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Suppose ¥, is randomly sampled from the vertex set C" of the n-cube so that
Pr(x € V,)=p, independently for each x & C". Let E(V,) denote the edges of the sub-
graph of C" induced by V¥, under the usual adjacency relation in C™. Suppose that A4,
is now randomly sampled from E(V,) so that Pr(a € 4,)=p,. independently for each
a€ E(V,). Let I,=(V,, 4,) be the random graph so produced. We show that for
s=0 integer, ¢ constant and

Pepo=%+CGslnn+c)/n
that

lim Pr ([, is s+ 1-connected)

n-+x

=1— lim Pr (/3 is s-connected)

n—s o

—4
=e

where A= ( lim p,) x e~2¢/s!

n-sx

1. Introduction

We consider the set C"={0, 1}", the vertex set of the unit hypercube. For any
two points x, y € C" we call x, y adjacent (or neighbours) if they differ in precisely
one coordinate. This relation endows C" with a graph structure. For any set
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VeC”, let

E(V)={{x,y}: x,yeV and x, y are adjacent}.
Let p., p,, 0<p., p,<1 satisfy

P=P.P,=3+(slnn+c)/n

where s>0 is an integer. . ‘
We construct a random subgraph I',=(V,, 4,) of C" in the following manner:

(a) V¥, is randomly sampled from C” so that Pr(x € V,)=p, independently for
each xe C";

(b) A4, is randomly sampled from E(V,) so that Pr(a € 4,)=p,. independently for
eachae A4,.

The following theorem is the main result of this paper. It establishes the asympto-
tic probable connectivity of I3,

Theorem 1.1.

lim Pr(T, is s-connected)=1-—¢"%
n=» o
lim Pr(T, is s+ 1-connected)=¢"*

where
A=p,e”*/s! . 1.1)

with p,= lim p,. (Note that 1<p,<1.)

n=co

The first results on this problem are due to Saposhenko [10] and Burtin [3].
They considered the case s=0, p,=1 and p, constant. Burtin considered the case
P.#%, and showed that if p,<% then I, is almost surely not connected, but is
almost surely connected when p,>%. Saposhenko considered the case p.=%,
and gives various properties of J;,. (Note that our use of “almost surely” (a.s.)
simply means with probability tending to 1 as n—.)

Erdos and Spencer [5] tightened this result and considered the case s=0,
P.,=1 and p,=1+c/n for constant ¢. See also Bollobds [2]. The case §=0, p,=1
and p,=% was also considered by Saposhenko [9], where the random subset
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V, is considered to define a random boolean function of » variables. (See also
the paper [11] by Weber for a short review.) Theorem 1.1 generalises the above
results in two ways. First we consider a model in which both random edge and
vertex deletions occur, and secondly we examine the strength of connectivity of
the resulting graph.

2. Notation and preliminaries

We will write N=2", In denotes natural logarithms and lg logs to base 2.

For x, y € C", the (Hamming) distance between x and y is the minimal number
of edges in a path connecting x and y in G(C")=G,. The graph G, has N vertices
and inN edges. More generally we may consider the number H,(n) of connected
subgraphs of size k which are vertex-induced subgraphs of G,. Since any compo-
nent of size (k—1) has at most (Xx—1)» incident edges, we have

H.(m<Nn2n. ...(k—D)n=(k=1)n*""*'N. 2.1)

We will have recourse to the following simple inequalities:
For any O<r<n,

B

For any S=C" let B(S)={ye C"—S:y is adjacent to some x € S}. Thus
B(S) is the set of neighbours of S. More generally we can consider the set BY(S)
of points which are within a (shortest) distance i from S, defined by

B%(S)=S, B"(S):B(:L;J:BJ(S)) .

Clearly B(S)=B(S). Now, for 1<k<2" let b(k)=min{|B(S)| : |S]|=k}.

We first establish the following facts about b(k), which will be required in the
analysis of the main problem. The following theorem describes sets which attain
b(k).

