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Let V,={1,2,...,n} and e, e, ...,en, N= [g] be a random permutation of F{*. Let

E.c=le,, es, ..., &} and G,=(V,, E). If IT is a monotone graph property then the hitting time
7(IT) for IT is defined by r=1(/T)=min {t: G.€IT}. Suppose now that G, starts to deteriorate i.e.
loses edges in order of age, €, es, .... We introduce the idea of the survival time 7 =7'(IT) de-

fined by
v = max {u: (Va, {€us €usrs oo0s er})€M}.

We study in particular the case where IT is k-connectivity. We show that

1) lim Pr(r’=an)=e¢~** for acR¥

n—-co

1 1
2) lim — E(¥)=—
1

n—-oo N 1

: x 1
ie. 7'/n is asymptotically negative exponentially distributed with mean 5

1. Introduction

Let ¥,={1,2, ...,n} and e, &,, ..., €n, N:[;] be a random permutation of

V®, the edge of set of the complete graph K,,. If G,=(V,, E,) where E,={e,, €, ..., &}
then the Markov chain % =(G,)Y., is the central object of study in the theory of
random graphs. If IT is a monotone increasing graph property then one wishes to
establish asymptotic properties of the distribution of the hitting time

t(IT)=min {t: GEIT}.

Erdds and Rényi[4], [5] showed this to be an interesting problem and hundreds
of papers have been written on this subject since the early papers — see the recent
encyclopaedic text of Bollobds [2] or the introductory text of Palmer [7]. Erdds
and Rényi thought of % as describing the evolution of some living organism. Sup-
pose we pursue this analogy and think of z(II) as the time when this organism is
fully grown. Going the way of all flesh our graph will start to deteriorate, say by
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losing edges. We will assume that older edges disappear first. We propose to study
the progress of the graph

Hu = (Vu’ {eus eu+ls Sasy er})
for various properties IT1. We define the survival time t(IT) for the process % by
©'(IT) = max {u: H,€I1}.

The property discussed in this paper is k-connectivity. One can imagine many other
properties worthy of study and we list some open problems at the end of the paper.

Our main result can be expressed as follows: let k=1 be a fixed integer. Let
D, denote the property of having minimum degree at least k and let C;, denote the
property of being k-connected

Theorem
If I1 is Cy or D, then

(i) lim Pr((IT) = an) = e=* for acR*

I e R
(i) }lﬂ;?E(’E (H))_f

(i) limPr(v(C)=vDY) =1 1

2. Preliminaries

We need some probability inequalities related to the k-connectivity of a
random graph. The main thrust of the assertions are from Erd&s and Rényi [6]
but the calculations giving the precise bounds used are left to an appendix.

Let Z\ be the set of vertices of degree 7 in G,, and let z( =|Z")|.

Let S&V, be a non-trivial separator of G,, if G,[V,—S] is not connected
but has no isolated vertices.

Lemma 1
Let

1
2.1) m= % nlog n+% (k—1)nloglog n——on be integer.
(a)  Suppose that in (2.1) w=w(@m)—~< but w=o(loglogn). In what Jollows
a=0w(k) is some ‘constant’ (depending only on the constant k) whose exact value is
unimportant.

oe”
(2.2a) Pr(6(G,) < k—1) = oo
where 6(G) denotes the minimum degree of graph G.
(2.2b) Pr(6(G,) = k) = ae=?
e ‘ ge” ] 31 oe=®
(2.2c) Pr[zm =11 ‘E'(k—l)! =—Q0 Jor 0=¢g<1
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i (log n)*
(2.2d) Pr(G,, has a non-trivial separator of size =k—1)=«a o

(2.2¢) Pr(Qw: |w|=loglogn, m(as in (2.1)) such that G, has a non-trivial sep-
arator S of size =k—1 jfor which G,[V,—S] has a component of size t,

1 (log n)®
3§r§'§-|V,.—S|)=O[ 7 ]
(2.2f) Pr (3o, we Z%&-V: the distance from v to w in G,, is 2 or less)=u« I/ _loi_n.

(b)  If we relax the restriction w=o(loglogn) in (a) to wn=m then we can
still prove

(2.3) Pr(6(G,) = k) = ae~®/%

(c) Let now m z% nlogn +% (k—1)nloglog n-}——é— wn where w=w)—- .
Then

2.4 Pr(6(G,) < k) = max {¢e=“,n"%}. ||

The hitting time of C, was discussed by Bollobas and Thomason [3]. That
paper established

(2.5) ,,IHE Pr(z(Cy) =<(Dy)) = 1.

