is as small as possible. (For any matrix M,
the Frobenius norm, ||.||F , is defined as ||M||2F =

∑

i,j M2
ij). Alternatively, if we view the

rows of A as points in R
n, then it is the problem of finding a k-dimensional linear subspace

that minimizes the sum of squared distances to the points. This problem arises in many
contexts, partly because some matrix algorithms are more efficient for low-rank matrices.
It is also interesting to consider other norms, e.g., the 2-norm (see Section 6), but we will
mostly focus on the Frobenius norm.

The traditional Singular Value Decomposition (SVD) can be used to solve the problem in
time O(min{mn2, nm2}). For many applications motivated by information retrieval and
the web, this is too slow and one needs a linear or sublinear algorithm. To speed up SVD-
based low-rank approximation, [18] suggested random projection as a pre-processing step,
i.e., project the rows of A to an O(log n)-dimensional subspace and then find the SVD in
that subspace. This reduces the worst-case complexity to O(mn log n) for a small loss in
approximation quality. This is still too high.

How fast can the problem be solved? At first sight, it seems that Ω(mn) is a lower bound
— if A has only a single non-zero entry, one has to examine all its entries to find a good
approximation. But suppose we can sample the entries with probability proportional to
their magnitudes. Then a constant-sized sample would suffice in this case!

In this paper, we show that a rank k approximation can be found in time polynomial in
k and 1/ε where ε is an error parameter, provided we can sample the entries of A from a
natural probability distribution. The sampling assumptions will be made explicit shortly
and also discussed in the context of some applications. Our main result is the following.

Theorem 1 Given an m×n matrix A, and k, ε, δ, there is a randomized algorithm which
finds the description of a matrix D∗ of rank at most k so that

||A − D∗||2F ≤ min
D,rank(D)≤k

||A − D||2F + ε||A||2F

holds with probability at least 1− δ. The algorithm takes time polynomial in k, 1/ε, log(1/δ)
only, independent of m,n. The most complex computational task is to find the first k
singular values of a randomly chosen s × s submatrix where s = O(max{k4ε−2, k2ε−4}).
The matrix D∗ can be explicitly constructed from its description in O(kmn) time.

As a consequence, in poly(k, 1
ε) time, we can determine (with high probability) if A has a

rank k approximation with error at most ε||A||F . The error probability δ can be boosted
by standard techniques and we will prove the theorem for a fixed error probability.

The central idea of our approach is described as follows : We pick p rows of A independently
at random, each according to a probability distribution satisfying a Assumption A1 (see

2

Section 1.1). Suppose these rows form a p × m matrix S′. The rows will be scaled to form
a matrix S (step 1 of the Algorithm in section 4). It will be relatively easy (Lemma 2)
to show that STS ≈ ATA. The intuition for this is that the (i, j)th entry of ATA is the
dot product of the ith and jth columns of A and indeed, since S has a random sample
of rows of A, the entry (STS)i,j estimates this; the scaling is done to make this estimate
unbiased. Now from standard Linear Algebra, we can get the SVD of A from the spectral
decomposition (SD) of ATA 1, i.e., approximately from the SD of STS. But repeating this,
the SD of STS can be read off from the SVD of S which in turn can be read off from the
SD of SST . But since SST is just a p× p matrix, the problem is reduced to doing the SVD
of a constant sized matrix! This still leaves the computation of SST . For this, we apply
the sampling trick again — if we pick a sample of p columns of S, to form a p × p matrix
W, (step 2 of the algorithm), then WWT ≈ SST . Now the SD of WWT is all that is
needed for which indeed the SVD of W suffices. This then is the central computation done
in step 3 of the algorithm. Besides Lemma 2, the key step in the analysis is showing that
we can go from approximate left singular vectors of S to approximate right singular vectors
with only a small loss. We present the algorithm in Section 4. The algorithm and Theorem
1 will also rely on the existence of a good low-rank approximation to A in the subspace
spanned by a small sample of its rows. This fact is a main insight of the paper and we state
it formally below. The constant c is defined in Assumption 1 (below).

Theorem 2 Let A be an m×n matrix and S be a sample of s rows of A from a distribution
satisfying Assumption 1. Let V be the vector space spanned by S. Then with probability at
least 9/10, there exist an orthonormal set of vectors y(1),y(2), . . .y(k) in V such that

||A − A(

k
∑

j=1

y(j)y(j)T

)||2F ≤ min
D,rank(D)≤k

||A − D||2F + 10k
cs ||A||2F . (1)

Note It is easy to see that A
∑k

j=1 y(j)y(j)T

is the “restriction” of the linear transfor-

mation A to the subspace spanned by the y(j), namely for any x in that subspace, Ax =
A
∑k

j=1 y(j)y(j)T

x and further for x orthogonal to this subspace, A
∑k

j=1 y(j)y(j)T

x = 0.