Theorem 2.1. (Katona [8]). For each i=0,1,...,n let Z;={x e C": d(x, 0)=i}.
Order the x € C" so that all x € Z; occur before all x € Z, if i<j, and within each
Z, order the vertices lexicographically. Then b(k) is attained by the set S= M (k)
which consists of the first k vertices in this ordering.
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Note that [Z,[=(:_l) for i=0, 1, ..., n. Write

i n i
ro=3(7)=1Uz
j=o\J j=0
Then, for any k, let g(k) be defined by

T(g-1)<k<T(q). (2.3)

q~1

Thus M(k) consists of () Z; together with the (lexicographic) first (k— T(g— 1))
i=0 ) '

vertices in Z,. i
We deduce the following facts. The first deals with “small” sets.

Lemma 2.2. For | <k<n+1, b(k)=kn—}(k— 1)(k+2).

Proof. If k=1, the formula gives b(k)=n. Thus we may assume k>2 and hence
q(k)=1. . Hence, letting e, be the jth unit vector, and e,=0, M(k)={e,, ¢,, e,
..es €—1}. Now M(k) has precisely the following neighbours:

(i) All vertices of the form e;+¢; (0<i<k—1, k<j<n)
(ii) All vertices of the form e;+¢; (1<i<j<k—1)

and all these are distinct. There are k(n—k+ 1) of type (i) and (k; l) of type (ii).
Thus .

b(k)=k(n—k+1)+(k;1)=kn—*}(k—1)(k+2)- 0

~2g-1
Lemma 2.3. For all k, b(k)>("—q%_)k where q=q(k).

Proof. Let t=k- T(g—1). Now M(k) has the following neighbours:

(i) All vertices of Z, except for the first 7. .

(ii) All vertices in Z,,, adjacent to the first ¢ in Z,.

There are clearly (Z)—t of type (i). To count those of type (ii), consider G(Z;

U Z,+1). This is bipartite with each vertex in Z, having degree (»—g), and each
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vertex in Z,,, degree (g+1). Thus by a simple count of edges, any ¢ vertices

in Z, must have at least (n—q)t/(g+ 1) neighbours in Z, . Thus there is at least
this number of type (ii) vertices. Therefore

b(k)?(;)—t+(n—q)l/(q+ 1), i.e.

b(k)2(2>+(n—2q—l)t/(q.-i-l) (2.4)

—(n—2g— m\_ ("2 N g
.=(n-2g ])k/(q+l)+{(q) ( e )T(q 1)}.

q+1

Thus we need only show that T(q—1)<T(2) to complete the proof.
n—2q-—

This follows since

T(q-1= qZ( 'i,)

i=1\4

(n)i q(g—1)..(q—=i+1)
g/i=1i(n—qg+1)...(n—q+1i)
(=)
q/i=i\n—q+1

N aln—gtd
(q)l “gli—qtn Provided g<i(ntl)

n
q/n— 2q+1

+1
<q— " as required. [J
n—2g—-1\q

N
M

A

Note that for g>4(n—1) the right hand side of the inequality in Lemma 2.3 is
negative, and hence of no use. We will therefore need the following result, which
states roughly that sets which are large, but not too large, have many neighbours.
Its exact statement conforms with later requirements.

Lemma 2.4. Let K=K(n)=[2*Y"""|. Then, for large n, if K<k<N—K then
b(k)>2+/"e",
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Proof. First note that OQIS(Z) in (2.4) implies

b(k) = min{(;), (q’;l)} (2.5)

Let m= [%\/ nflg n]. A simple calculation yields

T(m)=(1+o(1))(:;)

<(L+o(D)(nefmy"<K

for large n.
Using T(m—1)+T(n—m)=N, we obtain T(n—m)>N—K also. Thus K<k
<N-K implies m<g(k)<n—m. The result now follows from (2.5) and (2.2).

a
3. Minimum degree of I,

As one might expect from previous work on the strength of connectivity of
random graphs, e.g. Bollobds [1], Erdés and Rényi [4] or Fenner and Frieze [6],
the connectivity of I, is essentially determined by its minimum degree.

Let v, denote the number of vertices of degree ¢ in I,. We have the following
result.

Theorem 3.1.

s—1
(a) Fors=1, ¢»—c0, 1limPr(} v,>0)=0;
n—+w =0
(b) For 5s=0, ¢,~c, lim Pr(v,=i)=e"*AYi! (i=0);
n—co

(c) Forc,» +00, limPr(v,>0)=0;

n—+w

(d) For ¢,»—o0, limPr(} v,>0)=1;
(1]

n=+o0 t=

where A is given by (1.1). Thus v, is asymptotically Poisson with mean 1.
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Prodf.