1
Let m,= [% n log n+—;— (k—1)nlog log n——n log log log n] and m*=t(D,). It
will be useful to think of G}, in the following terms (Bollobés [1]):
E.=E,UXUY

my

where
X ={e€E,—E,,: eNZ&V =0}
and
Y = Epo—(E,,UX).
This is valid, conditional on an event of probability 1—0((loglogn)™) — see
(2.2b) with m=m,; and w=Ilogloglogn.
Now, in this case,

(2.6) X is a random |X|-subset of (V,—Z% D)@,
Also

(27)  Pr(IXUY|=> nlogloglogn) = Pr(8(G,) = k—1) = Eﬁ)?'

where my,=m, +[n log log log n], by (2.4). Furthermore

1
(2.8) Pr (3e€Y: e C Z§V) = =0
and
(k-1) . 4 e s el
(2.9) Pr(3z€Z% D : |{ecY: zEe}| > 6logloglogn) = Toglogn
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Given |[XUY|=nlogloglogn and |Z{ V|=0(loglogn) (use e¢=1 in
(2.2c)) it is unlikely that the conditions in (2.8), (2.9) will be violated — we are after
all adding at most nlogloglogn random edges. :

3. Proof of the Theorem

(i) and (iii). ;
Let acR™ and w=[an]. We show first that
iR lim Pr(6(H,) = k) = e~
We aim in fact to prove
g _ Vo -2 _ [ (ogloglog 11)2]
(3.2a) |Pr(6(H,) = k)—e=*| =0 [W

where the hidden constant in the “big O” notation may depend on k. Thus from
now on, if after describing an event & we write [P=1-—0(1)], we mean Pr (&)=
=1-0((log log log n)*/log log n).

-For the proof of (i) and (iii) we only require that a be a constant. However
to prove (ii) we need to allow a to grow with n. In what follows we will assume
only that

(3.2b) a = loglogloglog n.

“Let now Z%-Y=Z&=D and Z*-D be the set of vertices of degree k—1
in the graph H’=(V;, {e,, €,115 -.-» €,,}). Note that H’ has the same distribution
as G, _,4; and we may use Lemma 1 (a) with w=logloglogn+2a+0(1/n).
(The O(1/n) term accounts for o, integral.)

_ Gy, is obtained from H’ by adding u—1 random edges and so Z%-VC
€ Z*-1_ By applying (2.2c) twice: once with w=logloglogn and é=wm=! and
once with w=loglog log n+2a, ¢ as before, we obtain

20(log log log n)?

L loglogn

(3.3)

I

l—g ., |[Z*=Y] " 1+4e
Pr = g™ — =
(l+s |Z%=D) 1—5]

Now let G,,=(V,, E;) where E; =E,—FE,_, and note that G/, has the same dis-
tribution as G,_,4;. Let m=min {m: 6(G,)=k}, and let & be the unique
([P=1—0(1)], see (2.8)) vertex of degree k—1 in G *Chen

8(H,) = k — pcZ%-1,

Now # is “close to” being a random element of Z%*-" and so we can see from (3.3)
that Pr (6€Z%-)=~e~2% but let us do this more carefully.

Consider now the set {e,,, €y, +1,..., €y} and in particular the subset F
of edges incident with one vertexin Z*~" and one vertex not in Z*-". We know
([P=1—0(1), see (2.8)) that esc F, For ve€ Z*-Y let d, be the degree of v in G:..
We work on the assumption that Z*- is an independent set in Gy, [P=1—0(1)].
Now d,=k—1 for v€Z*~P and d,=6log log n otherwise ([P=1—o(1)], see
(2.9)). If d, were the same for all v€ Z*~1 then we could deduce that Pr (6€ Z*—1)=
=|Z®*=D|/|Z*=Y| and we would be done. This is nearly so and for each veZ2*-1
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we randomly select a set F,&F of ny=[n—1-—6loglogn] edges incident with v.
Let F'— )8 K, ‘Then

v 206D
(k—1)
T ALES SIS ald =|Z ]
PT(UCZ |€,“Qr) lz‘-(k_l)l
and
Pr(eat ) = - +0 (227,
mn n

1 .
[The O[ Oi n] term above, accounts for eﬁ,gZ”"““]. This completes the proof

of (3.2a).
We show next that

(3.4) lim Pr(v(Dy) = ¢'(Cy) = 1.

Observe that if 7(C,)<=wu=1'(D,) then either 7(D,)#=1(C,) or there exists SEV,,
|S|=k—1 such that

(3.5) S is a non-trivial separator of H,_,.
Note next that (3.2) implies

lim Pr (t'(Dy) = nlogloglog Ibg n) =0.

Thus if 1w, =[nlog log log log nl, ¥ (C)<u=<u,, K=(V,, €, €115 s €n}) and S
is as in (3.5), then either
(a) S is a non-trivial separator of H,_, and H,_,[V,—S] has a component of

or

(b) S is a non-trivial separator of K
or

(c) Jd(K)=k-2,

or
(d) 2 vertices of K of degree k—1 share a common neighbour.

