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Abstract

We consider a space of sparse Boolean matrices of size n × n, which have finite
co-rank over GF (2) with high probability. In particular, the probability such a matrix
has full rank, and is thus invertible, is a positive constant with value about 0.2574 for
large n.

The matrices arise as the vertex-edge incidence matrix of 1-out 3-uniform hyper-
graphs The result that the null space is finite, can be contrasted with results for the
usual models of sparse Boolean matrices, based on the vertex-edge incidence matrix of
random k-uniform hypergraphs. For this latter model, the expected co-rank is linear
in the number of vertices n, [4], [6].

For fields of higher order, the co-rank is typically Poisson distributed.

1 Introduction

For positive integers r ≥ 1, s ≥ 3, let M(s, r, n) be the space of n× rn matrices with entries
generated in the following manner. For each i = 1, ..., n there are r columns Ci,j, j = 1, ..., r.
Each column Ci,j has a unit entry in row i, and s−1 other unit entries, in rows chosen
randomly with replacement from [n], or without replacement from [n]−{i}, all other entries
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in the column being zero. In general we consider the arithmetic on entries in the matrix,
(and thus the evaluation of linear dependencies), to be over GF (2). If so, in the “with
replacement case”, if two unit entries coincide the entry is set to zero. When r = 1, the
matrix consists of an identity matrix plus s−1 random units in each column.

When s = 2, and entries are chosen without replacement, M is the vertex-edge incidence
matrix of the random graph Gr−out(n). This model of random graphs has been extensively
studied, and is known to be r-connected for r ≥ 2, Fenner and Frieze [7], to have a perfect
matching for r ≥ 2, Frieze [8], and to be Hamiltonian for r ≥ 3, Bohman and Frieze [3]. By
considering s ≥ 3 we are considering r-out, s-uniform hypergraphs. This is closer to a model
of random matrices considered in Cooper, Frieze and Pegden, [6], where the columns are
chosen independently from all columns with s ones. A more general paper by Coja-Oghlan
et al., [4], gives the limiting rank in this latter model for a wide range of assumptions on
the distribution of non-zero entries in the rows and columns. The fundamental difference
between the r-out model of random matrices, and those of [4], [6] is the presence of an n×n
identity matrix as a sub-matrix in the without replacement case.

Of particular interest is the case r = 1 which gives n×n Boolean matrices. We will show that
over GF (2), for r = 1, s = 3, the linear dependencies among the rows of M (dependencies
for short) are w.h.p. either small (bounded in expectation) or large (of size about n/2), and
the distributions of these dependencies are somewhat entangled. For r = 1, s = 3, define a
Poisson parameter φ for small dependencies. The value of φ differs marginally in summation
range between the “with replacement” φR, and “without replacement” models φR as follows:

φR =
∑
`≥1

1

`
(2e−2)`

`−1∑
j=0

`j

j!
, φR =

∑
`≥2

1

`
(2e−2)`

`−2∑
j=0

`j

j!
. (1)

The numeric values are φR ≈ 0.5215, and φR ≈ 0.1151, where a ≈ b means approximately
equal.

Let π be the probability distribution given by

π(k) =


∏∞

j=1

(
1−

(
1
2

)j)
k = 0.∏∞

j=k+1

(
1−( 1

2)
j
)

∏k
j=1

(
1−( 1

2)
j
) (1

2

)k2
k ≥ 1,

(2)

and define

P (σ, λ) =
φσ

σ!
e−φ

∑
`≥λ

π(λ)

(
`

λ

)(
1

2σ

)j (
1− 1

2σ

)`−λ
. (3)

Here as in the rest of the paper, σ indicates the dimension of the space induced by small
dependencies and λ indicates the dimension of the space induced by large dependencies.
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Theorem 1. Let M be chosen u.a.r. from M (3, 1, n). Let d ≥ 0, d = O(1) be integer. The
limiting probability that, over GF (2), the matrix M has co-rank d, is given by

lim
n→∞

P(co-rank(M) = d) =
d∑

σ=0

P (σ, d− σ). (4)

In particular,

P(rank(M) = n) ∼ P (0, 0) = e−φπ(0) = e−φ
∞∏
j=1

(
1−

(
1

2

)j)
.

Theorem 1 differs from previous results on sparse random Boolean matrices on several counts.
In particular, the co-rank (dimension of the null space) is finite, and the matrix is invertible
with probability e−φπ(0), where π(0) ≈ 0.2888. The problem can be seen as an instance of
the change in rank, if any, arising from small perturbations of the identity matrix.

The finite co-rank given in Theorem 1 can be contrasted with results for the edge-vertex
incidence matrix of random hypergraphs, ([4], [6]), where the expected co-rank is linear in
the number of vertices n, and the probability of a full rank matrix is exponentially small.

The joint distribution of co-rank given by (3) is a curious mixture of a Poisson with parameter
φ given in (1), and the distribution π(·) given in (2). This distribution was previously
observed for dense matrices in [10] (see below for a full definition). This mixture arises due
to a gap property in the size of the dependencies (small or large), which we next explain. The
negative correlation between the two types of dependency is characterized by the binomial.

Let x ∈ {0, 1}n be a dependency if xM = 0. Let |x| = | {j : xj = 1} |. We say that a set of
rows D ⊆ [n] is a dependency if D = {j : xj = 1} for some dependency x. An `-dependency
is one where |x| = ` or |D| = `. The following theorem summarises the type of dependency
we can expect:

Theorem 2. W.h.p. either (i) a dependency x is small i.e. |x| ≤ ω where ω → ∞ slowly
or (ii) x is large i.e. |x| = n/2 +O(

√
n log n).

This in itself is rather interesting. One does not expect to find this gap in the size of
dependencies x. Estimating the interaction between small and large dependencies is the
problem we solve. A dependency x is fundamental if there is no other dependency y 6= x such
that y ≤ x, componentwise. We will prove in Section 2 that the number Z of fundamental
small dependencies is asymptotically distributed as Po(φ) i.e. Poisson with mean φ.

Equation (4) arises from the fact that P (σ, λ) is the limiting probability that M that the
small dependencies span a space of dimension σ and the large dependencies span a space of
dimension λ.
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For the model of random matrices over GF (2) in which the entries mi,j are i.i.d Bernoulii
random variables with P(mi,j = 1) = p, the distribution of dimension d of the null space
is given by π(d) of (2) for a wide range of p. This result was obtained for p = 1/2 by
Kovalenko et al., [10], and extended to the range min(p(n), 1 − p(n)) ≥ (log n + c(n))/n,
(where c(n)→∞ slowly) by Cooper [5].

Finally we consider some other related cases. For r = 1 and s = 2, M has expected rank
∼ n− (log n)/2. This is because the expected number of components in a random mapping
is ∼ (1/2) log n, (see e.g., [9]). Note: For s even, the rows of M add to zero modulo 2. The
following theorem will be immediate from the proof of Theorem 1.

Theorem 3. If r ≥ 2 and s = 2, 3, then M has rank n∗ = n− 1{s=2}, w.h.p.

Results for other finite fields follow easily from the analysis over GF (2). We use the non-
standard notation GF (t) for a finite field of order t, rather than the usual GF (q); and for
brevity we consider only the ‘without replacement’ case. We consider three simple models
with u.a.r. entries from a distribution {fi} over the non-zero elements i of GF (t). Because
M has 3 entries in each column, there are more cases for GF (3).

Model 1: The field is GF (3), and all three non-zero entries in a column are 1.

Model 2: The diagonal entries are 1, and the two other non-zero entries in each column are
drawn u.a.r. from the distribution {fi}.

Model 3: All three non-zero entries in each column are drawn u.a.r. from the uniform dis-
tribution {fi}.

For Model 2, let γ = ft−1, α =
∑
fift−i−1. For Model 3, let γ =

∑
i fift−i, α =

∑
i+j+k=0 fifjfk.

Let φt be given by

φt =
∑
`≥2

1

`

(
2γe−2

)` `−2∑
i=0

`i

i!
. (5)

Theorem 4. The following asymptotic results hold over GF (t).

1. Model 1: If t = 3 the limiting probability that M has rank n− 1 is 1.

2. Models 2 and 3: If t ≥ 3 then provided α < 2γ ≤ 1,

P(rank(M) = n− d) ∼ φdt
d!
e−φt .
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In the simplest case where the entries are sampled uniformly from the non-zero elements of
GF (t), the theorem holds for either model with γ = 1/(t− 1).

Notation: Apart from O(·), o(·),Ω(·) as a function of n→∞, we use the notation An ∼ Bn

if limn→∞An/Bn = 1. The symbol a ≈ b indicates approximate numerical equality due e.g.,
to decimal truncation. The notation ω(n) describes a function tending to infinity as n→∞.
The expression with high probability (w.h.p.), means with probability 1 − o(1), where the
o(1) is a function of n, which tends to zero as n→∞.