(a) For x € C" and ¢ <s, we have that °

Pr(xeV, and degree of x=t)

=P, (;’) pl—py
<n‘2'"( slnn+2c) (1-+o()

<nt2—n -3 —Zc(1+o(1))

Thus, for t<s, the expected number of vertices of degree ¢ is O(n~1), and hence
part (a) of the theorem follows.

(b) We use inclusion-exclusion. Let E, be the event that xe C" is a vertex of
degree s in I',. For any S C", write Eg= (| E, and

xeS

On)= Y, Pr(Es).
|S]=¢

Then the inclusion-exclusion formula gives

Pr(v,=i)= }:( 1)~ ‘(,)9,@) (3.1)

t=i

and the sum on the right hand side of (3.1) alternates in value about the left hand
side.
Let a,=1im 6,(n), then using the alternation property of the sum in (3.1) it

n=*o0

may be shown that

lim Pr(v,=i)= Z( -1 () 3.2)

n—+w

provided the sum converges. Thus it remains to estimate «,, We may obviously
assume n>t. Let S be any set with [S|=¢. Note that

PeEs)=(p.(; ) P1-27")

=pu(n), say,
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unless two vertices in S are either adjacent or within a distance 2 of each other
(i.e. they have a common neighbour). We show that the contribution to Y. Pr(Es)
o S|=t

from such sets S is asymptotically negligible. Let this contribution be f,(n). Now
there are at most

V() ()

sets S which either have two adjacent vertices or two vertices with a common
neighbour. For such sets S we have

nt—4(t—1)(t+2)<M=|B(S)|<nt.

For each x € B(S), let y, be a particular neighbour of x in S. Let T={x € B(S)
: x € V, and {x, y,} € 4,}. If E5 occurs then |T|<ts. But

Pr(rl<i< 3 (“f)p'a—p)”"
=(1 +0(1))<?f>p“(1 -p"
<(1+o())M™*27™™,
Thus
0<B(n)<(14+0(1)(tn)2°N~"n?N*"".

Hence, as n— o0, B,(n)—0, as claimed.
It remains to bound the number of sets S which have no common neighbour.

There are clearly at most (];I)SN'/t! such sets, and at least

o) RO )

>(N—tn?)/t!
Therefore
(N— lnz)'

(n) <6,(n)— ﬂ.(n)<’iu,(u>
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Letting n— co, we obtain
At <a, <A 1!

Hence the right hand side of (3.2) is

= =1 [T\ g1 — 20— A1 |
,; (=1) l(i))./t!—le Ay 53

(c) Proceeding as in (a), we find that the expected number of vertices-of degree
s tends to zero, since in this case e~ 250,

(d) In this case, the expected number of vertices of degree at most s tends to
infinity. A routine use of the Chebyshev inequality yields the result. One, of
course, must compute the variance, but this is a simple exercise whose details are
left to the reader. 0O

Corollary 3.2. If c,—c, then

lim Pr(6(F,)=s)=1—e"* and
lim Pr(6(I;)=s+1)=e™*

n=cw

where & denotes the minimum degree of the graph, as usual.
For. ¢;— + o0, we have

lim Pr(6(/,)<s)=0,

n—*c0
and for ¢,— =,

lim Pr(6(I,)<s)=1.

n—+o

Corollary 3.3. If p,p.=1+ c,/n where ¢,— — o, then

lim Pr(T, is connected)=0.

n—+ao

4. Threshold for connectivity

We start our proof of Theorem 1.1 with the case s=0. In this case we have to
establish the limiting probability that I, is connected. In view of Corollary 3.3
we may assume that c,+ —oco. We shall only treat the case ¢,—c in detail. All
the calculations go through a fortiori for c,~». @
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Since ¢, plays only a minor role in the subsequent analysis, we shall assume for
convenience that ¢,=c.