But K has the same distribution as G,,_,, +; and (2.2) shows that these 4
events all have probability tending to zero.

(i) and (iii) follow directly from (3.1) and (3.4).

(ii).
We use
1 1/2)n
E[¥ t*(H)] = f Pr(7’(I1) = nx)dx
0

and
(D) = 7(C,) whenever (D) = t(C)).
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Let A=loglogloglogn and & denote the event ““z(D,)=t(C,)”. Then

(3.6) Pr(6) =0 [“"5?"] :

This follows from (2.2d) and the proof of Theorem VII. 4 of [2]. Now

], bt ¢
3.7 E(F T (C,,)) = f Pr(7'(Cy) = nx)dx =
0

A

A(l H
= | e‘”dx—O[———( 9cloglogn) ] = by(3.2)
G log log n

1
Now a lower bound for E(z(D,)).

E [-:; v (D,,)] =E [% 7 (D,Jlé"] Pr(6) =

v

E (% r’(Ck)Ie?] Pr(6) =

E ['_1' v (ck)] —F [% r'(ck)|5=J Pr(8) =

= 31_0(1) E[—t(C,,) [gJ Pr (8).

But
E [—’l-; 'r(Ck)Igl = (log n)*+n Pr (v(C,) = n(log n)*)/Pr (&).

Thus, using (3.6) and Pr (z(Cy)=n(log n)*)=o0(1/n) (very crudely), we have

(3.8) E[Tll-r(Ck)ié'T] Pr (&) =o(1)
and so
L
E[;r (D,,)] = 3—0(1)
Now for upper bounds:

/2n
(3.9 E[% t'(Dk)) f Pr(7(Dy) = nx) dx+ f Pr(v(D,) = nx)dx =

A(loglog log n)? ] g
=3 e el et s e —x/2 =2
= Uf e dx—l—O[ TS IoeT + f 2ae~*2dx+ f n—2dx,

= %+o(l).
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The first integral in (3.9) is approximated as in (3.7). For the second note that

(3.10) Pr(7'(Dy) = nx) = Pr(8(Gm+) < k)+Pr(6(Gu-) = k)
where

1
mt = 50 log n+—;- (k—1)nloglog n—[-—; nx

and
m- = m*—nx.

Now use (2.3) with m=m~ and (2.4) with m=m* in (3.10). Now an upper bound
for E(7'(cy).

E [% v (ck)] =E [% 7 (ck)|5] Pr (6’)+E[% r'(Ck)|é_°] Pr(&) =
= E[% T'(Dk)[é’] Pr(«‘s’)—!—E[% r(ck)[é] Pr(8) =
= E[TII- -r’(Dk)] ro(l) = (by (3.8))

= %-i—o(l) (by (3.10)).

This completes the proof of our theorem.

4. Revival Time

We gain some insight into the distribution of survival time by considering
the revival time. Let u=1'(II) and consider adding random edges to H, until a
graph with property IT is obtained. The number of edges added 7”(II) is called the
revival time. It is straightforward to show that we can replace 7° by 7” in our theo-
rem and obtain a valid result.

For example: if II=D, then H,[P=1-o0(1)] contains a unique vertex v
of minimal degree k—1. t”=an if v is not incident with any of the first an random

! o : 2
edges added to H,. The probability of this is approximately [l —;}"‘me‘z". For

II=C, we use the smaller likelihood of non-trivial separators.

It seems now that in general one may be able to guess the result for survival
time by computing the revival time, which seems easier. One then needs a few asym-
ptotic calculations for verification.
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5. Open Questions

What is the survival time for the following properties:
(1) having a cycle?
(2)  having a cycle of size k?
(3)  having a path of length k?
4) having a tree component of size k?
(5) having a clique of size £?
(6) having any fixed subgraph?
@) being non-planar?
(8)  having diameter k?
(9)  having a vertex of degree k?

One can also consider similar problems for random bipartite graphs, digraphs or

subgraphs of the n-cube.
There are 2 conspicuous omissions from our list. These are perfect matchings

and hamilton cycles. If H} is the property ol having |k/2] edge disjoint hamilton
cycles plus a further edge disjoint matching of size |n/2], if k is odd, then it seems
fairly clear that we can add H, to our theorem. The proof does not require any new
ideas and would be rather long, too long for this paper.

Appendix

As usual let G, p:% denote the random graph in which edges are inde-

pendently included with probability p. Let IT be any graph property. Then

(A0) Pr(G,cIl) = > Pr (G, €I) Pr(G, has m’ edges).

Thus if IT is monotone i.e. if it is preserved either by adding edges or by deleting
edges, then, for large n

(A1) Pr(G,€Il) = 3 Pr(G,€1I).

We can thus work mainly with G, and multiply our estimates by 3. Our
inequalities are only required to hold for n large.