Outline of the proof for GF (2) with r = 1, s = 3

Because the proofs are rather technical, we give a detailed proof in the “with replacement”
model, and indicate separately in Section 9 why these results are also valid in the “without
replacement” model. The difference in the range of summation indices for φR is explained
in detail in Section 9.2.

We refer to the rows of M as Mi, i ∈ [n] and to the columns as Cj, j ∈ [n]. By a set of rows
S, we mean the set of rows Mi, i ∈ S. A set of rows with indices L is linearly dependent
(zero-sum) if

∑
i∈LMi = 0(mod 2). A linear dependence L is small if |L| ≤ ω, where

ω = ω(n) is a function tending slowly to infinity with n. A linear dependence L is large
if |L| = (n/2)(1 + O(

√
log n/n)). As part of our proof, we show that w.h.p. there are no

other sizes of dependency. A set of zero-sum rows L is fundamental if L contains no smaller
zero-sum set and is disjoint from all other zero-sum sets. The zero-sum sets of size about
n/2 are not disjoint. We count k-sequences of large dependencies with a property we call
simple. Many of the problems with the proofs arise because the large dependencies are not
disjoint, and are conditioned by the simultaneous presence of small linear dependencies in
M .

We next outline the main steps in the proof of Theorem 1.

1. In Section 2 we prove that the number Z of small fundamental dependencies has
factorial moments E(Z)k ∼ φk, where φ is given by (1). Thus Z is asymptotically
Poisson distributed and

P
(
M has i small fundamental linear dependencies ∼ φi

i!
e−φ
)
.

2. For M ∈ M (3, 1, n) w.h.p. any fundamental sets of zero-sum rows of M are either
small (of size ` ≤ ω) or large (of size ` = (n/2)(1 + O(

√
log n/n))). This is proved in

Section 3.
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3. In Section 5 we discuss simple sequences of large dependencies, and in Section 6 we
estimate the moments of these sequences and determine their interaction with small
dependencies.

4. We estimate the number of simple sequences, conditional on the the number of small
fundamental dependencies. This leads to an approximate set of linear equations whose
solution completes the proof of Theorem 1.

2 Small linear dependencies in GF (2): with replace-

ment

Notation For 1 ≤ k ≤ ω, where ω → ∞ arbitrarily slowly with n, let Xk(M) or Yk(M)
denote the number of index sets of k-dependencies in M . A k-dependency is small if k ≤ ω
and we use Yk when k ≤ ω and use Xk when k ∼ n/2. We will show that for other values of
k, Xk = 0 w.h.p. We also use Zd, d ≤ ω to denote the number d of fundamental (minimal)
dependent sets among the rows of M .

We first consider dependencies with s = o(n1/2) rows. For L ⊆ [n], let F(S) denote the
event that the rows corresponding to S are dependent. Let Ys denote the number of s-set
dependencies.

Lemma 5. If |S| = s = o(n1/2) then

P(F(S)) ∼
(

2s

n

)s
e−s. (6)

If ω →∞, ω ≤ s = o(n1/2) then Ys = 0 w.h.p.

Proof. Suppose that s = o(n1/2) and S = [s]. Then,

P(F(S)) =

(
2
( s
n

)(n− s
n

))s(( s
n

)2

+

(
n− s
n

)2
)n−s

∼
(

2s

n

)s
e−2s, using s = o(

√
n). (7)

Explanation: 2
(
s
n

) (
n−s
n

)
is the probabilty that exactly one of the two random choices in

a column of S lies in a row of S.
(
s
n

)2
+
(
n−s
n

)2
is the probabilty that neither of the two

random choices in a column of [n] \ S lies in a row of S.
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This verifies (6). It follows that

E(Ys) ∼
(
n

s

)(
2s

n

)s
e−2s ∼ (2s)se−2s

s!
,

As EYs+1/E(Ys) ∼ 2/e we have that EYω = e−Ω(ω) and so w.h.p. there are no dependencies
with ω ≤ s = o(n1/2).

The next lemma deals with small fundamental dependencies. For S ⊆ [n], let F∗(S) denote
the event that the rows corresponding to S deprise a fundamental dependency. Let

κs =
(s− 1)!

ss
σs, (8)

where

σs =
s−1∑
j=0

sj

j!
.

Lemma 6. P(F∗(S) | F(S)) = κs.

Proof. The rows of the dependency S consist of an s×s sub-matrix MS,S and a zero (s×n−s)
sub-matrix. For i ∈ S, if Mi,i = 1, then wh.p. there is a unique entry Mj,i = 1 which gives
rise to an edge (i, j). If Mi,i = 0 we regard this as a loop (i, i). Thus MS,S is the incidence
matrix of a random functional digraph DS, and S is fundamental iff the underlying graph
of DS is connected. For s ≥ 1, P(DS is connected) = κs (see e.g., [1] or [9]).

We now prove

Lemma 7. Small fundamental dependent sets of M are pairwise disjoint, w.h.p.

Proof. Let S, T be two small fundamental zero-sum row sets with a non-trivial intersection
C = S ∩T and differences A = S\T , B = T\S, where A,B 6= ∅. As the functional digraphs
DS, DT are connected At least one column of A ∪ B must contain two random ones. The
probability of this is at most

2ω∑
k=2

(
n

k

)
k
(ω
n

)k−1
(
k

n

)2

= o(1). (9)

Given this lemma we can now prove
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Lemma 8. The number Z of small fundamental dependent sets among the rows of M is
asymptotically Poisson distributed with parameter φR, and thus

P(Z = d) ∼ φdR
d!
e−φR . (10)

Proof. Fix S ⊆ [n] and let S1, . . . , Sd be a partition of S with |Si| = si, i = 1, 2, . . . , d. Let
P (s1, . . . , sd) be the probability that each Si, i = 1, 2, . . . , d is a fundamental set, given that
S is a dependency. Thus,

P (s1, . . . , sd) =
(s1)s1 · · · (sd)sd

ss

∏
i=1,...,d

P(DSi connected) =
1

ss

d∏
i=1

(si − 1)!σsi .

Explanation: the factor (s1)s1 ···(sd)sd

ss
is the conditional probability that the random choices

for columns with index in Si are in rows with index in Si.

Thus, using (6), we see that

E(Z)d ∼
∑
s≥1

(2s)s

s!
e−2s

∑
s1+···+sd=s

(
s

s1, . . . , sd

)
P (s1, . . . , sd) (11)

=
∑
s≥1

∑
s1+...+sd=s

k∏
i=1

(2e−2)si
1

si
σsi

=

(∑
s≥1

1

s
(2e−2)sσs

)d

=φdR. (12)

Thus, by the method of moments, the number of small disjoint fundamental zero-sum sets
Z tends tend to a Poisson distribution with parameter φR.

3 Large zero-sum sets: First moment calculations

Define an index set Ja as follows,

Ja = {n/2−
√
an log n ≤ ` ≤ n/2 +

√
an log n} and Ja = [n] \ Ja, a ≥ 0. (13)

Lemma 9. (Large linearly dependent sets.) Let X` denote the number of `-dependencies
among the rows of M .

8



(i)
∑

`∈J1 EX` ∼ 1.

(ii) Let D = [n]\([ω]∪J1), where ω →∞ arbitrarily slowly with n. Then
∑

`∈D EX` = o(1).

Proof. From (7), the expected number of dependencies of size ` is

EX` =

(
n

`

)(
2

(
`

n

)(
n− `
n

))`((
`

n

)2

+

(
n− `
n

)2
)n−`

.

We next approximate the expression for EX`. We note the following expansion.

(1+x) log(1−x2)+(1−x) log(1+x2) = −2

(
x3 +

x4

2
+
x7

3
+
∑
k≥4

1{k even}
x2k

k

(
1 +

kx3

k + 1

))
.

(14)
We write EX` =

(
n
`

)
Φn
` , ` = (n/2)(1 + ε), where

Φ` =

(
1− ε2

2

) (1+ε)
2

((
1 + ε

2

)2

+

(
1− ε

2

)2
) (1−ε)

2

=
1

2
(1− ε2)

(1+ε)
2 (1 + ε2)

(1−ε)
2

=
1

2
exp

{
1

2

(
(1 + ε) log(1− ε2) + (1− ε) log(1 + ε2)

)}
=

1

2
exp

{
−

(
ε3 +

ε4

2
+
ε7

3
+
∑
k≥4

1{k even}ε
2k

(
1

k
+

ε3

k + 1

))}

=
1

2
exp

{
−
(
ε3 +

ε4

2
+ ε7

)}
, (15)

where |ε7| ≤ 2|ε|7/3 for sufficiently small ε.

Also for ` = (n/2)(1 + ε), |ε| < 1,(
n

`

)
=

(
1 +O

(
1

n

))
2n√

2πn(1− ε2)
exp

(
−n
(
ε2

2
+
ε4

12
+ ε6

))
, (16)

where |ε6| ≤ |ε|6/10.

Case 1: ` ∈ J1 . From (16) with |ε| = 2
√

(log n)/n we have

1

2n

∑
`/∈J1

(
n

`

)
= O(1/n5/2),
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so that
1

2n

∑
`∈J1

(
n

`

)
= 1−O(1/n5/2).