Let
II(n, k)=Pr (I, has a component of size k)
and
I(n, k,, k2)=Pr (I', has a component of size k, k; <k<k,).
Clearly

k2
H(": kukz)< z H(n,k)
k

=Ky
Corollary 3.2 can be re-expressed here as

lim I(n,1)=1—¢"* 4.1
n—+co
where 1=p,e”2¢,
We can therefore prove our theorem for the case s=0 by showing

lim II(n, 2, $N)=0. 4.2)

n—w©

S. Small components

We show here that the probability that I', has a component of size k, 2<k

<2*‘/‘E'7, is very small. Our estimates of I7(n, k) in this section are based on
the bound

H(n, )<SH(m)py(1-p)’®. (5.)
The right hand side of (5.1) is an upper bound to the expected number of compo-
nents of size k in I,. To see this, let SSC" and |S|=k. For each y e B(S), choose
an edge e(y) from y to a vertex in S. If S is a component of I, then V,=2S and
e(y) ¢ A, for y € B(S). Thus

Pr (S'is a component of I3)<plfl(1—p)E S

and (5.1) follows. 8
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We shall actually use a weakening of (5.1) to

2¢ b (k)
o(n, k)<H,‘(n)2""")(l—T)

<H(n)2 2 ®e2klel (For ¢, w0, (5.2)

we would obviously omit the modulus).
Lemma 5.1. For 2<k<n?|2 and large enough n, II(n, k)<2™*".
Proof.

(i) First consider k=2, i.e. an isolated edge. Now C" has only n2""! edges
altogether. Thus, using (5.2) and Lemma 2.2, we obtain

H(n,2)<n2 12720~ Detlelgp=in
for large n.
(ii) 3<k<in.
H,(n)<2"n* " Y(k—1)1g2m+2k e, (5.3)

Thus, using (5.2) and Lemma 2.2,
ﬂ(n , k)<2n+ 2klgn—(kn—=% (k- 1) (k+2»e2k lel

L2 -oltNkn for k>3,
(iii) In<k<in®.

In this range of k, g(k)<2 and so b(k)} k(n—5)/3, using Lemma 2.3. Using
(5.2) and (5.3) we obtain

H(n R k)<2u+2klgn—k(n-5)/3 eZk ]CI
<27¥" for large enough n. [
Lemma 5.2. For n*<k<K(n)=[2*""'8"] and large n,
I(n, k)y<2~*/"sm3

Proof. Now H,(r)<(2kn)* and b(k)>k(n—2q— l)/(q+1) by Lemma 2.3, where
g=q(k). Thus, using (5.2),

(n, k)<(2kn[20 =22~ Di@+ 1)k 2klel (5.4
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Let m=[\7n/1g n]. It is easy to see from (2.2) that T(m—1)> m': 1)>K. Tﬁus,
within our range of k, g(k)<m. Consequently, for large n, (n—2gq—1)/(g+1)
>9%/n Ig n/10. Hence, from (5.4),

II(n, k)<(2n 2% Vn187)29 VaTgn/10yk 2k c]
<27%VBM3 for large n. [
Corollary 5.3.
(n,2,28Vm B0 gow3  gpg
I(n,n,2tmsm o5,

in both cases for large enough n. [

3

We conclude this section by showing that there are few vertices in “very small”
components. We prove only a fairly crude bound.

Lemma 5.4. The probability that I, has a total of more than n® vertices in compo-
nents of size at most n is less than 25, for large enough n.

Proof. The condition of the Lemma implies that for some 1<k<n, there must
be at least n* vertices in components of size k. Call two components S, S’ of
size k independent if B(S) n B(S")=@. Consider an associated graph with vertices S,
and an edge SS’ whenever S and S’ are not independent. Now, for any vertex S,
|B(S)|<kn and each vertex in B(S) is adjacent to at most (n—1) other compo-
n
2
that it possesses an independent set of size r=(n*/k)/(kn (n—1)+1), since it must
have at least n*/k vertices. Thus r>n?/k?. Consider first k=1. The probability

nents S’. Hence the associated graph has degree bound k . It follows easily

. . . L N
that I', contains n? independent isolated vertices is no more than 2 a-p=

= 0(2""2). For k>2, following the lines of the proof of Lemma 5.1, the probability
of at least r independent components of size k is less than (H(n)2~>®e2* Iy
<27"/*. Thus the probability that for any 1 <k<n, there are at least n* vertices
in components of this size is less than n2™"/*<27"/% for large enough n. [J
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Remark 5.5. We say that x € C" is an isolated non-vertex if ({x} v B({x})) n V,
=, Arguing as in Lemma 5.4, we may show that

Pr(C" has at least n* isolated non-vertices)=o0 (2"") .