By elementary linear algebra, the matrix A
∑k

j=1 y(j)y(j)T

has its rows in the span of the

vectors y(1), . . . ,y(k) and therefore its rank is at most k. To describe this approximation, D∗,
it suffices to give the vectors y(1), . . . ,y(k). In the algorithm, these vectors are themselves
computed by multiplying a submatrix of A with a set of vectors in R

p. Thus the matrix D∗

can be recovered from a set of k p-dimensional vectors and a set of p numbers indicating a
submatrix of A spanned by the corresponding rows. It also follows that the first k singular
values of A can be computed to within a cumulative additive error of ε||A||F .

In Section 3, we give the proof of this existence theorem. The theorem directly gives an
O(mnk/ε + poly(k/ε)) algorithm and suggests an algorithm whose running time is linear
in m and a small polynomial in k and 1/ε. Such an algorithm was developed following this
paper in [8]. This and other subsequent developments are discussed in Section 6.

Throughout the paper, M(i) denotes the ith row of the matrix M (as a row vector), M(j)

1The right singular vectors of A are precisely the eigenvectors of A
T
A

3

denotes the jth column (as a column vector) and Mi,j is the entry in the ith row and jth
column. Also, for any positive integer r, [r] denotes the set {1, 2, . . . , r}.

1.1 Sampling assumptions

We now state in detail the sampling assumptions we make.

Assumption 1. We can sample the rows of A so that row i is chosen with probability Pi

satisfying

Pi ≥ c
|A(i)|2

||A||2F
for some constant c ≤ 1 (independent of m,n). Here |.| denotes Euclidean length.
The Pi’s are known to us (if c = 1, then we we don’t need to know the Pi).

Assumption 2. From any row i we can sample entry j with probability Qj|i satisfying

Qj|i ≥ c
Pi,j

Pi
, where Pi,j =

A2
i,j

||A||2F
.

The Qj|i are known to us (again if c = 1, we don’t need to know the values).

If the matrix A has a known sparsity structure, then we might be able to set up the sampling
with very little preprocessing. In particular, if the matrix A is dense, i.e., if for all i, j,

A2
ij ≤

c′

mn
||A||2F

for some constant c′, then we we can take Pi = 1/m and Qj|i = 1/n for all i, j and c = 1/c′.

In general, for any matrix, by making one pass through the entire matrix, we can set up
data structures that let us sample the entries fast from then onwards — O(1) time per
sample — so as to satisfy Assumptions 1 and 2. During the pass, we do several things.
Suppose M is such that for all i, j

A2
ij = 0 OR

1

M
≤ |Aij|

2 ≤ M.

We create O(log M) bins; during the pass, we put into the lth bin all the entries (i, j) such

that 2l−1

M ≤ |Aij|
2 ≤ 2l

M . We also keep track of the number of entries in each bin. After
this, we treat all entries in a bin as being of the same value. To sample, we pick a bin
with probability proportional to the total sum of squares in that bin. Then we pick an
entry uniformly from the set of entries in the bin. In the pass, we also set up similar data
structures for each row.

1.2 Applications

In this section we discuss our algorithm in the context of applications that rely on low-rank
approximation. We show that in several situations we can satisfy the sampling assumptions
of our algorithm and thus obtain the SVD approximation more efficiently. Applications that
we do not discuss include face recognition and picture compression.

4

1.2.1 Latent Semantic Indexing

This is a general technique for processing a collection of “documents”. We give a very
cursory description of this broad area here and discuss its relation to our main problem
(see [4, 5, 9, 10] for details and empirical results).

Suppose there are m documents and n “terms” which occur in the documents (terms may
be all the words that occur in the documents or key words that occur in them). The model
hypothesizes that there are a small number (k) of unknown “topics” which the documents
are about. A topic is modelled as a probability distribution on the n terms, i.e., an n−vector
of non-negative reals summing to 1. With this model on hand, it is shown (with additional
assumptions) that the subspace spanned by the k best topics is close to the span of the top k
singular vectors of the so-called “document-term” matrix [18]. The latter is an m×n matrix
A with Aij being the frequency of the jth term in the ith document. Alternatively, one
can define Aij as 0 or 1 depending upon whether the jth term occurs in the ith document.