Using (15), for ` ∈ J1, Φ`
n = eΘ(nε3)/2n. Then, as nε3 = O(log3/2 n/

√
n),∑

`∈J1

EX` =
∑
`∈J1

(
n

`

)
1

2n
eΘ(nε3) = 1 + o(1).

For future reference, we note that for |ε| < c < 1,

EX` =

(
n

`

)
1

2n
exp

{
−n
(
ε3 +

ε4

2
+ ε7

)}
=

(1 + o(1))√
2πn(1− ε2)

exp

{
−n
(
ε2

2
+ ε3 +

ε4

2
+
ε4

12
+ ε6 + ε7

)}
=

(1 + o(1))√
2πn(1− ε2)

exp

{
−nε

2

2

(
(1 + ε)2 +

ε2

6
+ ε6 + ε7

)}
. (17)

Case 2: ` ∈ D. Write D = [n]\([ω]∪J1) as D = D1∪D2∪D3 where D1 = {ω, . . . , 3n/10},
D2 = {7n/10, . . . , n} and D3 = D \ (D1 ∪ D2). Thus, for ` ∈ D3, ` = (n/2)(1 + ε) where
−2/5 ≤ ε ≤ −

√
(2 log n)/n or

√
(2 log n)/n ≤ ε ≤ 2/5.

Case ` ∈ D1. For sufficiently large n, Stirling’s approximation implies that(
n

`

)
≤ nn

``(n− `)n−`
,

so for some constant C (in both with and without replacement models)

EX` ≤
Cnn

``(n− `)n−`

(
2

(
`

n

)(
n− `
n

))`((
`

n

)2

+

(
n− `
n

)2
)n−`

. (18)

Continuing with this expression, using ` = λn for λ < 1/2,

EX` ≤C
(

2λ

λλ(1− λ)1−λλ
λ(1− λ)λ(λ2 + (1− λ)2)1−λ

)n
=C

(
2λ(1− λ)λ

(
1− λ+

λ2

1− λ

)1−λ
)n

≤C
(

2λ(1− λ)λe−λ(1−λ)+λ2
)n

=C
(
2(1− λ)e−1+2λ

)λn
=C[g(λ)]λn.
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The function g(λ) is strictly concave and has a unique maximum at λ = 1/2 with g(1/2) = 1.
For λ ≤ 3/10, g(λ) ≤ g(3/10) = (7/5)e−2/5 < 1 so that∑

`∈D1

EX` ≤ C
∑
`∈D1

g(3/10)` = o(1).

Case ` ∈ D2. Referring to (17), the function h(ε) = (ε2/2)((1 + ε)2 + ε2/6 + ε6 + ε7) satisfies
h(ε) > 2/25 for ε ≥ 2/5, and so∑

`∈D2

EX` ≤
∑
`∈D2

e−Ω(n) = o(1).

Case ` ∈ D3. For
√

(2 log n)/n ≤ |ε| ≤
√

(25 log n)/n, the function h(ε) ≥ (1−o(1))(log n)/n.
Let D3a be the values of ` in this range∑

`∈D3a

EX` = O(
√
n log n)/n1−o(1)) = o(1/n1/3).

Let D3b = D3\D3a. Then ε2/2 ≥ (25/2)(log n)/n, and (1 + ε)2 + ε2/6 + ε6 + ε7 > 9/25.
Referring to (17), ∑

`∈D3b

EX` = O(n)/n4 = o(1/n3).

4 Higher moments of large zero-sum sets: Background

Let A∆B denote the symmetric set difference (A ∪ B) \ (A ∩ B) of the sets A and B.
Suppose that, over GF (2), the rows M [i], i ∈ A indexed by A are zero-sum, thus zA =∑

i∈AM [i] = 0. Let B be another set such that zB = 0. We can write zA = zA\B + zA∩B
and zB = zB\A + zA∩B. Adding these two sets of rows modulo 2 has the effect of canceling
the intersection A ∩ B. Thus (i) zA + zB = 0, whether zA∩B is itself zero-sum or not; and
(ii) zA + zB = zA∆B.

Recall that a set of zero-sum rows is fundamental if it contains no smaller zero-sum set of
rows. For small sets we were able to count fundamental dependencies directly. We have to
adopt an alternative strategy for large zero-sum sets. We use an approach similar to the one
given in [5]. We count simple sequences of large linearly dependent row sets B = (B1, ..., Bk),
k ≥ 1 constant, and where |Bi| ∈ J1 so that |Bi| ∼ n/2. A k-tuple of large dependent sets
B = (B1, ..., Bk) is simple, if for all sequences (j1 < j2 < ... < jl) and (1 ≤ l ≤ k) the set
differences satisfy

|Bj1∆Bj2∆ · · ·∆Bjl | ∈ J1 (19)
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For any given matrix M there is a largest k such that B1, ..., Bk are simple. In which case,
we say k is maximal and B1, ..., Bk is a maximal simple sequence.

Let V (M) = {∅} ∪ {B : B is zero-sum in M}, then (V (M),∆) is a vector space over GF 2

under the convention that 0 · B = ∅, 1 · B = B. In V (M) a simple sequence (B1, ..., Bk) is
an ordered basis for a subspace S of dimension k.

Given k = O(1) linearly dependent sets of rows with index sets B1, · · · , Bk, there are 2k

intersections of these sets and their complements. For each x = (x1, · · · , xk), x ∈ {0, 1}k
we let Ix = ∩i=1,...,kB

(xi)
i where B

(0)
i = Bi = [n] \ Bi and B

(1)
i = Bi. The index sets Ix are

disjoint by definition and their union (including x0 = (0, · · · , 0)) is [n].

Next let B(x) = ∆i:xi=1Bi for x ∈ {0, 1}k. Let K = 2k − 1. Define a K × K matrix
U = U [x, y], x, y ∈ {0, 1}k, x,y 6= 0, by U(x,y) = 1 iff Iy ⊆ B(x).

Row index x =(x1, x2, . . . , xk) is the indicator vector for B(x) = ∆i:xi=1Bi,

Column index y =(y1, y2, . . . , yk) is the indicator vector for Iy =
⋂

i=1,...,k

B
(yi)
i ,

Thus B(x) is the union of the sets Iy where yi = 1 for an odd number of the given sets Bi

such that xi = 1. This follows inductively by generating B1, B1∆B2, (B1∆B2)∆B3 etc in
the given order. It follows that U(x,y) = 1 iff xi = yi = 1 for an odd number of indices i,
and thus, over GF (2),

U(x,y) =
k∑
i=1

xiyi. (20)

Our aim is to use U , treated as a real matrix to show that w.h.p. |Ix| ∼ n/2k for every
x. We do this by observing that given the characterisation U(x,y) = 1Iy⊆B(x), the vector

(|Ix|, x ∈ {0, 1}k , x 6= 0 is the solution z over the reals of an equation

Uz = b where b ∼ n

2
1, (21)

assuming that B = (B1, ..., Bk) is simple. To prove that |Ix| ∼ n/2k, we prove the properties
of U listed in Lemma 10 below.

Equation (20) implies that by arranging the rows and column indices of U in the same
order, U will be symmetric. We will choose an ordering such the first k rows and columns
correspond to xi = ei, i = 1, 2, . . . , k where e1 = (1, 0, . . . , 0) etc. After this we let Q be the
k × K matrix with column indices x made up of the first k rows. Thus row i represents
Bi, i = 1, ..., k and U contains a k × k identity matrix in the first k rows and columns.

The row indexed by x = (x1, ..., xk) is the linear combination
∑k

i=1 xiri of the rows of Q,
and corresponds to B(x) in the vector space V (M) given above.

12



Lemma 10. The K ×K matrix U has the following properties:

(i) The matrix U symmetric.

(ii) Every row or column of U has 2k−1 non-zero entries.

(iii) Any two distinct rows of U have 2k−2 common non-zero entries.

(iv) The matrix U is non-singular when the entries are taken to be over the real numbers,
and the matrix S = UU> = U2 = 2k−2(I + J) is symmetric, with inverse S−1 =
(1/2k−2)(I − J/2k); where J is the all-ones matrix.

Proof. (i) This follows immediately from (20), and the above construction.

(ii) Fix x and assume that x1 = 1. There are 2k−1 choices for the values of yi, i = 2, 3, . . . , k.
Having made such a choice, there are two choices for y1, exactly one of which will give∑k

i=1 xiyi = 1.

(iii) Fix x,x′ and think of rows x,x′,x + x′ as non-empty subsets of [2k]. Then we have
|x| = |x′| = |x\x′|+ |x′\x| = 2k−1, by (iii). Thus |x|+ |x′|−(|x\x|+ |x′\x|) = 2|x∩x′| =
2k−1.