6. Large components

We show that there are no disconnected large components by “bootstrapping”
the results of §5. The approach is to dissect C"*! into two copies of C" in an
obvious way. We require the following result, which follows immediately from
results of Hoeflding [7].

Lemma 6.1. For large n,

Pr((21p,—2) N/20<|V,|<(1+5,)N/2)

>1—e"2*".

Proof. From Hoeffding’s results, noting that |V,,| is a sum of N independent
zero-one random variables, each with expectation p,.

Pr(|V,|<(1—&) Np,)<e ¥ Mo (6.1)
Pr([V,|>(1+¢) Np,yse 3% (6.2)

for any ¢, 0<e<1.
Putting e=1/n and using some obvious estimates in (6.1) and (6.2) gives the
conclusion. [J

 In view of Lemma 6.1, it is sufficient to show that, with high probability,
I, possesses no connected component of size at most (1 +p,)N/4, i.e. that

lim I(n, 2, (1+5,) N/4)=0.

n—ow

Definition. For any 0<f<n, an f-face of C" is a maximal subset for which the
values of (n—f) coordinates are constant.

We now consider C"*! in order to derive a relationship between II(n+1,
n+1, 4k) and II(n, n, k) for large (but not too large) values of k.
~ We will denote the n-face of C"*! on which x;=i (i=0,1) by Cf;*'. Let
X;y=V,41 N Cii*'. Then we observe that X); is a random subset of the n-cube
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C7;**, and that for i=0, 1 these are independent of each other. This simple obser-
vation provides the main tool.

Consider a fixed value of j, and for convenience drop this subscript. We will
say a subset S, of X, is incident with a subset S; of X; if there exist x, € X;,
x; € Xy with {x,, X1} € Ay4y. Clearly if S,, S, are incident they lie in the same
connected component of I, 4.

We define a component of X, to be a component of the subgraph of I},
induced by X;. Let us call such a component of any X;; trivial if it has at most

n vertices, and large if it has at least K=[2*"""] vertices.

Lemma 6.2. The probability that, for any i, j there exists a large component in

X,y which is not incident with any non-trivial component of X,_; ; is less than
278,

Proof. We condition on X, i.e. we consider it fixed and use the inequality
X

<maxPr(4|X;;=X)
X .

for any event A. Again we will drop the suffix j temporarily and assume without
loss that i=0. Suppose that X, has a component S of size at least X. Since X;
is independent of X,, it is unconditioned. If § is incident with s vertices of X;,
then it follows that '

Pr(ssn’)s( fs)(l—p)"'"’

which, substituting for X and notmg that K <K"™, clearly implies that s>n®

with probability 1—o (27*%), say. However, from Lemma 5.4, with probability
at least 1—27""5, this implies that S is incident with a non-trivial component
of X;. Thus the probability that the Lemma fails is at most

27715 4 0(27#K) for this S, i, J. (6.3)

There are obviously less than 2" large componerits in Xp, and C"*! has only
2(n+ 1) n-faces. Thus (6.3) needs to be inflated by a factor of less than 2" x 2(n+1).
For large enough n this gives the conclusion. [J
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Now, if So, So are both components of Xy, we will say S, is bridged to Sy if
they are both incident to a connected component S; of Xj, for any such S,.
Clearly if S,, Sg are bridged, they lie in the same component of I, ,,.

Lemma 6.3. The probability that any large component (of any X,;) with less than
(1+p,)N/4 vertices is not bridged to a distinct non-trivial component is less than
27718 for large n. ‘

Proof. Let S be any such component of X, as in Lemma 6.2. Then K <|S|_

<(1+4p,)N/4. Thus, from Lemma 6.1, with probability at least l—e'z*",

|Xo—S|>(21p,~2)N/20~(1+p,) N/4>N/20.

Hence |S U By(S)|<N—|Xo—S|<N—N/20<N—K, where Bo(S) is the set of
neighbours of Sin Cg} *. Thus, from Lemma 2.4,

|BA(S)|=|Bo(S U Bo(S))|>2t """ K, say.

Now every vertex of B2(S) is clearly either

(i) a vertex of some other component of X, or
(ii) adjacent to a vertex of some other component of X,, or

(iii) an isolated non-vertex.