Here we argue that, in practice, the assumptions of our algorithm are satisfied and it can
be used in place of the full SVD algorithm. It is easy to see that if we are allowed one pass
through each document, we can set up data structures for sampling (ideally, the creator of a
document could supply a vector of squared term frequencies). Otherwise, if no frequency is
too large (this is not unreasonable since words that occur too often, so-called “buzz words”,
are removed from the analysis), all we need to precompute is the length (Li =

∑

j Aij),
of each document. This is typically available (as say “file size”) and we pick a document
with probability proportional to its length. This is easily seen to satisfy Assumption 1,
but without the squares (i.e. we sample the ith entry with probability Li/

∑

j Lj). The
assumption with the squares is satisfied if all the frequencies are small. Assumption 2 is
similarly implemented — given a document, we pick a word uniformly at random from it,
i.e., Qj|i = Aij/Li.

1.2.2 Web Search model

Kleinberg [16] proposed an algorithm for the problem of finding the most “important”
documents from the set of documents returned by a web search that works by analyzing
the m × m hyperlink matrix. This matrix A has entries Aij equal to 1 or 0 depending
upon whether the i’th document points to the j’th. The algorithm sets out to find two
unit-length m-vectors x,y such that xTAy is maximized. This is of course the problem of
finding the singular vectors of A. When the keyword has multiple meanings, not only the
top, but some of the other singular vectors (with large singular values) are interesting. So,
it is of interest to find the largest k singular vectors for some small k.

It is worthwhile to consider our assumptions in this case. For Assumption 1, it is sufficient
to sample the documents (roughly) according to the number of hypertext links from them.
For Assumption 2, it is sufficient to be able to follow a random link from a document.

5

1.2.3 Low-Rank Approximations and the Regularity Lemma

The fundamental Regularity Lemma of Szemerédi’s in graph theory [19] gives a partition of
the vertex set of any graph so that “most” pairs of parts are “nearly regular”. (We do not
give details here.) This lemma has a host of applications (see [17]) in graph theory. The
lemma was non-constructive in that it only asserted the existence of the partition (but did
not give an algorithm to find it.) Alon, Duke, Lefmann, Rödl and Yuster were finally able
to give an algorithm to find such a partition in polynomial time [2]. In [11, 12], low-rank
approximations of the adjacency matrix of the graph were related to regular partitions.
Szemerédi’s Lemma and an algorithm for constructing the partition were derived from this
connection. While this is not directly relevant to our results, we point it out here as one
more case where low-rank approximations are very useful. A more direct application of
eigenvector computation and Szemerédi’s partition is given in [13].

2 The Singular Value Decomposition

The matrix A can be expressed

A =

r
∑

t=1

σtu
(t)v(t)T

where σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0 and the u(t) form an orthonormal set of column vectors as
do the v(t). Also u(t)T

A = σtv
(t)T

and Av(t) = σtu
(t) for 1 ≤ t ≤ r. This is called the

singular value decomposition of A. Here r is the rank of A.

By a theorem of Eckart and Young [15], the matrix Dk that minimizes ||A − D||F among
all matrices D of rank k or less is given by

Dk =
k
∑

t=1

Av(t)v(t)T

.

This implies that

||Dk||
2
F =

k
∑

t=1

σ2
t and ||A− Dk||

2
F =

r
∑

t=k+1

σ2
t .

We use this notation throughout the paper.

3 A small sample contains a good approximation

The goal of this section is to prove Theorem 2, namely the subspace spanned by a sample of
rows chosen according to Assumption 1 contains an approximation to A that is nearly the
best possible. If, by chance, v(1), . . . v(k) belong to this subspace, we would be done, since
then,

∑k
t=1 Av(t)v(t)T

would provide the required approximation to A. What we show is

6

that the vectors w(t) (to be defined shortly) in the subspace do approximate scaled versions
of the respective v(t).

Let S be a random sample of s rows chosen from a distribution that satisfies Assumption
1. For t = 1, 2, . . . , r, we define the vector-valued random variable

w(t) =
1

s

∑

i∈S

u
(t)
i

Pi
A(i).

Note that S is, in general, a multiset, i.e., rows of A might be picked multiple times. The
vectors w(t) are clearly in the subspace generated by S. We first compute the expectation
of wt. For this, we can view it as the average of s i.i.d. random variables X1, . . . ,Xs where
each Xj has the following distribution:

Xj =
u

(t)
i

Pi
A(i) with probability Pi, for i = 1, 2, . . . m.

Then, taking expectations, 2

E(Xj) =

m
∑

i=1

u
(t)
i

Pi
A(i)Pi = u(t)T

A = σtv
(t)T

,

and so,
E(w(t)) = σtv

(t)T

.

