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Abstract

Let A, . be a random n x m matrix with entries from some field F where there are exactly £ non-
zero entries in each column, whose locations are chosen independently and uniformly at random from the
set of all (}) possibilities.

In a previous paper (arXiv:1806.04988), we considered the rank of a random matrix in this model
when the field is F = GF(2). In this note, we point out that with minimal modifications, the arguments
from that paper actually allow analogous results when the field F is arbitrary.

In particular, for any field ' and any fixed k£ > 3, we determine an asymptotically correct estimate for
the rank of A, .., in terms of ¢, n, k where m = en/k, and c is a constant. This formula works even when
the values of the nonzero elements are adversarially chosen. When F is a finite field, we also determine
the threshold for having full row rank, when the values of the nonzero elements are randomly chosen.

1 Introduction

Let A = A, ,,,.x be the n X m matrix with entries from some field F where there are exactly k& > 3 non-zero
entries in each column, the other entries being zero. The locations of the non-zeros of the columns are chosen
independently and uniformly at random from the set of all (’,;”) possibilities. Given the locations of non-zeros,
one can consider various models for the choice of their values (e.g., random, fixed choice, adversarial, etc.).

The rank of this matrix model has attracted some recent attention. In a previous paper, we analyzed the
case where Fy = GF(2) [5]. Ayre, Coja-Oghlan, Gao, and Miiller [I] independently obtained the same result
as [5] independent for any finite field F,. Of course in Fy, there is no choice of how to select the non-zero
elements; in [1], the requirement was that the list of & non-zero values from F* = F \ {0} in each column
is chosen independently from a fixed distribution which is symmetric with respect to permutation of the &
positions.

Coja-Oghlan and Gao [3] considered the more general case of a sparse random matrix over a finite field F,
where both the the columns and rows are given prescribed numbers of non-zeros (which may also be random);
Coja-Oghlan, Ergr, Hetterich and Rolvienhref [2] extended the results of [3] to arbitrary fields. For both of
these results, all non-zero elements are required to be chosen independently from a fixed distribution (giving
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a permutation-symmetric distribution on the lists of k£ non-zeros). One remarkable feature of all these results
is that the asymptotic formulae do not depend on the choice of field F.

The point of the present note is simply to demonstrate that our arguments from the previous paper [5]
generalize beyond GF'(2). Our arguments go beyond the results of [I] in this setting also, since our purely
combinatorial argument applies even when there are no restrictions on the process of choosing the values of the
non-zero elements for each column—they can even be chosen adversarially once all the locations of the non-
zeros have already been randomly chosen. Thus the proof strategy used in [5] allows a purely combinatorial
proof strategy for the asymptotic rank of A,, ,,.; for general fields, which is also considerably shorter than the
more algebraic methods used in [1].

To state our result, let H = H,, ,,, denote the random k-uniform hypergraph with vertex set [n] and m
random edges taken from ([Z}). There is a natural surjection from A,, .., to Hy . in which column c is
replaced by the set {i: c; #0}. The p-core of a hypergraph H (if it is non-empty) is the maximal set of
vertices that induces a sub-hypergraph of minimum degree p. The 2-core Cy = Cy(H) plays an important
role in our theorem. Parametrizing m = cn/k, let ¢ be the threshold in ¢ for the emergence of a 2-core.
We state our theorem in terms of functions ®(c) and ¥(c) of ¢, defined precisely in Section [2.1, which are
asymptotic proxies for the ratios |V (Cy)|/n and |E(Cy)|/n, respectively.

Theorem 1. Given constants ¢ and k > 3, we have that if m = cn/k, then w.h.p.

cn

F(Ap i) = QK S
rank( A i) & n(£—v(e)+U(cr) +0(c) — (k) >,

even if the values of the non-zero elements in A,, .., are chosen adversarially after their locations are deter-
mined.

The notation X,, = Y,, indicates that lim, ,, X,,/Y, = 1.

We will also consider the threshold for full row rank. For this we will restrict out attention to finite fields and
assume that the non-zeros are randomly chosen.

Theorem 2. Let m = n(logn + ¢)/k where ¢ = ¢, and let F, be a field with q elements. Suppose that the
non-zeros of A are chosen independently and uniformly at random from Fy = F, \ {0}. Then

0 Cp —> —00.
lim P(rank(A) =n)=<e* " ¢, —c (1)
n—o0

1 Cn — +00.

We emphasize that Theorems [1| and [2| are proved essentially the same way as the more restrictive theorems
from [5]. For the convenience of the reader, we give the complete proofs in this note, including parts which
are unchanged from [5].

2 Proof of Theorem [1]

2.1 The 2-core

We will use some results on the 2-core of random hypergraphs. In random graphs G, ,, = H,, .2 the 2-core
grows gradually with m following the emergence of the first cycle. For k > 3, the 2-core is either empty or of



linear size and emerges around some threshold value my.