(iv) That the matrix U is non-singular over the real numbers, uses an argument given in
[2] (pages 11-13). Let S = UU>. Let u,v be distinct rows of U , then u · u = 2k−1 and
u · v = 2k−2. Thus S = 2k−2(I + J), where J is the all-ones matrix. The reader can check
that S−1 = 1

2k−2 (I − 1
2k
J) 2k−1 which implies that U is invertible too.

The definition of a simple k-tuple (B1, ..., Bk) requires that all sets Bi be large and their set
differences to be distinct and of size ∼ n/2. Let (|B1|, . . . , |Bk|) ∼ (n/2)1 be the vector of
these set sizes. Over the reals, solving (21) gives the sizes of the subsets Ix.

Lemma 11. Let (B1, ..., Bk) be a simple sequence. Then for all x ∈ {0, 1}k,

|Ix| =
n

2k

(
1± 2k

√
log n

n

)
. (22)

Proof. Let i = 1, ..., K index the rows of U and let B(x) be the set corresponding to the row
x of U . Let Ux = b where bx = 2|B(x)|/n = 1 + εi, where |εi| ≤ 2

√
log n/n. The matrix

S = U2, so Sx = Ub = c where ci = 2k−1(1 + δx) where δx =
∑
εj/2

k−1, the summation
being over a 2k−1-subset of rows x of U . Thus, as J is K ×K where K = 2k − 1,

x = S−1c =
1

2k−2

(
I − 1

2k
J

)
2k−1(1 + δ) =

1

2k−1
1 + η,

13



where |η| ≤ 2k
√

log n/n. It follows that w.h.p. the solution to (21) satisfies |Ix| = (n/2k)(1±
2k
√

log n/n) for all x ∈ {0, 1}k.
Remark 12. The proof of Lemma 11 implies that if we have a K ×K matrix in which (ii),
(iii) of Lemma 10 are satisfied asymptotically, then

5 Simple sequences of large zero-sum sets.

Let B1, B2, . . . , Bk be a simple sequence. In row Mi of the matrix M , there is a 1 in the
diagonal entry Mi,i. As s = 3 there needs to be two (random) 1’s in column Ci chosen in
a way to ensure the linear dependence of B1, . . . , Bk. The following lemma describes where
these non-zeros must be placed.

Lemma 13. B1, · · · , Bk are dependencies if and only if the following holds for all i ∈ [n]:
suppose that i ∈ Ix, x = (x1, ..., xk). Suppose that the two random non-zeros e1(i), e2(i) in
column i are in Iu, Iv respectively. Then we must have x = u+ v(mod 2).

Proof. Consider 1 ≤ m ≤ k. If xm = 0 then i /∈ Bm and so either none or both of j, j′ are in
Bm, and so zero or two unit entries in this column are in Bm. We must therefore have either
um = vm = 0 or um = vm = 1 and xm = um + vm. If xm = 1 then exactly one of e1(i), e2(i)
are in Bm and so um = 1, vm = 0, or vice versa. Thus in all cases xm = um + vm.

The main result of this section is the following.

Lemma 14. Let k ≥ 1 be a positive integer, and let Xk count the number of simple k-
sequences of large dependencies. Then E(Xk) ∼ 1.

Proof. We have to estimate the expected number of simple sequences (B1, ..., Bk) of large de-
pendencies. By (22) of Lemma 11 the index sets Ix have size |Ix| = (n/2k)(1+O(

√
log n/n)).

Let K = 2k − 1 as above, and let

Ω =

{
h = (h0, h1, ..., hK) : hi satisfies (22),

K∑
i=0

hi ∈ J1

}
.

Then we define Φ(h, k) by

E(Xk) =
∑
h∈Ω

(
n

h0, h1, . . . , hK

)∏
x6=0

2
∑
{u,v}

u+v=x

hu
n

hv
n


hx (∑

u

(
hu
n

)2
)h0

(23)

=
∑
h∈Ω

(
n

h0, h1, . . . , hK

)
Φ(h, k). (24)

14



Explanation of (23). Let hx = |Ix|. The multinomial coefficient
(

n
h0,h1,...,hK

)
counts the

number of choices for the subsets Ix. In the product, in order for B1, ..., Bk to be zero-sum,
for x 6= 0 we need to cancel the diagonal entries Mj,j = 1 of j ∈ Ix within the columns
indexed by Ix. This is achieved by putting one entry in rows Iu and one in rows Iv where
u+ v = x. The last factor counts the choices for the entries of columns indexed by I0 over
the row index sets Iu, either zero or two in an index set, in order to preserve the zero-sum
property.

Set hx = (n/2k)(1 + εx) where |εx| = O(
√

log n/n). We note that
∑

x εx = 0, implies that∑
x

hxεx =
n

2k

∑
x

(εx + ε2
x) =

n

2k

∑
x

ε2
x and

∑
x

hxε
2
x =

n

2k

∑
x

ε2
x +O

(
log3/2 n

n1/2

)
.

And then Stirling’s approximation implies that(
n

h0, h1, . . . , hK

)
∼ nn

√
2πn∏

x∈{0,1}k((n/2
k)(1 + εx))hx(

√
2πn/2k)2k

= 2kn exp

−
K∑

x∈{0,1}k
hx

(
εx −

ε2
x

2

)
+O(log n)


= 2kn exp

− n

2k+1

K∑
x∈{0,1}k

ε2
x +O(log n)

 = 2knnO(1).

In addition, by considering random 2k-colorings of [n] we see from the Chernoff bounds that∑
h∈Ω

(
n

h0, h1, . . . , hK

)
= 2kn(1−O(n−2k/3)). (25)

With respect to (23), using
∑

x εx = 0, we see that ∑
u∈{0,1}k

(
hu
n

)2
h0

=

(∑
u

1

22k
(1 + 2εu + ε2

u)

)h0

=

(
1

2k

)h0 (
1 +

1

2k

∑
u

ε2
u

)h0

=

(
1

2k

)h0
exp

{
n

2k
(1 + ε0) log

(
1 +

∑
u

ε2
u

2k

)}

=

(
1

2k

)h0
exp

{
n

22k

∑
u

ε2
u +O

(
log3/2 n

n1/2

)}
. (26)
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If x 6= 0 then each index z occurs exactly once in
∑

{u,v}
u+v=x

(εu+εv) and so
∑

{u,v}
u+v=x

(εu+εv) =∑
z εz = 0. Therefore,2

∑
{u,v}

u+v=x

hu
n

hv
n


hx

=

2
∑
{u,v}

u+v=x

1

22k
(1 + εu + εv + εuεv)


hx

=

(
1

2k

)hx1 +
1

2k

∑
{u,v}

u+v=x

2εuεv


hx

=

(
1

2k

)hx
exp

 n

2k
(1 + εx) log

1 + 2
∑
{u,v}

u+v=x

εuεv
2k




=

(
1

2k

)hx
exp

 n

2k

∑
{u,v}

u+v=x

2εuεv
2k

+O

(
log3/2 n

n1/2

) .

Note that
Λ =

∑
x6=0

∑
{u,v}

u+v=x

2εuεv =
∑
u

εu
∑
x+u
x6=0

εx+u =
∑
u

εu
∑
v 6=u

εv,

gives

Λ +
∑
u

ε2
u =

(∑
u

εu

)2

= 0.

Thus using
∑

x hx = n,

Φ(h, k) =

(
1

2k

)∑
x hx

exp

 n

22k

∑
u

ε2
u +

∑
x6=0

∑
{u,v}

u+v=x

2εuεv

+O

(
log3/2 n

n1/2

)
=

1

2kn
eO(log3/2 n/

√
n). (27)

It follows from (24), (25) and (27) above that

E(Xk) = 1 +O

(
log3/2 n√

n

)
= 1 + o(1). (28)
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6 Conditional expected number of small zero-sum sets

Let (B1, . . . , Bk) be a fixed sequence of subsets of [n] with |Bi| ∈ J1 for i = 1, 2, . . . , k ≤ ω.
Let B be the event

B = {(B1, ...Bk) is a simple sequence of large row dependencies} . (29)

We need to understand the conditioning imposed by this event B. Suppose that |Ix| = hx ∼
n/2k for x ∈ {0, 1}k.

Lemma 15. Given B and i ∈ Ix, the distribution of the row indices k, ` of the other two
non-zeros in column i is as follows: if x 6= 0 then choose u,v such that x = u + v mod 2
with probability

p(u,v) =
2huhv∑

y+z=x hyhz
,

and then randomly choose k ∈ Iu, ` ∈ Iv. If x = 0 then choose u with probability

p(u,u) =
h2
u∑

y∈{0,1}k h
2
y

,

and then randomly choose k, ` ∈ Iu.

Proof. This follows from the fact that the non-zeros in each column are independently chosen
with replacement and from the condition given in Lemma 13.

Let (Sj, sj = |Sj| ≤ ω, j = 1, 2, . . . , ` ≤ ω) be a sequence of pairwise disjoint small subsets

of [n] and S =
⋃`
j=1 Sj and s = |S|. We define the events

Sj = {Sj is a small zero-sum row set} for j = 1, 2, . . . , ` and S =
⋂̀
j=1

Sj.