However, from Remark 5.5, with probability at least 1—27", there are less
than n* vertices of type (iii). Thus B3(S) has at least K, —n* vertices of types (i)

.. . n 2 . i .
and (ii). Now, since there are only 1+n+{ | )<n~ vertices within a distance at

most 2 from any given vertex, there are at least (K, —n*)/n? vertex-disjoint paths
of length 2 edges (or 3 vertices) to vertices of types (i) or (ii) in B3(S) from S.
Since a vertex of another component can be reached in at most one further step
from the terminal vertex of each such path, and each vertex has degree n in C°,
there are thus at least (K; —n*)/n®= K, vertex-disjoint paths of length at most 4
vertices into a distinct component of X,. Now the corresponding path exist in
X, with probability at least pip2>1/20, say, for large n. Thus the probability-

that no more than #° of these paths exist in X; is at most

(I: )(19120)"2‘"’=o<2'"’).
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Thus, using Lemma 5.4, the probability that the Lemma fails for S is at most
e 427" po (27" 4275, (6.4)

Again, as in Lemma 6.2, (6.4) needs to be inflated by a factor of at most (n+ 12"+t
to give the conclusion. O ‘ :

Before proving the main result of this section, we need one further Lemma.

Lemma 6.4. Any component of I, . with at most n+ 1 vertices is contained entirely

in some C,-"j“.

Preof. We prove a stronger statement which clearly implies the Le mma.

Claim. Any connected subgraph Y of I, ,, with at most k<n-+ 1 vertices is contained
entirely in some (k—1)-face of C"**.

Proof of Claim. By induction on k. It is obvious for k=1. For k>1, fix any
connected subgraph Y’ of Y with (k—1) vertices. By hypothesis this lies entirely
in some (k—2)-face F. All vertices of F agree on (n—k+3) “constant” coordina-
tes. We now add the excluded vertex, which is connected by an edge to Y’, and
hence is either in F or is joined to it by an edge of C,.;. Thus its coordinates
agree with those of F on all but at most one of the constant coordinates. Thus the
coordinates of all vertices in Y agree on at least (n—k+2) coordinates, which
gives the result. [] '

. We now prove the main result of this section. In order to avoid confusing the
flow of the argument with too many probability statements, we will write oy
implies (&) o, for two events oy, o if the implication holds on an event of prob-
ability at least 1—e¢. The whole argument then holds on an event of probability
at least (1— Xe¢), where the sum is over the values of & in all such implications
used. We will have to amend our notation slightly so that

H(”:klakzsp)
=Pr(TI, contains a connected component of size k,

ky<k<k,, assuming p,p.=p).
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The need for this amendment comes from
Lemma 6.5. If K(n)<k < (1 + p,)N/8, then

I(n+1,n+1,4k, t+c/(n+1))
62(n+1)17(n, n, k,%+0/(n+l))+2'"’/7'

Proof. Suppose I7,,, has a component S of size n+1<|S|<4k. Choose now
any sub-component (i.e. connected subset) of S with n+ 1 vertices, then by Lem-
ma 6.4 there exists 7, j such that Ci;** contains a connected sub-component of
S with at least n+1 vertices. We will assume that i=0. We wish to show that,
with high probability, either X, or X, contains a sub-component of S with size
in the range n to k inclusive. Let us call such a component of X, or X, a bad
component. Let So=S N X,. We have (n+1)<|So|. If |So|<k, then S, & a
bad component. Therefore assume |So|>k. If |So| <2k<(1+p,)N/4, then by
Lemma 6.3 this implies (27""/%) that S, is bridged to a non-trivial component
SoS S of Xo. Thus [Sp|>n+ 1. If |Sj| <k, then it is a bad component. Otherwise
[So|>k, so |So|+]Sp|>2k. Thus |X; A S|<2k. However, Lemma 6.2 implies
(27"%) that S, is incident with a non-trivial component S;<S of X;. Thus
|S1]=(n+1). If |Sy| <k, then it is a bad component. Otherwise |Sy|>k, and Lem-
ma 6.3 implies (27""/%) that it is bridged to a component S} =S with |Si]=@m+1).
Clearly |S7| <2k—|S,| <k, and hence S} is a bad component.

Otherwise, we must assume |So|>2k, then this again implies (27"%/%) that either
S; or S} is a bad component.