Proof of (2.2a).
‘For k=2

k—2 ==
Pr(5(G,) =k-2)=n 3 [”: l]pr(l_p)n_lm,:_;

[IA

2n

k=2pt (Jog n Y (log n)~&-1¢e»
2_[ g ]( g n) 5.

icort i\ n =

3e®
= =
T (k—2)!logn
Now use (Al).
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Proof of (2.2b).
Let z#~ be the number of vertices of degree k—1 in G,.

E(zfV)=n [z: i]pk—l(l—p)"—" =

==P+0Fbiij£ZJbukfb!=

. Ioglogn] e®
_[H_O[ logn ](k—l)!'

Preparing for the Chebyshef inequality

B - 1) =

141

1 n(n—l)[P[[z:%} pa-pr) +a-n((i23) P"“““P)"""l]z] =

3 E(z%-1) \? E(z8-1) n—1)? N
‘"("_”['U[TFG?‘—W] +0-p)| n(1—p) = ] 3

= (1+2p)(E(zF))
and so
(A2) Var (z¢~V) = E(z¢D)+2pE(z{~P) =
=2E(z*") as o = o(loglogn).
Thus by the Chebycheff inequality
Pr(z¢-V =0)= L_(zgz“_'-”"j =3(k—1)e".
Thus
Pr(6(G,) = k) = 3(k—1)le .
We can now use (Al).

Proof of (2.2c).

The property in question is not monotone (or even convex) [2] and so we

cannot use (Al). We can however assert using (A2) that

o

It now follows from (AO) that there exists ni, m—Ynlogn=n'=n,

o

e? |} ce® ]( 2"
(k=D — (k—1)! =

(k=1) __
z=0)

=

S I ge” ]-_; 2e—°
G=DUT E&-=-D!) = ¢

21

such that
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As in the proof of (2.2a) we can deduce that

10e®
H{Mwafk—l)éaF?ﬁ%&ﬁ'

Since G,, is obtained from G,,_,, by adding m—m’ random edges, we have

that given §="6(G,,,)=k—1 and z%1 is ‘close’ to its mean”,

k-1 _ La-11g) — o[V 71087 H-‘-""] =
Pr(s-) = 24916) = o (L2182
i O[Vlog n e“’]
n
and (2.2¢) follows.
Proof of (2.2d).

Let 6 be the probability that G, has a nou-trivial separator of size s, 0=s=
=k—1. Then

k=1 (1/2)(n—s) —

o= 5 5 [J:] (n ; .S] z"gp"‘l(l —(1=p)F(1— p)n=s-n)
s=0 =2 "

(choose an s-set S' for the separator, a r-set T for a small component, a spanning

tree of T. Multiply by the probability that the edges of the tree exist and there is at

least one v, T edge for each v€S and no S, SUT edges.)

Thus
k=1 (1/2)(n—s) g -
e 1/2)(n—s [_’;ﬁ] (I_;e_] 1:_.2[):_1(tp)se—l(n—-s—tjp =
5=0 =2
k=1(1/2)(n—5) |
(A3) =8 2’ 2 _;(npe_npls_zfre(s+r+1)p): =
5=0 =2

=O[Iogn
n

Nm—

e®logn

1
(for small ¢, the “‘complex” term above is O[{ = ]] For larger ¢, it is

[[L:%ﬂ]‘]. Unfortunately, we are not dealing with a monotone property.
However (A0) implies
Pr(G,, has a non-trivial separator) = 0 Pr (G, has m edges)™?
and (2.2d) follows. (See [2] Theorem II.2.)

Proof of (2.2e).
We only have to consider the sum in (A3) for ¢=3, which is then

O[[ lofn] ] We only have to multiply this by O[n loglognxwl/_n_] in or-
ogn

der to account for the number of different values of m and the transition from

G, to G,,.
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Proof of (2.2f).
We can clearly assume k=2. Let § be the probability that there exist
v, we Z%=1 at distance 2 or less from each other in G,. Then

2

- 3, Fl n] r—1 [n—r] k=201 _ pyn—k—r+2
¢=r=222[rp [k—2 Pl —p) +
n n—3 4 i
+3[3]P3[[k ﬁg] Pk_“(l—[’)"_k_l]
(the first term above deals with paths of length r=2 or 3 and the second term

deals with triangles.) Thus 11/:0[-;11—] and we can finish as in the proof of (2.2d).

Proof of (2.3).
The proof used for (2.2b) will be valid for p%p.,:%l , say. All that

is needed for smaller p is to show

np
Pr(G,, has no isolated vertices) = O [ en ]

This can be done using the Chebycheff inequality.

Proof of (2.4).
Non-trivial separators are handled as in the proof of (2.2d). The minimum
degree calculation only requires the use of the expected number of vertices of degree

k—1 orless. [
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