The typical asymptotic values of |V (Cs)|, |E(C3)| can be found in Cooper [4] and Molloy [9]. In particular,
to describe the size of the 2-core, we parameterise m as m = cn/k, ¢ = O(1) and consider the equation

= (1—e )1 (2)
For k > 3, define ¢, by
¢y =min{c:z = (1—e )" has a solution z. € (0,1]} .

It is known that ¢ < ¢ implies that Cy = ) w.h.p. If ¢ > ¢, ¢ = O(1), let x. be the largest solution to in
[0,1]. Let

®(c) = 2D — e, + cah/*D),

k/(k—1)
cxe
\\ =
(€)=
Then q.sfl] if ¢ > ¢; then
[V (Ca)| = n®(c)] < n?/, (3)
[1E(Cy)| = n¥(c)| < n®* (4)

2.2 Matrix Rank

We let ¢ = km/n and H; denote the hypergraph induced by the first ¢ columns of A.

The first step of our proof is to “peel oft” edges of the hypergraph H,,, and thus columns of the matrix A,
containing vertices of degree 1.

In particular, so long as H; contains a vertex v; of degree 1, then for the edge e; > v; in H;, we set

E(H;-1) = E(H;) \ {e:}
V(Hi—1) = V(H;) \ {v € ¢; | degy (z) = 1}.

In a corresponding sequence {A;} beginning from A,,, we obtain A;_; from A; by removing the column c;
corresponding to e;, and the (at least one) rows whose only 1’s were in that column. Note that up until the
point where every row has at least two non-zeros, we have

rank(A;) = rank(A;_;) + 1.

This recursion terminates at

Cy,=A,,, (5)

where my = m — my is the number of edges in the the 2-core of the hypergraph H, and moreover, we have
that H,,, is precisely the 2-core of H. Thus we have that

rank(A,,) = |E(H)| = |E(Cy)] + rank(Cy). (6)

LA sequence &, of events occurs quite surely (q.s.) if P(=&,) = O(n~%) for any constant C' > 0.
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Let C denote the first 2-core i.e. the 2-core when ¢ & ¢;, and let C denote the corresponding set of columns of
A. When ¢ = ¢; we have that rank(A) ~ [E(H)| which equals the number of edges not in C; plus the rank of
C,. This implies that the rank of C is asymptotic to the number of edges in C i.e. |E(C )| ~ n¥(c;) w.h.p.
To prove Theorem [I} we will argue that the rank of C, increases along with the increase in the number of
vertices in Cy. L.e. that w.h.p.

rank(C,) & rank(C) + [V(Cs)| — [V(O))] (7)
~n(V(ck) + @(c) — B(er)) (8)

This together with @ proves Theorem .

We need some basic facts about hypergraphs. We say a hypergraph H is linear if edges only intersect in at
most one vertex. We define a k-uniform cactus as follows. A single edge is a cactus. An (¢ + 1)-edge cactus
(" is the structure obtained from an ¢-edge cactus C' with vertex set V(C),|V(C)| = (k — 1) + 1 as follows.
Choose x € V(C) and let V(C") = V(C) U {vy,...v5-1} where {vq,...v5_1} is disjoint from V' (C). The edge
set E(C") of C"is E(C) U {€'} where € = {z,v1,...v5_1}. We need the following simple lemma.

Lemma 3. A connected k-uniform simple hypergraph C'" with no cycles is a cactus.

Proof. This can easily be verified by induction. We simply remove one terminal edge e = {vy,vq,..., v} of
a longest path P. We can assume here that vs, ..., v, are all of degree one, else P can be extended. Deleting
e gives a new connected hypergraph C” which is a cactus by induction. [

For a k-uniform linear hypergraph H let L(H) = (k — 1)|E(H)| + 1.

Lemma 4. Let H be a connected k-uniform linear hypergraph.

(a) [V(H)| < L(H).
(b) |V(H)| = L(H) if and only if H does not contain any cycles.

(c) By deleting at most L(H)— |V (H)| edges we can create a subgraph H with V(H') = V(H) and no cycles.

Proof. We consider two cases:

Case 1: H contains no cycles.

In this case, we consider a longest path of edges in H; that is consider a longest sequence eq,es, ..., e, such
that for each 1 <7 < ey, e; intersects e;_1, e;11, and no other edges in the sequence. Since the path is longest
and H has no cycles, we know that e, intersects no edge in H other than e,_;.

In particular, we define a hypergraph H' with E(H') = E(H) \ {e;} and V(H') = V(H) \ (e, \ es—1). H' has
one fewer edge and k — 1 fewer vertices than H, so we have L(H) = |V (H)| by induction, proving the Lemma
for this case.

Case 2: H contains a cycle C.