The above proof clearly holds on an event of probability at least 1 —5.2~"*/6
>1-27""1" for large n. On this event the existence of S implies the existence of a
bad component in some C,"j”, which has probability at most 2(n+ 1)I(n, n,
k, 3+c/(n+1)), since there are 2(n+1) such n-faces. [J

We can iterate the formula of Lemma 6.5. There is a technical point to check,

that for large n, k> K(n)=2*"""" implies 4k K(n-+1). This follows easily from
the fact that

V(n+1)lg(n+1)—vVnlgn—0 as n—»oo.

We only iterate as long as 4k <(1+7,)2""*, which is the maximum component
size we wish to consider in C"*?, ,

Thus, iterating r times (provided r is not too large), it follows that, using fairly
crude estimates, :
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O(n+r,n+r,4k, c/(n+r))
<2(n+r)(n,n,k,c/(n+ r)+27"8 6.5

Putting k=K(#) in (6.5) and noting from Corollary 5.3 that for large n» we have
H(n, n, K@), c/(n+r))<27"1%, it follows that II(n, n,n, cJ(n+r))+2""8 <27,
say. Also we may assume r<n, since we must have 4'K(n)<2"*"=|C"""|.

Thus the right side of (6.5) is bounded by (4n)"2™""/° <2™"/'° say. Therefore
we have

O(n+r,n+r, K@), 3+c/(n +r))<27w0, (6.6)
Now put r=r(n)=|n—2+1g(1+p,)—1g K(n)] to show that

H(n+r,n+r,1+p)2""72, 34c/(n+1)) 6.7

B 2
<2—n /10 .

We would like to replace (n+r) by m in (6.7) to obtain an inequality which is
valid for all large m. We are hampered by the fact that, for some m, there may
be no n such that m=n+r(n). Therefore let

p(m)=max {n+r(n): n+r(n)<m}.
Since (n+ D +r(n+1)—(n+r@)<2, we deduce that

p(m)=m—a(m) there a(m)=0 or 1.

Define w(m) by @(m)=w(m)+r(y(m)), and note that w(m)>g(m)/2. We thus
have from (6.7) that

I(p(m), o(m), (1+5,)2° ™7™, 3 +c/p(m))

<2-m2/50
=

for large m.
Applying Lemma 6.5 a(m)+ 1 times yields

O(m+1,m+1,(1+5)2", d+c/(m-+1)

<‘ 2-m/60
]

for large m.
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Finally, putting n=m+1 and dropping the fourth parameter
M(n,n,(1+p,)2""%)<27"/"° for lar ge n.
This, combined with Corollary 5.3 and Lemma 6.1, gives the theorem for the

case s=0. [J

7. General case: s>0

We shall use an induction on s based on the partition of C"** into two copies
of C", somewhat similarly to §6. We first note, however, that

Lemma 7.1. If s>1, then

Pr(r, has a vertex of degree at most s— =0(1/n) (7.1a)
Pr(rI, is not connected)=0(i/n). (7.1b)

Proof. The calculation in Theorem 3.1(a) gives (7.1a) — see the paragraph
following (3.1).

M(n,2,NJ2)<27"3 427170

follows from the calculations done for the case s=0, and so (7.1b) follows also.

O
Definition. A set S is a proper disconnector (PD) of a connected graph G if the
subgraph of G induced by V(G)-S is (a) not connected, and (b) contains no
isolated vertices.

Let now A(n, s)=Pr(I’, has a PD S with |S|=s). In view of Theorem 3.1(b)
we have only to prove

lim 4(n, s)=0 (7.2)

n=*cwo

in order to prove our theorem.
For a set SV, let I',/S denote the subgraph of I, induced by V,—S.

Lemma 7.2.

Pr (There exists a PD S, |S|=s, of I, such that
T,/S has a component Z, 2<|Z|<K(n))
<27,
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Proof. If we put
a(s, k)= Pr (There exists a pair S, Z as above, |Z]=k)
sHk(n)(f )(1 —pp®
<Hn)2™ ()+s (1) 2k e] (1.3)

The right hand side of (7.3) bounds the expected number of such pairs — H(n)
counts the number of Z’s, IZ bounds the number of S’s and (1 —p)* ¥~ bounds

the probability that Z is a component of I7,/S. )
For k>s+2, we proceed exactly as in Lemmas 5.1 and 5.2 to estimate
H(n)27* ™. This yields

a(s, k)=0(27%"3) for k=s+2.