Further, since Pi ≥ c |A
(i)|2

||A||2
F

, we have (since |u(t)| = 1),

E(|w(t) − σtv
(t)T

|2) =
1

s

(

m
∑

i=1

|u
(t)
i |2|A(i)|2

Pi

)

−
σ2

t

s
≤

1

sc
||A||2F . (2)

If we had w(t) exactly equal to σtv
(t)T

(instead of just in expectation), then

A
k
∑

t=1

v(t)v(t)T

= A
k
∑

t=1

1

σ2
t

w(t)T

w(t)

and this would be sufficient to prove the theorem. We wish to carry this out approximately.

To this end, define ŷ(t) = 1
σt

w(t)T

for t = 1, 2, . . . , r and let V1 = span(ŷ(1), ŷ(2), . . . , ŷ(k)) ⊆

V . Let y(1),y(2), . . . ,y(n) be an orthonormal basis of R
n with V1 = span(y(1),y(2), . . . ,y(l)),

where l is the dimension of V1. Let

F =

l
∑

t=1

Ay(t)y(t)T

and F̂ =

k
∑

t=1

Av(t)ŷ(t)T

2The expectation and variance of a vector valued random variable are taken separately for each compo-

nent.

7

The matrix F will be our candidate approximation to A in the span of S. We will bound
its error using F̂. Note that for any i ≤ k and j > l, we have ŷ((i)T)y(j) = 0. Thus,

||A − F||2F =

n
∑

i=1

|(A − F)y(i)|2

=

n
∑

i=l+1

|Ay(i)|2

=
n
∑

i=l+1

|(A − F̂)y(i)|2

≤ ||A− F̂||2F . (3)

Also,

||A− F̂||2F =

n
∑

i=1

|u(i)T

(A − F̂)|2

=
k
∑

i=1

|σiv
(i)T

− w(i)|2 +
n
∑

i=k+1

σ2
i .

Taking expectations and using (2) we get

E(||A − F̂||2F) ≤

n
∑

i=k+1

σ2
i +

k

sc
||A||2F . (4)

F̂ is of rank at most k and Dk is the best rank k approximation to A. So, we have

||A − F̂||2F ≥ ||A − Dk||
2
F =

n
∑

i=k+1

σ2
i .

Thus ||A− F̂||2F − ||A − Dk||
2
F is a non-negative random variable and (4) implies

Pr(||A − F̂||2F − ||A − Dk||
2
F ≥ 10k

sc ||A||2F) ≤ 1
10 .

From (3) it follows that

Pr(||A − F||2F − ||A− Dk||
2
F ≥ 10k

sc ||A||2F) ≤ 1
10

as required. 2

We next observe that a good low-rank approximation with respect to Frobenius norm
implies a good low-rank approximation with respect to the 2-norm, ||M|| = max|x|=1 |Mx|.
Better approximations have since been obtained for the 2-norm (see Section 6).

Theorem 3 If

||A − A

k
∑

t=1

y(t)y(t)T

||2F ≤ ||A − Dk||
2
F + ε||A||2F .

8

Then

||A− A

k
∑

t=1

y(t)y(t)T

||2 ≤ (1
k+1 + ε)||A||2F .

Proof. Let B = A − A
∑k

t=1 y(t)y(t)T

. Suppose that B has a unit eigenvector x with
eigenvalue λ such that

λ2 > (1
k+1 + ε)||A||2F .

Then we see that

||B − BxxT ||2F = ||B||2F − λ2 <

n
∑

i=k+1

σ2
i −

1

k + 1
||A||2F . (5)

The rank of the matrix A
∑k

t=1 y(t)y(t)T

+ BxxT is at most k + 1, and so

||A − A
k
∑

t=1

y(t)y(t)T

−BxxT ||2F ≥ ||A − Dk+1||
2
F

=

n
∑

t=k+2

σ2
t

≥ ||A − Dk||
2
F −

1

k + 1
||A||2F ,

since σ2
k+1 ≤ 1

k+1 ||A||2F . This contradicts (5). 2

4 Sampling Algorithm

In this section we present the main constant-time algorithm to produce the approximation
of Theorem 1. What we do below is to first pick a set of p rows of A from a distribution
satisfying Assumption 1. We form a matrix S from these rows after scaling them. We then
pick p columns of S from a probability distribution satisfying Assumption 2 and scale the
columns to get a p × p matrix W. We find the singular vectors of this matrix and from
those, show how to get a good low-rank approximation to A. The reader might want to
consult the discussion between the statements of Theorems 1 and 2 in the introduction for
an intuitive idea of how the algorithm works. In the description below, the parameter c is
the one from the assumptions.

Algorithm
Input: Matrix A, integer k > 0 and error parameter ε > 0. Set p = 107 max{ k4

c3ε3 , k2

c3ε4}.

1. (Sample rows) Independently choose (rows) i1, i2, . . . , ip according to distribution
P = (P1, P2, . . . , Pm) which satisfies Assumption 1, i.e.,

Pi ≥ c
|A(i)|2

||A||2F
.