In this case, we consider an edge e in a cycle C' of H. Removing the edge e leaves a hypergraph on the same
vertex set with one fewer edge and with at most k£ — 1 connected components (counting isolated vertices as
connected components). Applying the Lemma inductively to each component, we see that the sum of L(H;)
over the (k — 1) components H; of H \ e satisfies

e

" L(H) < L(H) — (k— 1) + (k—2) < L(H) ~ 1,
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since removing e decreases the sum by k& — 1, while the additive term in the definition of L(H) inflates the
sum by at most (k — 2) (as the number of components has increased by up to & — 2). On the other hand we
of course have

> IV(H)| = V()

We now apply parts @ and () of the Lemma to each component by induction, and conclude that the Lemma
does hold for H. ]

In the following lemma we prove a property of H,, ,,.x. It will be more convenient to work with H,, ., where
m = (Z) p. We use the fact that for any hypergraph property H that is monotone increasing or decreasing
with respect to adding edges,

P(Hymp € H) < O(1)P(Hp i € H). (9)
This is well-known for graphs and is essentially a property of the binomial random variable, E(H,, ,.), the
number of edges of H,, ..

Similarly, if A is a matrix property that is monotone increasing or decreasing with respect to adding columns,
then
P(A, i € A) <O()P(A,, 1 € A). (10)

Lemma 5. Suppose that m = O(n).

(a) Let o < 1 be a positive constant. With probability 1 — o(n™'), for every set of vertices S of size ly =
logt?n < s < 59 = n'~® we have that L(S) < s+ |0s], where § = m' Here HIS] is the hypergraph
of edges belonging completely to S.

(b) Then w.h.p., there are at most n°M wertices in cycles of size at most logl/Qn.

Proof. (a) We can use (9] here with p = —Z for some C' = O(1) satisfying m = (})p. Let s; = s+ |0s] + 1.
The expected number of sets failing this property can be bounded by

S () ()"
Sy () ()"

S0

<2 ¥ (e ()Y (1)

Let us , denote the summand in ([11)). Then we have

9 S
U5 < ((063)2a—1 (i) ) < n—(a—o(l))&s L < 2Oé_18.
n
sy 1-a/2\ ©
urs < ((Ceg) (—) ) < p~(=—e()alL/2 L >2a7's.
n



Thus,

S0 20 1s S0
3pUNED Db wiEREILRS o o S
s>0g L>s1 s=lg L=5+[05] s=fo L>2a1s
S0 S0
< 2&7180 Z nf(afo(l))Os + Z nf(lfo(l))s/Z
s={g s=lo
=o(n). (12)

(b) The expected number of vertices in small cycles can be bounded by

10g1/2n log1/2n log1/2n
n — o
DN PR TS U P Sl
=2 =2 =2
Part (b) now follows from the Markov inequality. O

2.3 Growth of the mantle

We now consider the change in the rank of the sub-matrix C, of the edge-vertex incidence matrix A,, (see
(5))) corresponding to the 2-core of the column hypergraph, caused by adding a column to A,,. We will show
that w.h.p. the rank of C, grows by the increase in the size of V(Cy), up to error terms that total o(n)
overall. At “time” ¢ < ¢ the rank of A is equal to the number of edges in H which is equal to the number
of edges not in the empty 2-core. At ¢, Cy jumps in size, but the rank can only change by at most one per
edge/column. Thus at ¢, the rank of Cy must be asymptotically equal to |E(C)|. We now have to show that
the rank of Cy grows by the increase in the size of V(Cs).

Assume now that ¢ > ¢ so that |V(Cy)| = Q(n) q.s. Suppose now that the addition of e increases the size of
the 2-core. Let A denote the set of additional vertices and F' denote the set of additional edges added to Co
by the addition of e, where A C V(F). We include e in F.

We remark first that with ¢, . as in , then and (4)imply that adding an edge to A,, can only increase
IV (C5)|, |E(Cs)| by at most O(n®*). We use Lemma |5 with o = 3/4 in our discussion of the hypergraph F.

Obviously the increase in rank from adding F' to the 2-core is bounded above by the size of the vertex-set
A. To bound it from below, we proceed as follows: in what follows we include a pair of edges e, f such that
leN f| > 2 as determining a cycle.

Case 1: First consider the case where there are no cycles in F. We will show that the rank increases by
precisely the number of new vertices.

Let |A| = k. We will define an ordering aq, . ..,a; of A and a corresponding ordering fi, ..., fi of a subset
of F'. To begin, we claim there must exist v € Aand v € f € F, f # e, such that f\ {v} C Cy. For this
consider a longest path eq,... e, of edges in F'. Since the hypergraph is simple and contains no cycles, we
have that e, N (Uf;ll e;) = e, Negqy = {v} for some single vertex v. On the other hand, all vertices of e,
must have degree 2 in F U Cy, and so e, \ v must lie entirely in Cy. We set f; = e;, a; = v, and then we
remove f; from F and a; from A, defining C1 = Cy U f; (though it is not a two-core of any hypergraph), and
apply induction to obtain the sequences ay, ..., ay, fi,.-., fr, and the corresponding sequence C} defined by

CS = 02, and C;Jrl = Cé U fi+1.