S∗j = {Sj is a small fundamental zero-sum row set} for j = 1, 2, . . . , ` and S∗ =
⋂̀
j=1

S∗j .

Lemma 16.
P(S∗ | B) ∼ P(S∗). (30)

Proof. Let Ix, x ∈ {0, 1}k, be as defined in Section 4. Let Sx = S ∩ Ix and Jj,x = Sj ∩ Ix
and `j,x = |Jj,x| for i = 1, 2, . . . ,m and Jx =

⋃m
j=1 Jj,x and `x = |Jx|. Let J0 = I0 \ S

and `0 = |S0|. We now consider the probability that column i is consistent with S. We let
hx = |Ix| and sx = |Sx| for x ∈ {0, 1}k.

17



Case 1: i ∈ I0\J0. For each column i ∈ I0\J0, the task here is to estimate the probability
that the two non-zeros e1(i), e2(i) are in rows consistent with the occurrence of S. Because
i ∈ I0 and B occurs, we know from Lemma 13 that e1(i), e2(i) ∈ Iu for some u ∈ {0, 1}k.
For S to occur, we require that zero or two of e1(i), e2(i) fall in Ju, an event of conditional
probability (1− su/hu)2 + (su/hu)2.

Let Eu denote the number of non-zero pairs from I0 \ J0 falling in Ju. Then the conditional
probability that the non-zeros of I0 \ S0 are consistent with S is given by

P(I0 \ S0 is consistent S | B) = E

∏
u

(
1− 2

su
hu

+ 2

(
su
hu

)2
)Eu

 (31)

Given B, we see that Eu is distributed as Bin(h0 − s0, p(u,u)), and has expectation

E(Eu) = (h0 − s0)
h2
u

h2
0 + h2

1 + · · ·+ (h2k−1)2
∼ h0

2k
.

The Chernoff bounds imply that Eu is concentrated around its mean (h0− s0)p(u,u) ∼ N
2k

,
where N = n/2k. Thus,∣∣∣∣Eu −

h0
2k

∣∣∣∣ ≤ n2/3 with probability at least 1− e−Ω(n1/3). (32)

Going back to (31) and using (32) we have

P(I0 \ S0 is consistent with the occurrence of S | B) ∼∏
u

(
1− 2su

N

)N/2k
∼ exp

{
−2
∑
u

su
2k

}
= e−s/2

k−1

. (33)

Case 2: i ∈ Ix \ Jx, x 6= 0. Given B, and i ∈ Ix, suppose that the non-zeros e1(i), e2(i)
of column i lie in Iu, Ix+u respectively, u ∈ {0, 1}k. The probability of this is p(u,x + u).
The number Ex(u,x+ u) of such pairs of non-zeros in Iu, Ix+u has distribution Bin((hx −
sx)p(u,x+ u)), and expectation asymptotic to (hx − sx)/2k−1.

The rows of S1, . . . , S` have to be zero-sum in this column, so either exactly one non-zero
falls in each of Sj,u, Sj,x+u for some 1 ≤ j ≤ ` or exactly one non-zero falls in each of

18



Iu \ Su, Ix+u \ Sx+u. The probability of this is

P (u,x+ u) =E

(∑̀
j=1

sj,u
hu

sj,x+u

hx+u

+
hu − su
hu

hx+u − sx+u

hx+u

)Ex(u,x+u)


∼

(∑̀
j=1

sj,usj,x+u

N2
+
N − su
N

N − sx+u

N

)(N−sx)/2k−1

∼ e−(su+sx+u)/2k−1

.

For a given x there are 2k−1 unordered pairs Su, Sx+u, so

P(Ix \ Sx is consistent with S) ∼ exp

− 1

2k−1

∑
{u,x+u}

(su + sx+u)

 = e−s/2
k−1

. (34)

(In the sum in (34) su + sx+u and sx+u + su contribute as one term.) Thus

P(Ix \ Sx is consistent with S,∀x 6= 0) ∼ e−(2k−1)s/2k−1

. (35)

Case 3: i ∈ Sj,x ⊆ Ix, x 6= 0. For i ∈ Sj,x, one non-zero needs to be in Sj, and the
other to avoid Sj. Let v = x + u. Suppose that the pair e1(i), e2(i) fall in Iu, Iu+x. The
probability this happens is

Pj(u,v) ∼ 1

2k−1

(
sj,u
hu

hv − sj,v
hv

+
sj,v
hv

hu − sj,u
hu

)
. (36)

The events {u,x+ u} are disjoint and exhaustive, so for a given i ∈ Sj,x the probability
p(i, j) of success (i.e. the Sj-indexed rows of column i sum to zero) is

p(i, j) =
∑

{u,u+x}

Pj(u,u+ x) ∼ 1

2k−1

∑
u,v=x+u

(
sj,u
N

N − sj,v
N

+
sj,v
N

N − sj,u
N

)
∼ sj
N2k−1

(
1 +O

( ω
N

))
. (37)

Every column of Sj,x has to succeed or Sj is not a small zero-sum set. Thus

P(Sx succeeds) ∼
(
sj(1 +O(s/N))

N2k−1

)sj,x
.

As
∑
sj,x = sj,

P(Sx succeeds ∀x) ∼
( sj
N2k−1

)sj−sj,0
. (38)
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Case 4: i ∈ Sj,0 ⊆ Ij,0. In the case that x = 0, and Sj,0 ⊆ Ij,0, the non-zeros in a column
of Sj,0 must both fall in the same index set Iu; one in Sj,u and one in Iu \Sj,u. Thus P (u,u)
is now summed over all Iu, a total of 2k such sets. For i ∈ Sj,0, the probability p(i) of success
is

p(i) =
∑
{u,u}

P (u,u) ∼ 1

2k

∑
u

(
2
sj,u
N

N − sj,u
N

)
∼ sj
N2k−1

(
1 +O

( ω
N

))
.

The final term is the same as in (37), and we obtain

P(Sj,0 succeeds) ∼
( sj
N2k−1

)sj,0
(39)

Using (33), (35), (38) and (39), we obtain

P(S | B) ∼
m∏
j=1

( sj
N2k−1

)sj
e−(2k−1)s/2k−1

e−s/2
k−1

=
m∏
j=1

(
2sj
n

)sj
e−2s, (40)

after using (7). This completes the proof of P(S | B) ∼ P(S). To replace S by S∗ we just
need to let Kj, j = 1, 2, . . . ,m denote the set of i in Case 3 where i ∈ Sj,x. We see from (36)
that the positions of the non-zeros in the columns Kj are asymptotically uniform over Sj.
This is because each k ∈ Jj,u is chosen with probability asymptotic to 1

sj,u
· sj,u
hu

and similarly

for k ∈ Jj,x+u. In which case, the conditional probability that Sj is fundamental is obtained
by multiplying by κsj . This completes the proof of the lemma.

We can now use inclusion-exclusion to prove

Lemma 17. Let Σσ be the event that there are exactly σ disjoint small fundamental depen-
dencies. Then,

P(Σσ | B) ∼ φσRe
−φR

σ!
∼ P(Σσ).

Proof. Let

T` =
1

`!

∑
1≤s1,...,s`≤ω

∑
|Si|=si,i=1,...,`

P

(⋂̀
i=1

S∗i
∣∣∣∣B
)
∼ 1

`!

∑
1≤s1,...,s`≤ω

∑
|Si|=si,i=1,...,`

P

(⋂̀
i=1

S∗i

)
∼

1

`!

∑
1≤s1,...,s`≤ω

(
n

s1, . . . , s`

)∏̀
i=1

(
2si
n

)si
e−2siκsi ∼

1

`!

∑
1≤s1,...,s`≤ω

∏̀
i=1

(2si)
si

si!
e−2siκsi

∼ 1

`!

(
∞∑
s=1

(2e−2)s

s
σs

)`

∼ φ`R
`!
.
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The first approximation follows from Lemma 16 and the second from (7), (8).

Using Inclusion-Exclusion, we have

P(Σσ | B) =
∑
`≥σ

(−1)k−σ
(
`

σ

)
T` ∼

∑
`≥σ

(−1)`−σ
(
`

σ

)
φ`R
`!

=
φσRe

−φR

σ!
.

Lemma 10 gives us the unconditional probability.

Let Xk count the number of simple k-sequences as in Lemma 14.

Lemma 18. If σ = O(1) then E(Xk | Σσ) ∼ 1.

Proof.

E(Xk | Σσ) =
∑

B=(B1,...,Bk)

P(B | Σσ)

=
∑

B=(B1,...,Bk)

P(Σσ | B)P(B)

P(Σσ)

=
∑

B=(B1,...,Bk)

P(B)

P(Σσ)

∑
`≥σ

(−1)`−σ
(
k

σ

)
T`

=
∑

B=(B1,...,Bk)

P(B)

P(Σσ)

∑
`≥σ

(−1)`−σ
(
k

σ

)
1

`!