9

Let S be the p × n matrix with rows A(it)/
√

pPit for t = 1, 2, . . . , p. Note that if
c = 1, the this scaling amounts to normalizing all rows to be of the same length.

2. (Sample columns) Independently choose (columns) j1, j2, . . . , jp (of S) according to
a distribution P ′ = (P ′

1, P
′
2, . . . , P

′
n) which satisfies

P ′
j ≥

c

2

|S(j)|
2

||S||2F
.

(we show below how to do this using Assumption 2.)

Let W be the p × p matrix with columns S(jt)/
√

pP ′
jt

for t = 1, 2, . . . , p.

3. (Compute SVD) Compute the top k singular vectors u(1),u(2), . . . ,u(k) in the col-
umn space of W.

4. (Filter) Let
T = {t : |WT u(t)|2 ≥ γ||W||2F },

where
γ =

cε

8k
.

For t ∈ T let

v(t) =
STu(t)

|WT u(t)|

Output v(t) for t ∈ T (the low rank approximation to A is A
∑

t∈T v(t)v(t)T

).

We next discuss the implementation of the above algorithm. In particular, how do we carry
out Step 2? We first pick a row of S, each row with probability 1/p; suppose the chosen
row is the ith row of A. Then pick j ∈ {1, 2, . . . n} with probabilities Qj|i as in Assumption

2. This defines the probabilities P ′
j . We then have (with I = {i : A(i) is a row of S}),

P ′
j =

∑

i∈I

Qj|i

p
≥
∑

i∈I

cPi,j

pPi
=
∑

i∈I

cA2
i,j

pPi||A||2F
=

c

||A||2F

∑

i∈I

A2
i,j

pPi
= c

|S(j)|
2

||A||2F
≥

c

2

|S(j)|
2

||S||2F

where the last step is implied by the next lemma.

Lemma 1 For S and W chosen as in the algorithm, with probability at least 1 − 16
c2p

,

1
2 ||A||2F ≤ ||S||2F ≤ 3

2 ||A||2F and 1
2 ||S||

2
F ≤ ||W||2F ≤ 3

2 ||S||
2
F .

Proof. By a routine calculation,

E(||S||2F) = ||A||2F

Next, observe that for any row i of S,

||S(i)||2F ≤
||A||2F

cp

10

The random variable ||S||2F is a sum of p independent random variables. Therefore,

Var(||S||2F ||) = pVar(||S(i)||2F) ≤ pE(||S(i)||4F) ≤
1

c2p
||A||4F .

The first part of the lemma now follows using Chebychev’s inequality. The proof of the
second part is similar. 2

5 Analysis

The next lemma asserts that a sample N of rows of a matrix M provides a good approx-
imation to M in the sense that NTN is close to MTM. This will be a key tool in the
analysis.

Lemma 2 Let M be an a×b matrix and let Q = Q1, Q2, . . . , Qa be a probability distribution
on {1, 2, . . . , a} such that

Qi ≥ α
|M(i)|2

||M||2F
, i = 1, 2, . . . , a

for some 0 < α < 1. Let σ = (i1, i2, . . . , ip) be a sequence of p independent samples from
[a], each chosen according to distribution Q. Let N be the p × b matrix with

N(t) =
M(it)

√

pQit

t = 1, 2, . . . , p.

Then for all θ > 0,

Pr(||MT M− NTN||F ≥ θ||M||2F) ≤
1

θ2αp
.

Proof.

||MT M− NTN||2F =

b
∑

r,s=1

|MT
(r)M(s) − NT

(r)N(s)|
2

E(NT
(r)N(s)) =

p
∑

t=1

E(Nit,rNit,s)

=

p
∑

t=1

a
∑

i=1

Qi
Mi,rMi,s

pQi

= MT
(r)M(s)

11

E(|NT
(r)N(s) −MT

(r)M(s)|
2) ≤

p
∑

t=1

E((Nit,rNit,s)
2)

=

p
∑

t=1

a
∑

i=1

Qi

M2
i,rM

2
i,s

p2Q2
i

≤
||M||2F
αp2

p
∑

t=1

a
∑

i=1

M2
i,rM

2
i,s

|M(i)|2

=
||M||2F

αp

a
∑

i=1

M2
i,rM

2
i,s

|M(i)|2
.

Thus,

E(||MT M− NTN||2F) =
b
∑

r,s=1

E(|NT
(r)N(s) − MT

(r)M(s)|
2)

≤
||M||2F

αp

a
∑

i=1

1

|M(i)|2

b
∑

r,s=1

(Mi,rMi,s)
2

≤
||M||2F

αp

a
∑

i=1

1

|M(i)|2

(

b
∑

r=1

M2
i,r

)2

=
||M||4F

αp
.