These sequences have the property that
rank(C3th) = rank(C}) + 1,

since the edge f; added to C% in step i + 1 contains exactly one vertex outside of Ci. (In the matrix, we are
adding a column containing a 1 in a row which previously had no 1’s).

In particular, the rank in this case increases by exactly the size of A.

Case 2: The total contribution to the rank of the 2-core in m = O(nlogn) steps from the case where F
contains a cycle of length at most logl/ 2n can be bounded by n**t°(M This follows from Lemma (b) and
, . This is negligible, since the core has size (n) in the regime we are discussing.

Case 3: Suppose that F' contains cycles of size at least log'/? n which we remove by deleting s edges. When
we do this we may lose up to ks vertices from A. Let the resulting vertex set be A’ and edge set be F’. Up
to ks vertices of A’ may have degree 1. Attach these vertices to Cy using disjoint edges to give edge set F”.
All vertices of A’ now have degree at least 2 in F” and F” has no cycles. According to the argument in Case
1, the increase in rank due to adding F” is |A’| > |A| — ks and this is at most ks larger than the increase in
rank due to adding F’. Thus the increase in rank due to adding F' O F” is at least |A| — 2ks and at most
|F| <|A|+ s+ 1. It follows from Lemma (c) and Lemma (a) that s = O(|A|/log"* n).

In summary we find that if m = O(n) and m > m;, then, with probability 1 — o(n™!), the rank of C, satisfies

rank(C,) — rank(C) = (1 +0 (1;%)) (V(Cy)| — V(). (13)

log
This proves . To finish the proof of Theorem 1| we require that remains true if we take expectations.
For this we use the error probability of o(n™!) in (12).

This completes the proof of Theorem [T}

3 Proof of Theorem [2

As shown in [5], the RHS of is the limiting probability that every row has at least one non-zero. We will
only consider the case where ¢ = O(1), the other cases will follow by monotonicity considerations.

We will let p = % and also consider the random matrix A,. There are (Z) possible positions for the

n
k

non-zeros of a column and in A, we include a column with each possible set of positions with probability p.
Having chosen the positions of the non-zeros, we fill in values uniformly from F*. We will use P,,, P, when
we we are estimating probabilities w.r.t. A, A, respectively.

For a set S C [n] we let Bg denote the event that the rows of A corresponding to S are minimally linearly
dependent. Let Ly = loglogn. We condition on no empty rows.

Case 1: s =S| € =2, Ly

For a set S of s rows, let a denote the number of columns with at least two non-zero entries and let b denote
the number of rows with more than L; = log"/? n non-zeros. We note that a > [s/2], else there is a column
with a unique non-zero and Bg does not occur.



Now

2s
n\ (m s E\° ne\s /me s2k?
P, (35 : I.a>2s) < R < =
m(35: 15 € 1 a2 8)_;(5><23> ((2) <n> > _§<s> (25) (2n2)
e3m?sk?
_Z( 1613 ) = oll).
Now if Bg occurs and a < 2s then we must have b = 0. But then, if J = [[s/2], 2s],

P,.(3S:|S|€l,ae Jb=0)<

(T) <<;> | (5)2) (P(Bin(m — 2s,k/n) < L1))* <

(5 ) e = o

sel
acJ

Case 2: Lo <s<ny=n/k—2:
P,(Bs) < (1 — p)*(i=)

Explanation: There are s(k 1) choices of column for which there is a unique non-zero in rows S in that
column.

This gives a bound

P,(35 : Bs) < (S> exp{ log”k&)@(n s)} < (Z) exp{—s(logn+6) (1— nk_sk)}

< %.exp{—(logrw—c) (1_nk_sk)})s: (els_c-exp{%}y:o(l), (15)

for Ly < s < ny.

Case 3: ng < s <n.
We can also write

Pm(Bs) < (¢ —1)° ( : 17 (72—)8)> '

Explanation: There are (¢ — 1)® choices for the dependency coefficients and then for each column either (i)
there are no non-zeros in that column or (ii) the non-zero in the highest indexed row is determined by the
other non-zeros.

This gives a bound

P, (39 : Bg) < (Z) (g—1)° (q_% + (Zf:;)

k

m 1 m
) < 0™ (5 + e“"(l))) = o(1). (16)

Theoremnow follows from , and . We note that while (|15]) refers to A, the inequality translates
to A through monotonicity as is done for G,,, and G,, ,, see e.g. [§], Lemma 1.3.
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