∑
1≤s1,...,s`≤ω

∑
|Si|=si,i=1,...,`

P

(⋂̀
i=1

S∗i
∣∣∣∣B
)

∼
∑

B=(B1,...,Bk)

P(B)

P(Σσ)

∑
`≥σ

(−1)`−σ
(
k

σ

)
1

`!

∑
1≤s1,...,s`≤ω

∑
|Si|=si,i=1,...,`

P

(⋂̀
i=1

S∗i

)

∼
∑

B=(B1,...,Bk)

P(B)

P(Σσ)
P(Σσ)

= E(Xk) ∼ 1.
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7 Joint distribution of small and large dependencies

7.1 Pn(0, d): the case of no small fundamental dependencies.

Let Pn(0, d) be the probability that M ∈M (n) has no small fundamental dependencies and
the maximum number of large simple dependencies is d. Let π(d) be given by (2). The
purpose of this section is to prove the following.

Pn(0, d) ∼ π(d) e−φ. (41)

Let V be the vector space generated by the dependencies. Let Lλ be the event that the
dimension of V is λ. Let

p(0, λ) = P(Σ0 ∧ Lλ) and p(0) = P(Σ0).

Lemma 19. For 0 ≤ λ = O(1), p(0, λ) ∼ P (0, λ) where P (0, λ) = π(λ) e−φ.

Proof. For 0 ≤ k = O(1), we have from Lemma 18 that

1 ∼ E(Xk | Σ0) =
∑
λ≥k

E(Xk | Σ0 ∧ Lλ)p(λ | 0), (42)

where p(λ | 0) = p(0, λ)/p(0). Let H be the event that there exists a set of dependent rows
H where ω ≤ |H| /∈ J1. Then we have

E(Xk | Σ0 ∧ Lλ) = E(Xk | Σ0,∧Lλ ∧ ¬H)P(¬H) + E(Xk | Σ0 ∧ Lλ ∧H)P(H)

∼
k−1∏
i=0

(2λ − 2i). (43)

Justification for (43): Given Σ0∧Lλ∧¬H there are 2λ vectors in V . Choosing i members
of a simple sequence generates a subspace of dimension i, and we eliminate 2i vectors from
consideration as the next member of the sequence. Given ¬H the number of simple sequences
is given by the RHS of (43). Equation (43) then follows from P(H) = o(1).

It follows from (43) that for λ ≥ 0,

1 ∼
∞∑
λ=k

p(0, λ)

p(0)

k−1∏
i=0

(2λ − 2i). (44)

The asymptotic solution of (44) is given by the following lemma.

22



Lemma 20. For λ ≥ 0, the solutions to

1 =
∞∑
λ=k

qλ

k−1∏
i=0

(2λ − 2i), k ≥ 0. (45)

are given by qλ = π(λ) of (2).

Proof. Gaussian coefficients are defined as[
λ

k

]
z

=

∏k
i=1(zλ−i+1 − 1)∏k

i=1(zi − 1)
. (46)

Using (46) with z = 2, equation (45) can be rewritten as

1 = 2(k2)
k∏
i=1

(2i − 1)
∞∑
λ=k

qλ

[
λ

k

]
2

. (47)

Put ψk = 1/
(

2(k2)
∏k

i=1(2i − 1)
)

, we see that qλ is the solution to

∞∑
λ=k

[
λ

k

]
2

qλ = ψk, k ≥ 0. (48)

Fix δ ≥ 0, multiply equation k ≥ δ in (48) by (−1)k−δ2(k−δ2 )[k
δ

]
2
, and sum these equations

over k ≥ δ. This gives

∞∑
k=δ

(−1)k−δ2(k−δ2 )
[
k

δ

]
2

ψk =
∞∑
k=δ

∞∑
λ=k

(−1)k−δ
[
k

δ

]
2

2(k−δ2 )
[
λ

k

]
2

qλ (49)

=
∞∑
k=δ

∞∑
λ=k

(−1)k−δ
[
λ− δ
k − δ

]
2

2(k−δ2 )
[
λ

δ

]
2

qλ

=
∞∑
λ=δ

[
λ

δ

]
2

qλ

λ∑
k=δ

(−1)k−δ
[
λ− δ
k − δ

]
2

2(k−δ2 ) (50)

= qδ. (51)

Explanation: (50) to (51): Gaussian coefficients satisfy the identity

(1 + x)(1 + zx) · · · (1 + zr−1x) =
r∑
`=0

[
r

`

]
z

z(`2)x`. (52)
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To prove the last summation on the right hand side of (50) is zero for λ > δ, use (52) with

x = −1, z = 2, ` = k − δ and r = λ− δ. This gives
∑λ−δ

`=0

[
λ−δ
`

]
2
2(`2)(−1)` = 0 for λ > δ.

For z < 1, taking the limit of (52) gives

∞∏
`=0

(1 + z`x) =
∞∑
`=0

z(`2)x`∏`
i=1(1− zi)

. (53)

Replacing δ by λ in equation (49), we see that the solution qλ to (45) is

qλ =
∞∑
k=λ

(−1)k−λ2(k−λ2 )−(k2)∏λ−1
i=0 (2λ−i − 1)

∏k−1
i=λ (2k−i − 1)

=

(
1
2

)λ2∏λ
i=1

(
1−

(
1
2

)i) ∞∑
`=0

(−1)`
(

1
2

)(`2) (1
2

)(1+λ)`∏`
i=1

(
1−

(
1
2

)i) (54)

=

(
1

2

)λ2 ∏∞
i=λ+1

(
1−

(
1
2

)i)
∏λ

i=1

(
1−

(
1
2

)i) = π(λ), (55)

where π(λ) is given in (2). To get from (54) to (55), use (53) with z = 1/2 and x =
(−1/2λ+1).

The p(0, λ) only satisfy (45) asymptotically and so to prove the lemma, we show that for
large K, ∑

λ≥K
σ≥0

qλ ≤ ε, (56)

where ε > 0 is arbitrarily small. Now,

k−1∏
i=0

(2λ − 2i) = 2kλ
k−1∏
i=0

(
1− 1

2λ−i

)
≥ 2kλ

(
1−

k−1∑
i=0

1

2λ−i

)
≥ 2(k−1)λ.

It follows that ∑
λ≥K
σ≥0

qλ ≤ 2−K(K−1).

Thus (56) holds if K ≥
√

2 log2 1/ε.
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7.2 Pn(1, d): the case of one small fundamental dependency.

Introduce the notation Pn([m, d]) for the probability that M ∈M (n) has exactly m small
fundamental dependencies and the maximum number of large simple dependencies is d. Thus
there are small dependencies D1, ..., Dm and (not necessarily unique) large dependencies
B1, ..., Bd corresponding to M having a null space of dimension m + d. In the case m = 0,
it follows from (41) that Pn(0, d) ∼ π(d) e−φ.

Before considering Pn(m, d), we explain the basic principle by deriving Pn(1, d). The general
case will follow from the recursive application of this.

Let M ∈M([n]) and let L be a fixed set of rows, |L| = `. We write

M =

(
SL R
C M ′

)
.

Here SL is `× `, R is `× (n− `), C is (n− `)× ` and M ′ has rows and columns indexed by
[n]− L.

The event R = 0, is dependent only on the columns of [n]− L in M . Provided ` = o(n1/2),
R = 0 has probability

P(R = 0) =

(
1− `

n

)2(n−`)

∼ e−2`.

Given R = 0, M ′ is a uar element of M ([n] − L). This follows directly from M is a uar
element of M ([n]). Each column of M has 2 random entries, and these are not in the rows
of L. At this point

M =

(
SL 0
C M ′

)
. (57)

Independently of what happens in the columns of [n] − L in M , the event that within the
columns of L the sub-matrix SL is the vertex-edge incidence matrix of a connected random
mapping DL, and thus each column of the sub-matrix C has one uar entry, is (see Section
2)

P (DL) ∼
(

2`

n

)`
· (`− 1)!

``
σ`.

The probability Pn−`(0, k) ∼ e−φπ(k) that M ′ has no small dependencies and k large
ones is given by (41) above. Let P ∗(j, k; 1) be the probability that exactly j of the k large
dependencies of M ′ remain as dependencies after adding back the sub-matrix C. To maintain
continuity of exposition, the analysis of this event is deferred until Section 7.4. Equation
(63) of Section 7.4 with m = 1, gives

P ∗(j, k; 1) ∼
(
k

j

)(
1

2

)j (
1− 1

2

)k−j
=

(
k

j

)(
1

2

)k
.
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Let

Pn(1, j], L) = P(M has 1 small fundamental dependency L and j large dependencies),

Thus using (41), and the above

Pn(1, j], L) ∼
(

2

n

)`
(`− 1)!σ` · e−2` ·

∑
k≥j

(
k

j

)(
1

2

)k
π(k)e−φ.