The result follows from Markov’s inequality. 2

We introduce some notation for the rest of the analysis. For a matrix M and vectors
x(i), i ∈ I we define

∆(M;x(i), i ∈ I) = ||M||2F − ||M − M
∑

i∈I

x(i)x(i)T

||2F

When the x(i) are orthogonal unit vectors, this represents the norm of the projection of M
onto the subspace spanned by the x(i). In this case,

∆(M;x(i), i ∈ I) =
∑

i∈I

x(i)T

MTMx(i).

Thus, if x(t), t ∈ [k] are the top k singular vectors of A, then

∆(A;x(t), t ∈ [k]) =

k
∑

t=1

σ2
t .

Lemma 3 Let A,S be matrices with the same number of columns, and

||AT A− STS|| ≤ θ||A||2F .

12

1. For any pair of unit vectors z, z′ in the row space of A,

|zT ATAz′ − zTSTSz′| ≤ θ||A||2F .

2. For any set of unit vectors z(1), z(2), . . . , z(ℓ), ℓ ≤ k in the row space of A,

|∆(A; z(i), i ∈ [ℓ]) − ∆(S; z(i), i ∈ [ℓ])| ≤ k2θ||A||2F .

Proof. The first part of the lemma is easy. For the second, using the fact that ||N||2F =
Tr(NNT) for any matrix N, we see that ∆(A;x(i), i ∈ I) equals

2
∑

i∈I

Tr(Az(i)z(i)T

AT) −
∑

i,i′∈I

(z(i)T

z(i′)T)Tr(Az(i)z(i′)T

AT)

= 2
∑

i∈I

z(i)T

ATAz(i) −
∑

i∈I

(|z(i)|2)z(i)T

ATAz(i) −
∑

i6=i′∈I

(z(i)T

z(i′)T

)z(i′)T

ATAz(i)

=
∑

i∈I

z(i)T

ATAz(i) −
∑

i6=i′∈I

(z(i)T

z(i′)T

)z(i′)T

ATAz(i).

By exactly similar reasoning, we have

∆(S; z(i), i ∈ I) =
∑

i∈I

z(i)T

STSz(i) −
∑

i6=i′∈I

(z(i)T

z(i′)T

)z(i′)T

STSz(i).

Now using the first part of the lemma, the second part follows. 2

We are now ready to prove the main theorem.

Proof of Theorem 1. We will prove that the conclusion of the theorem holds with
probability at least 3/4. We will apply Lemma 2 twice, once to the row sample and once
to the induced column sample. It follows from the Lemma 2 that with probability at least
9/10 both of the following events hold:

||AT A− STS||F ≤ θ||A||2F and ||SST − WWT ||F ≤ θ||S||2F (6)

where

θ =

√

40

cp
= min{

cε2

500k
,

cε3/2

500k2
}.

Assume from now on that these events occur. Throughout the proof, we will approximate
constants that arise somewhat crudely (by convenient rationals).

It follows from Theorem 2 that with probability at least 9/10 there are unit vectors x(t), t ∈
[k] in the row space of S such that

∆(A;x(t), t ∈ [k]) ≥ ||A||2F − ||A − Dk||
2
F − 10k

cp ||A||2F ≥ ||Dk||
2
F − ε

8 ||A||2F . (7)

Applying the second part of Lemma 3 to A,S and the vectors x(i), we see that

∆(S;x(t), t ∈ [k]) ≥ ∆(A;x(t), t ∈ [k]) − k2θ||A||2F

≥ ||Dk||
2
F − ε

4 ||A||2F

13

(using (7). Now, S and ST have the same singular values and so there exist unit vectors
y(t), t ∈ [k] in the column space of S such that

∆(ST ;y(t), t ∈ [k]) ≥ ||Dk||
2
F − 1

4ε||A||2F .

Applying Theorem 2 to ST and WT , we see that with probability at least 9/10 there are
unit vectors z(t), t ∈ [k] in the column space of W such that

∆(ST ; z(t), t ∈ [k]) ≥ ∆(ST ;y(t), t ∈ [k]) − 20k
cp ||S||2F ≥ ||Dk||

2
F − 3ε

8 ||A||2F .

Applying the second part of Lemma 3 to ST ,WT and the vectors z(t), we see that

∆(WT ; z(t), t ∈ [k]) ≥ ∆(ST ; z(t), t ∈ [k]) − k2θ||S||2F ≥ ||Dk||
2
F − ε

2 ||A||2F .

Therefore, the vectors u(t), t ∈ [k] computed by the algorithm satisfy

∆(WT ;u(t), t ∈ [k]) ≥ ||Dk||
2
F − ε

2 ||A||2F .