For k<s+1, we see that if Z, S exist, then Z contains a pair of adjacent vertices
x, y for which

IN{x, yP|<s+k—2<2s

where for TS V,, N(T)={v € V,—T:v is adjacent in C" to some we T}.
But

Pr(There exist adjacent x, y such that [N ({x, y})| <2s)
2n-2 — n\28-2s

<tn(373)a-»

=0(n?*27").

We shall now use the relationship between C"*! and C” similarly to the proof
of Lemma 6.4. Let now

d(n,s, p)
=Pr(I’, has a PD S with [S|=s, and p,p,=p).
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Lemma 7.3.
s—1
4(n+1,s, p)< Z; 4(n,t, p)+0O(1/n) 7.9

where p=3+(3sInn+)jn and s>1.

Proof. We shall, somewhat loosely, refer to the subgraph induced by a subset
Y of ¥, by Y itself. This should not lead to any confusion, given the context.
Let X;=X, for i=0 or 1 as in §6.
Let D denote the event that I,,, contains a PD S with IS]=s. We note that

DcE, VEyUEg UE,VE, (7.5)

where

E, is the event that X, has minimum degree at most s— 1 for some i=0 or 1.
Eg; is the event: Sc X; but not E,, for i=0, 1, and D occurs.

E, is the event ;=S n X; is a PD of X, 0<|S|<s, for some i=0 or 1, then the
event D occurs but not E, or Ej, or Ej,. (Note that |S;|<s because of Eg,
\ and Eg,. Because of E,, S, N(x, D={yeX,: {x,y} € 4,})

E; is the event that D occurs and X,— S is connected for i=0, 1 and there are
no more than s vertices x € X, such that v(x) e X; and {x, v(x)} € 4p4,.
Here v(x) is obtained from x by changing its first coordinate.

We note first that Lemma 3.1(a) shows

Pr(E)=0(1/n) . ' (7.6)
and that
s—1
Pr(E)<2 ) 4(n,t,p), (E,=@fors=1). a7
t=1
Furthermore

PI(E5)<P1'(|{X €Xo: v(x)e X, {x,v(x)} EAnH}lSS)
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using Lemma 6.1 and the fact that, given Xop, X;, the edges joining X,, X;
are unconditioned. ’
Let us now consider the event Eg, (and hence by symmetry Ez,). We have

EpcSEf UE; VES VE] (7.9)
where

EY is the event that X; is not connected.

E% is the event that Eg, occurs, X, is ‘connected and S=N(x,0) and {x, v(x)}
€A, ,,, some x e Xo. (If S=N(x,0) and {x, ¥(x)} ¢ 4,41, then S=N({x})
and hence S is not a PD.)

E3 is the event that Ej, occurs, X; is connected and X,— S contains a compo-
nent of size k, 2<k<K(n).

E} is the event that Ej, occurs, X, is connected and X,— S contains a compo-
nent T of size k> K(n) such that {x,v(x)} ¢ Ays, forallxeT.

Now Lemma 7.1 gives'

Pr(E})=0(1/n). N ' (7.10)
Lémma 7.2 gives .

Pr(Eﬁ)sz‘*" - N (7.11)

and clearly

jp—
Pr(E}) <WV/K)(1—pf*<272 """ (7.12)
for n large.
Let us now consider the event Ey. We note that
EX<E3 VE: UE} - (7.13)

where

EZ is the event E,, D and X,— S contains an isolated vertex x’ different from the
x defining EJ.

Now [B({x}) n B({x'})| <2 for any x, x' € C", and thus, given E,, we have

[NGx, 0)UN(x', 0)|25—2 for x, %' €X,.
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Thus

Ef=0 forall s>3. ' (7.14)

We have now only to consider

Case I: s=1

Now EJ implies that X, contains two vertices x,‘x’ of degree 1 with d(x, x")=2.
Thus

Pr(E})an4(l—p)2"'4<2'.*" for large n. (7.15)

Case 2: s=2

In this case, E5 implies EJ, the event that Xo contains 2 vertices x, x” of degree
2 with d(x, x")=2. '

Now,
Pr(E;)<Nn®(1—p)¥" 6<% (7.16)
for n large. The Lemma now follows from (7.5) to (7.16). [

Theorem 1.1 now follows easily from Lemma 7.3, the case s=0and Theorem 3.1.
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