The probability that L is dependent, but R 6= 0 is O(`2/n). The events that L is the unique
fundamental dependency are exclusive and exhaustive, so P([1, j]) is the sum of these. Thus,
summing over

(
n
`

)
for ` ≥ 1 gives

Pn(1, j]) ∼ φ e−φ ·
∑
k≥j

(
k

j

)(
1

2

)k
· π(k).

7.3 The general case of null(M) = d, with m small fundamental
dependencies

The matrix M ′ in (57) is a uar element of M ([n] − L), and we can repeat the above con-
struction with M ′ instead of M . We remove a set of columns L′ and conditional on R′ = 0,
the sub-matrix M ′′ is a uar element of M ([n] − L − L′). In this way we can obtain the
probability P([2, j]) of two small and j large dependencies, and so on.

To systematize this, let M0 = M,L0 = L,R0 = R, n0 = n, `0 = |L| and let M1 = M ′, n1 =
n0 − `0. Thus, M0 is a uar element of M(n0) and with some relabelling of [n]− L, M1 is a
uar element of M(n1), etc.

In this way, we remove a sequence (L0, L1, ..., Lm−1) of column sets, of total size at most
mω. As n−mω ∼ n, the result (41) holds in M (nm) with the same asymptotic probability.
Taking the subspace M ([0, k], nm) of M(nm), we work back to the subspace of M with small
fundamental dependencies L0, ..., Lm and j ≤ k large dependencies, and thus to Pn(m, j]),
the probability of M([m, j], n).
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Summarizing the necessary generalizations, we have

P(R(Lj) = 0, j = 0, ...,m− 1) ∼
m−1∏
j=0

e−2`j , (58)

P (DLj , j = 0, ...,m− 1) ∼
m−1∏
j=0

(
2`j
nj

)`j
· (`j − 1)!

`
`j
j

σ`j , (59)

P ∗(j, k;m) ∼
(
k

j

)(
1

2m

)j (
1− 1

2m

)k−j
, (60)

Pn−`(0, k]) ∼ e−φ π(k). (61)

The last line is (41). For continuity of exposition, the proof of (60) is deferred until Theorem
21 in Section 7.4 below.

The dependency of probability in (60) on the sizes `j ≤ ω, j = 0, ...,m − 1, is hidden in
the (1 + o(1)) term in the asymptotic notation. We multiply (58) by (59), and add over all
distinct sets of removed columns (L0, ..., Lm−1), and noting that each entry is repeated m
times in such sequences, we obtain a quantity Ψ(m) given by

Ψ(m) ∼ 1

m!

∑
`≥1

∑
`=`0+···+`m−1

(
n

`0, . . . , `m−1

) m−1∏
j=0

(
P(R(Lj) = 0) · P (DLj)

)
∼ 1

m!

∑
`≥1

∑
`=`0+···+`m−1

m∏
j=0

(2e−2)`j
1

`j
σ`j

=
φm

m!
.

Thus, multiplying Ψ(m) by (60) and (61), and summing over k ≥ j large dependencies,

Pn(m, j]) ∼ φm

m!
e−φ

∑
k≥j

P ∗(j, k;m) · π(k)

∼ φm

m!
e−φ

∑
k≥j

π(k)

(
k

j

)(
1

2m

)j (
1− 1

2m

)k−j
. (62)

Finally, the probability that null(M) = d is

P(null(M) = d) =
d∑

m=0

Pn(m, d−m]),

which completes the proof of Theorem 1.
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7.4 Going back from M ′ to M . Change in dimension of null space.

Write M =

(
SL 0
C M ′

)
as given in (57). In this section we prove the following theorem.

Theorem 21. Suppose that the (n−L)× (n−L) sub-matrix M ′ of M has no small depen-
dencies, and k large simple dependencies, and the L × L sub-matrix SL of M has m small
fundamental dependencies of total size L. Then the probability P ∗(j, k;m) that the maximum
number of large simple dependencies in M is j is given by

P ∗(j, k;m) =

(
k

j

)(
1

2m

)j (
1− 1

2m

)k−j
. (63)

Before proceeding with the proof of Theorem 21, we give an outline of the proof structure.
Each columns of the sub-matrix C has a unique random non-zero entry in the rows of M ′.
On average about `/2 of these non-zeros fall in the rows of any large dependency B of M ′.
To extend B to a dependency A of M , we may need to include some rows of SL in A to
cancel any non-zeros of C which fall in the rows of B.

Thus in general A ∩ L 6= ∅, and some rows of A were deleted to give B. If M ′ has k large
dependencies B1, ..., Bk, then any extension of these sets needs to preserve and extend the
intersection structure I ′x, x ∈ {0, 1}k in M ′ to M . If j ≤ k of the sets Bi extend successfully
then the final intersection structure will be given by Iy, y ∈ {0, 1}j. The interaction of this
structure with L is the one described in Section 6 and summarized by (40). The extensions
are not unique. If A is a large dependency, and L is small, then A∆L is large. It was exactly
this problem which obliged us to construct our proofs in this way.

Proof of Theorem 21

Suppose M ′ has k large dependencies B1, ..., Bk but no small dependencies. In this case
there is a well defined vector space of dimension k spanned by B1, ..., Bk. Assume the m
small dependencies Dj, j = 0, ...,m − 1 occupy the first L columns. The matrix M can be
written as follows.

M =



D0 0 0 · · · 0 0
C0,1 D1 0 · · · 0 0
C0,2 C1,2 D2 · · · 0 0

...
...

...
. . . 0 0

C0,m−1 C1,m−1 C2,m−1 · · · Dm−1 0
C0,m C1,m C2,m · · · Cm−1,m M ′


.
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Let |Dj| = `j where L = (`0+· · ·+`m−1). Each (nj−`j)×`j sub-matrix Cj = (Cj,j+1, ..., Cj,m)>

has exactly one random one in each column. The probability any of these ones fall in any Cj,i
where j + 1 ≤ i ≤ m− 1 for j = 0, ...,m− 1 is O(ω3/n). Conditional on this not occurring,
the non-zero entry in each column is u.a.r. in n′ = n−L. Tidying up, and writing C ′j = Cj,m
we have

M =


D0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . . 0 0

0 0 · · · Dm−1 0
C ′0 C ′1 · · · C ′m−1 M ′

 =

(
D 0
C M ′

)
. (64)

Let us write Br � Ds and say Br agrees with Ds if there exists a set of row indices Jr,s, a
subset of the row indices of Ds, such that Br ∪ Jr,s is a dependency of M . We will be able
to extend Br to a dependency Ar = Br ∪ (

⋃m
s=1 Jr,s) if and only if Br �Ds, s = 1, 2, . . . ,m.

In which case we say that Br occurs.

For i ∈ Ds, column i has a unit entry in row i, and if the random unit entries are in rows
t, t′. We use the notation e1(i) = t ∈ Ds, e2(i) = t′ /∈ Ds. Let Xs be the set of column
indices associated with the cycle of Ds.

Lemma 22.

(a) Br �Ds if and only if | {i ∈ Xs : e2(i) ∈ Br} | is even.

(b) Over the random choices, e2(i), i ∈ Ds, s = 1, 2, . . . ,m, P(Br � Ds, s = 1, 2, . . . ,m) ∼
1/2m.

(c) Suppose that Y ⊆ [r] is arbitrary. Then P(Br+1 | Bi, i ∈ Y,¬Bi, i /∈ Y ) ∼ P(Br+1). I.e.
the occurrence of Br+1 is asymptotically independent of the occurrence or non-occurrence
of the events in B1,B2, . . . ,Br.

Proof. (a) Suppose the vertices of the cycle of Ds are labelled 1, ..., `, with edges (1, 2), ..., (`−
1, `), (`, 1). Let (i, i + 1) be such an edge, where i, i + 1 ∈ Ds and thus i + 1 = e1(i). Then
let xi = 1 if e2(i) ∈ Br. We introduce variables yi, zi, i = 1, 2, . . . , ` and these will be used to
define the index set of rows Jr,s, if this is possible. We interpret yi = 1 to mean i ∈ Jr,s and
zi = 1 to mean that e1(i) ∈ Jr,s. For Br ∪ Jr,s to be a dependency we need xi + yi + zi = 0
for i = 1, 2, . . . , `. For consistency we need yi+1 = zi for i = 1, 2, . . . , ` where y`+1 = y1. This
leads to the equations yi + yi+1 = xi, i = 1, 2, . . . , `. These equations are feasible if and only
if

x1 + x2 + · · ·+ x` = 0. (65)

If (65) holds there are exactly two possible choices for the yi. Choosing an arbitrary value
in {0, 1} for y1, determines yi, i = 2, ..., ` and thus Jr,s = {i : yi = 1}.
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x1 y1 = z4 y4 = z3 x4

x2 y2 = z1 y3 = z2 x3

1

2 3

4

Figure 1: Example: Cycle (1, 2, 3, 4) with labelling. The edges (i, e1(i)) are drawn solid,
and edges (i, e2(i)) dashed.