Note that the highest possible value of ∆(A;x(t), t ∈ [k]) is ||Dk||
2
F . All that remains

to show is that in fact ∆(WT , .) being large implies that ∆(A, .) is large. For this, we
construct a suitable set of vectors (as in the algorithm).

Since u(t), t ∈ [k] are orthonormal singular vectors,

∆(WT ;u(t), t ∈ T) ≥ ∆(WT ;u(t), t ∈ [k]) − kγ||W||2F ≥ ||Dk||
2
F − 5

8ε||A||2F .

Applying Lemma 3 again, this time to ST ,WT and the vectors u(t), t ∈ T , it follows that

∆(ST ;u(t), t ∈ T) ≥ ∆(WT ;u(t), t ∈ T) − k2θ||S||2F ≥ ||Dk||
2
F − 3

4ε||A||2F .

The next and crucial step, is to switch from u(t) in the column space of S to v(t) in the row
space of S. This is achieved by the following claims whose proof we defer to Section 5.1.
For t ∈ T ,

Claim 1. ∆(S;v(t), t ∈ T) ≥ ∆(ST ;u(t), t ∈ T) − 1
8ε||A||2F

Claim 2. |v(t)|2 ≤ 1 + ε
16 .

It follows from Lemma 3 that

∆(A;v(t), t ∈ T) ≥ ∆(S;v(t), t ∈ T) − (1 +
ε

16
)k2θ||A||2F ≥ ||Dk||

2
F − ε||A||2F

(assuming ε ≤ 16). Thus,

||A||2F − ||A − A
∑

t∈T

v(t)v(t)T

||2F ≥ ||Dk||
2
F − ε||A||2F .

Rearranging terms, we get the conclusion of the theorem:

||A − A
∑

t∈T

v(t)v(t)T

||2F ≤ ||A − Dk||
2
F + ε||A||2F .

2

14

5.1 Proof of Claims 1 and 2

Observe first that

||SST SST − WWT WWT ||F ≤ ||SST (SST − WWT)||F + ||(SST − WWT)WWT ||F

≤ θ||S||2F (||S||2F + ||W||2F), (8)

and that for t 6= t′ ∈ T ,

u(t)T

WWT u(t′) = u(t)T

WWT WWT u(t′) = 0.

Now consider t 6= t′ ∈ T . Then

(v(t)T

v(t′))(v(t)T

STSv(t′)) =
(u(t)T

SSTu(t′))(u(t)T

SST SSTu(t′))

|WT u(t)|2|WT u(t′)|2
. (9)

Furthermore,
|u(t)T

SSTu(t′)| = |u(t)T

(SST − WWT)u(t′)| ≤ θ||S||2F . (10)

Similarly, using (8),

|u(t)T

SSTSSTu(t′)| ≤ θ||S||2F (||S||2F + ||W||2F). (11)

Using the bounds (10) and (11) in (9),

|(v(t)T

v(t′))(v(t)T

ST Sv(t′))| ≤
θ2||S||4F (||S||2F + ||W||2F)

γ2||W||4F

≤
9θ2

γ2
||A||2F

using the bounds from Lemma 1. Next, for any vector u and any matrix S

|SSTu|

|STu|
≥

|STu|

|u|
.

So for t ∈ T

v(t)T

STSv(t) =
u(t)T

SSTSSTu(t)

|WT u(t)|2
≥

|STu(t)|4

|WT u(t)|2
.

Observe that the first part of Lemma 3 implies

|STu(t)|2 − |WT u(t)|2 ≤ θ||S||2F .

So,
∣

∣

∣

∣

∣

|STu(t)|2

|WT u(t)|2
− 1

∣

∣

∣

∣

∣

≤
2θ

γ
≤

ε

16
. (12)

Claim 2 follows immediately.

We then have
∑

t∈T

v(t)T

ST Sv(t) ≥ (1 − ε
16)
∑

t∈T

u(t)T

SSTu(t) = (1 − ε
16)∆(ST ;u(t), t ∈ T).

15

So,

∆(S;v(t), t ∈ T) ≥ (1 − ε
16)∆(ST ;u(t), t ∈ T) −

9k2θ2

γ2
||A||2F ,

which completes the proof of Claim 1, since 9k2θ2/γ2 < ε/16. The value of p was chosen
to satisfy this and (12).