We deal with the attached trees by working backwards from the cycle to the leaves. Suppose
that vertex i is not in the cycle and that the values xj, yj, zj have been determined for its
parent j its tree. We are forced to take zi = yj and then yi is determined from xi+yi+zi = 0.
Each time we find that yi = 1, we add i to Jr,s.

(b) This follows from the fact that |Bi| ∼ n/2 and |L| = o(n1/2) and e2(i) is chosen randomly
from a set of size n−ω. Furthermore, the values e2(i), i ∈ Ds1 are independent of the choices
e2(i), i ∈ Ds2 if s1 6= s2.

(c) Let Ix = (P1, P2, . . . , P2r) be the partition of [n−L] induced byB1, B2, . . . , Br as described
in Section 6. Each part of the partition contains ∼ n/2r rows. The occurrence of Bi, i ∈
Y,¬Bi, i /∈ Y is determined by the the allocation of the e2(i) into each part. As such, if e2(i)
lies in some part Pt, 1 ≤ t ≤ 2r then it is distributed uniformly over Pt. Each part of Ix is
split into two asymptotically equal parts by Br+1. In one “half” we will xi = 0 and in the
other “half” we will have xi = 1, where xi is computed with respect to Br+1. It follows that
(65) holds with probability ∼ 1/2.

Lemma 22(b) implies that P(Br) ∼ 1/2m and then (c) implies that the probability P ∗(j, k,m)
of j sets surviving out of k is asymptotic to

P ∗(j, k;m) =

(
k

j

)(
1

2m

)j (
1− 1

2m

)k−j
. (66)
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8 Further comments: Rank over GF (t), and GF (2) for

r ≥ 2, s = 2, 3: Proof of Theorem 3

8.1 Rank over GF (2) for r ≥ 2, s = 2, 3

Case r = 2, s = 2. An n × 2n matrix of this type has even column sum and row rank
n∗ = n− 1 w.h.p.

Borrowing from [9] Theorem 16.5, for r = 1, the expected number of fundamental zero-sum
sets of size ` is

EX` =

(
n

`

)(
`− 1

n− 1

)`(
n− 1− `
n− 1

)n−`
· 1

(`− 1)`

∑̀
k=2

(k − 1)!k``−k−1 ∼ e−`
1

`

`−2∑
j=0

`j

(`)j
.

As the last sum tends to e`/2 we have EX` ≤ 1/`. If L is zero-sum, so is [n]− L. For r = 2
the total expected number of `-dependencies, 2 ≤ ` ≤ n− 2 is at most

4

n/2∑
`=2

EX`

(
`− 1

n− 1

)`
∼ 4

n/2∑
`=2

(
`− 1

n

)`
1

`
= O

(
1

n2

)
.

Case r = 2, s = 3. It follows from the proofs that an n × 2n matrix of this type has full
row rank w.h.p., as the ’second matrix’ cancels the constant number of dependencies in the
first (if any).

8.2 Rank over GF (t), t > 2: Proof of Theorem 4

The proof of Theorem 4 is greatly simplified by the w.h.p. lack of large dependencies.

Case I: The sum of all rows. Let W (M) be an indicator that
∑n

i=1 ri = 0, i.e.that the
rows of M sum to zero. Then with arithmetic over GF (t),

EW =

{
(
∑

i fift−1−i)
n Model 1,2(∑

i+j+k=0 fifjfk

)n
Model 3

.

Thus unless t = 3 and f1 = 1 (Model 1), EW → 0 as n→∞.
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Case II: The sum of ` rows. Let L be a set of row indices of size `. For a given column
i where i ∈ L, for the rows of L to be dependent, one of two events must occur. Either
there is a unique random entry in the rows of L which cancels the entry Mi,i in row i (Model
2, γ = ft−1; Model 3, γ =

∑
fift−i). Or there are 3 entries in the column which sum to

zero (Model 2, α =
∑
fift−i−1; Model 3, α =

∑
i+j+k=0 fifjfk). For a column i, where

i ∈ [n] − L there must either be no random entries, or two random entries adding to zero,
with probability β =

∑
fift−i. Thus

EX` =

(
n

`

)(
2γ
`

n

(
n− `
n

)
+ α

(
`

n

)2
)`(

β

(
`

n

)2

+

(
n− `
n

)2
)n−`

. (67)

The sum of ` rows, ` ≤ ω.
From (67) above, using the methods of Section 2 we find EY` is given by

EY` ∼
(2γ`)`

`!
e−2`.

Extracting the moments of the fundamental dependencies Z from EY` as in Section 2 gives
φt, as given by (5).

The sum of ` rows, ω < ` = o(n).
As β, γ ≤ 1 then

∑
EX`>ω → 0. This follows by comparison with the analysis in Section 3.

The sum of ` rows, ` = cn.
Let ` = cn, then

EXcn =O(1)

(
(2γc(1− c) + αc2)c

cc
(βc2 + (1− c)2)1−c

(1− c)(1−c)

)n
=O(1)

(
DcG1−c)n .

We prove that, provided 1 ≥ 2γ > α, then D(c) < 1, G(c) < 1 for c ∈ (0, 1), and thus
EXcn → 0.

Firstly D(0) = 2γ ≤ 1, and D(c) = 2γ − (2γ − α)c which is monotone decreasing in c.
Secondly G(0) = 1, G(1) = 1, and G′(c) = 0 at c = 1±

√
β/(β + 1). Let ĉ = 1−

√
β/(β + 1),

then G(ĉ) = 2
√
β(β + 1)− 2β. As 2

√
β(β + 1)− 2β < 1, G(c) is a minimum at ĉ.
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9 Appendix A. Converting between the with and with-

out replacement models

9.1 EY` for ` small.

Regarding (70), let

A =

(
(`− 1)(n− `)

(n− 1)2

)`((
(`)2

(n− 1)2

)
+

(
(n− 1− `)2

(n− 1)2

))n−`
.

Then

A =

(
(`− 1)(n− `)

n2

)`((
`

n

)2

+

(
n− `
n

)2
)n−`

×
(

n2

(n− 1)2

)n(
1− 3(n− `) + `− 2

`2 + (n− `)2

)n−`
.

However (
n2

(n− 1)2

)n
= (1 +O(1/n))e3, (68)

and for ` = o(n)

B =

(
1− 3(n− `) + `− 2

`2 + (n− `)2

)n−`
= (1 +O(`/n))e−3, (69)

which proves equivalence as A ∼ 1.

EX` for ` large. Note from (69) that B is less than one for any feasible `, and if ` =
(n/2)(1 + o(1) then B = (1 +O(1/n))e−2. Also for any `→∞,

(`− 1)` = (`)`
(
`− 1

`

)`
= (1 +O(1/`))(`)`e−1.

E(X)k for ` ∼ n/2. Referring to (24), in the with-replacement model we have

Φ(h, k) =
∏
x 6=0

2
∑
{u,v}
u+v=x

hu
n

hv
n


hx (∑

u

(
hu
n

)2
)h0
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The equivalent to Φ(h, k) in the without-replacement model is

Ψ(h, k) =
∏
x 6=0

2

 ∑
{u,v}6={x,0}
u+v=x

huhv
(n− 1)2

+
(hx − 1)h0

(n− 1)2



hx (

(h0 − 1)2

(n− 1)2

+
∑
u6=0

(
(hu)2

(n− 1)2

))h0

=Φ(h, k)

(
n2

(n− 1)2

)n∏
x 6=0

(
1− h0∑

huhv

)hx (
1−

∑
u hu + 2h0 − 2∑

h2
u

)h0
=Φ(h, k) · C.

As hi = (1 + o(1))n/2k, and (1− h0/
∑
huhv)hx ∼ e−2/2k we have∏

x6=0

(
1− h0∑

huhv

)hx
∼ (e−2/2k)2k−1 = e−2+1/2k−1

,

and (
1−

∑
u hu + 2h0 − 2∑

h2
u

)h0
∼
(

1− 2k + 2

n

)n/2k
= e−1−1/2k−1

.

Combining this with (68) gives

C ∼ e3e−2+1/2k−1

e−1−1/2k−1

= 1.

9.2 Without replacement

Let S = {2 ≤ ` ≤ ω} where ω → ∞ slowly with n. For ` ∈ S, let Y`(M) be the number of
index sets of zero-sum rows of size ` in M . Similarly to (7)

EY` =

(
n

`

)(
2

(`− 1)(n− `)
(n− 1)2

)`((
(`)2

(n− 1)2

)
+

(
(n− 1− `)2

(n− 1)2

))n−`
. (70)

Assuming that ` = o(
√
n) then

EY` =
(2(`− 1))`

`!
e−2`(1 + o(1)).

If L is zero-sum then the sub-matrix ML,L is the incidence matrix of a random functional
digraph DL with no fixed points, in which case there are ` − 1 off-diagonal entries in any
column of ML,L and we exclude cycles of size one. The probability that the underlying graph
of DL is connected is

P(DL connected) =
(`− 1)!

(`− 1)`

`−2∑
j=0

`j

j!
.
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