6 Recent work

There have been several developments on the problem of low-rank approximation since a
preliminary version of this paper [14] appeared. Drineas et al. [8] give an algorithm whose
running time is O(mr2 +r3) where r = O(k/ε2). Although this is theoretically much slower
(due to the dependence on m), in practice, the better dependence on k and 1/ε might make
it more practical. An alternative sampling-based algorithm was given in [1] with comparable
bounds for the Frobenius norm and significantly better bounds for the 2-norm. There, the
main idea is to sparsify the matrix by randomly sampling its entries, one by one, and then
compute the SVD of a sparse matrix (which is faster). In [3], a lower bound for low-rank
approximation is given, which essentially matches the bound of [8]. It is also shown there
that an algorithm with this complexity is not possible using just uniform sampling. In [8],
(and the current paper), we only get an implicitly defined low-rank approximation to A.
A more explicit approximation is given in [7], which shows that if C is a m× s matrix of s
columns of A picked by sampling and R is a s×n matrix of s rows of A picked at random,
then we have A ≈ CUR, where U is a s× s matrix computed from C. This thus is a more
explicit approximation preserving the sparsity structure of A. The paper [6] applied the
sampling idea here to the basic problem of multiplying two matrices A and B and showed
that if we sample a few columns of A (according to probability distributions similar to
this paper) and take the corresponding rows of B, their product approximates the whole
product AB.

References

[1] D. Achlioptas and F. McSherry, “Fast Computation of Low Rank Approximations”
Proceedings of the 33rd Annual Symposium on Theory of Computing, 611-618, 2001.

[2] N. Alon, R. A. Duke, H Lefmann, V. Rödl and R. Yuster, “The algorithmic aspects of
the Regularity Lemma,” Journal of Algorithms 16, 80-109, 1994.

[3] Z. Bar-Yossef, “Sampling Lower Bounds via Information Theory”, Proceedings of the
35th Annual Symposium on Theory of Computing, 335-344, 2003.

[4] M. W. Berry, S. T. Dumais, and G. W. O’Brien. “Using linear algebra for intelligent
information retrieval”, SIAM Review, 37(4), 1995, 573-595, 1995.

[5] S. Deerwester, S. T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman.
“Indexing by latent semantic analysis,” Journal of the Society for Information Science,
41(6), 391-407, 1990.

16

[6] P. Drineas and R. Kannan, “Fast Monte-Carlo Algorithms for approximate Matrix
Multiplication”, Proceedings of the 42nd IEEE Annual Symposium on the Foundations
of Computer Science, 452-459, 2001.

[7] P. Drineas and R. Kannan, “Pass Efficient Algorithms for approximating large matri-
ces” Proceedings of the Symposium on Discrete Algortihms, 223-232, 2003.

[8] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, Clustering in large graphs
and matrices, Proc. of the Symposium on Discrete Algorithms, 291–299, 1999.

[9] S.T. Dumais, G.W. Furnas, T.K. Landauer, and S. Deerwester, “Using latent semantic
analysis to improve information retrieval,” In Proceedings of CHI’88: Conference on
Human Factors in Computing, New York: ACM, 281-285, 1988.

[10] S.T. Dumais, “Improving the retrieval of information from external sources”, Behavior
Research Methods, Instruments and Computers, 23(2), 229-236, 1991.

[11] A.M.Frieze and R. Kannan, “The Regularity Lemma and approximation schemes for
dense problems”,Proceedings of the 37th Annual IEEE Symposium on Foundations of
Computing, (1996) 12-20.

[12] A.M.Frieze and R. Kannan, “Quick approximations to matrices and applications,”
Combinatorica, 19 (1999) 175-220.

[13] A.M.Frieze and R. Kannan, “A simple algorithm for constructing Szemeredi’s
Regularity Partition”, Electronic Journal of Combinatorics, 6(1) (1999) R17.
http://www.math.cmu.edu/∼af1p/papers.html.

[14] A. Frieze, R. Kannan and S. Vempala, “Fast Monte-Carlo algorithms for finding low-
rank approximations”, Proceedings of 39th Symposium on Foundations of Computer
Science, 370-378, 1998.

[15] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University
Press, London, 1989.

[16] J. Kleinberg, “Authoritative sources in a hyperlinked environment,” JACM 46 (5),
604-632, 1999.

[17] J. Komlós and M. Simonovits, “Szemerédi’s Regularity Lemma and its applications in
graph theory”, Combinatorics, Paul Erdos is Eighty, (D. Miklos et. al, eds.), Bolyai
Society Mathematical Studies, 2, 295-352, 1996.

[18] C. Papadimitriou, P. Raghavan, H. Tamaki and S. Vempala, Latent Semantic Indexing:
A Probabilistic Analysis, JCSS 61, 217–235, 2000.

[19] E. Szemeredi, ”Regular partitions of graphs,” Proceedings, Colloque Inter. CNRS (J.-
C. Bermond, J.-C.Fournier, M.Las Vergnas and D.Sotteau, Eds.), 399-401, 1978.

17

