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Abstract

Let G[κ]
n,p denote the space of n-vertex edge coloured graphs, where each edge occurs

independently with probability p. The colour of each existing edge is chosen inde-
pendently and uniformly at random from the set [κ]. We consider the threshold for
the existence of rainbow colored copies of a spanning subgraph H. We provide lower
bounds on p and κ sufficient to prove the existence of such copies w.h.p.

1 Introduction

Let G[κ]
n,p denote the space of n-vertex edge coloured graphs, where each edge occurs in-

dependently with probability p. The colour of each existing edge is chosen independently
and uniformly at random from the set [κ]. Alon and Furédi [1] and Riordan [7] gave upper
bounds for the threshold for Gn,p to contain a copy of a spanning subgraph H w.h.p. We

give comparable estimates for G[κ]
n,p to contain a rainbow copy of H w.h.p., i.e., a copy of a

spanning subgraph H where each edge has a different color.

1.1 Background

There has been considerable research on the existence of rainbow spanning objects in ran-
domly colored random graphs. One of the earliest results is in Frieze and McKay [6]. They
considered the existence of rainbow spanning trees and proved the following result. Suppose
we add randomly colored edges one by one, to an initially empty graph then w.h.p. there is
a rainbow spanning tree once the graph is connected and at least n−1 colors have appeared.
Cooper and Frieze [2], Frieze and Loh [5], and Ferber and Krivelevich [3] considered the
existence of rainbow Hamilton cycles. Here the results are not so precise. Basically we know
that if there are at least n + o(n) colors available, and the graph has minimum degree at
least two, then there is a rainbow Hamilton cycle.
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Ferber, Nenadov and Peter [4] consider the threshold for finding rainbow copies of an arbi-
trary spanning subgraph H. They prove that if d ≤ ∆(H) = O(1), and p ≥ n−1/d log5/d n

then w.h.p. G[κ]
n,p contains a rainbow colored copy of H, provided κ ≥ (1 + δ)E(H) where δ

is an arbitrary constant.

In this paper we modify the argument in [2] and prove the following two theorems:

Theorem 1. Let H be a fixed sequence of graphs with n = |V (H)| → ∞ and maximum
degree ∆ where (∆2 + 1)2 < n. Suppose that κ ≥ (1 + ε)∆n/2, and that

p > max

{(
10 log bn/∆2 + 1)c
bn/∆2 + 1)c

)1/∆

,
10ε−2∆ log n

n

}
. (1)

Then w.h.p. G[κ]
n,p contains a rainbow colored copy of H.

The original (uncoloured) result of Alon and Furédi [1] differs from Theorem 1 in that the
condition p > 10ε−2∆ log n/n is not required, and can be stated as

There is an (uncolored) copy of H w.h.p. when p >

(
10 log bn/∆2 + 1)c
bn/∆2 + 1)c

)1/∆

. (2)

Let H be as in Theorem 1. Let

eH(x) = max {e(F ) : F ⊂ H, v(F ) = x} .

γ = max
3≤x≤n

{
eH(x)

x− 2

}
.

Theorem 2. Suppose that e(H) ≥ n and min{e(H)p, (1 − p)n1/2} → ∞. Suppose that
κ ≥ (1 + ε)∆n/2, and that

p >
10ε−2∆ log n

n
and npγ/∆4 →∞.

Then w.h.p. G[κ]
n,p contains a rainbow colored copy of H.

The corresponding result of Riordan [7] is that with the same definitions as above and in
Theorem 2,

There is an (uncolored) copy of H w.h.p. when npγ/∆4 →∞. (3)

We consider two examples. In both cases Theorem 2 gives a better result than Theorem
1. First suppose that n = m2 and that H is the m × m square grid so that ∆ = 4. Let
κ = 2(1 + ε)n. Theorem 2 implies that w.h.p. if κ ≥ (1 + ε)|E(H)| and np2 → ∞ then
Gn, p contains a rainbow copy of H w.h.p. Suppose next that n = 2d and that H is the d-
dimensional hypercube. Theorem 2 implies that w.h.p. if κ ≥ (1+ε)|E(H)| and p ≥ 1

4
+ 5 log d

d

then Gn, p contains a rainbow copy of H w.h.p.
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2 Proof of Theorems 1 and 2

The proof idea is quite simple. Let Dd−out be the random digraph with vertex set [n] where
each vertex v independently chooses d random neighbors from [n] \ {v}. Let Gd−out be

obtained by ignoring orientation. We let D[κ]
d−outdenote a randomly edge colored version of

Dd−out.

We start with G[κ]
n,p, we randomly orient the edges to obtain D[κ]

n,p/2. We show that w.h.p.

D[κ]
n,p/2 contains a rainbow copy of D[κ]

d−out. We then argue that w.h.p. Dd−out contains a copy

of the digraph Dn,p/2. So, w.h.p. D[κ]
d−out contains a rainbow colored copy of D[κ]

n,p/2. We ignore
orientation of edges to obtain a rainbow colored copy of Gn,p, for a relevant value of p. We
then apply the relevant theorems of Alon-Furèdi and of Riordan to show the existence of
(a copy of) the required subgraph H. This copy must be rainbow coloured because Gn,p is
rainbow colored.

We begin with the following lemma, which tightens a lemma from Cooper and Frieze, [2].

Lemma 3. Suppose that d ≥ 1, np ≥ 10dε−2 log n and κ = (1 + ε)dn. Then w.h.p. G[κ]
n,p

contains a rainbow colored copy of Gd−out.

Proof. Let p1 satisfy 1 − p = (1 − p1)2, so that p1 ∼ p/2. Let Dn,p1 be the random digraph
where each edge occurs independently with probability p1. Suppose now that we randomly
colour the edges of Dn,p1 with κ colours to obtain the random coloured digraph D[κ]

n,p1 . Ignoring

orientation gives us the random graph G[κ]
n,p, provided we make a random choice from the

two possible colours when coalescing the edges of any directed 2-cycles.

We define a flow network N as follows. N has source σ and sink τ . The vertex set W
consists of σ, τ , the set of colours C = [κ] and the set V = [n] of vertices of the D[κ]

n,p1 under
consideration.

For each colour x ∈ C there is an edge (σ, x) in N of capacity 1. There is an edge (x, v) in

N of infinite capacity for every v ∈ V for which there is an edge (v, w) in D[κ]
n,p1 with colour

x. Finally, for each vertex v ∈ V there is an edge (v, τ) of capacity d.

For S ⊆ C, let N(S) = {v : x ∈ S, v ∈ V, (x, v) ∈ N} be the out-neighbour set of S in N .
A cut of finite capacity can be obtained from a set S ⊆ C and N(S) ⊆ V as follows. Let
T = N(S), W = {σ} ∪ S ∪ T , and let W = (C \ S)∪ (V \ T )∪ {τ}. The capacity of the cut
(W : W ) is κ− |S|+ d|T |. Applying the max-flow min-cut theorem we see that N admits a
flow of value dn if and only if, for all S ⊆ C,

κ− |S|+ d|N(S)| ≥ dn. (4)

We estimate the probability that (4) is not true because, for some set S, |N(S)| < n− (κ−
|S|)/d, i.e. there exists a set of colors S of size s and a set of vertices T = V \N(S) of size

|T | > (κ− s)/d such that every edge of D = D[κ]
n,p1 whose tail is in T has a colour in C \ S.
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Since p1 satisfies 1 − p = (1 − p1)2 we have p1 ≥ p/2, for p ≥ 0. We see from (1) that
np1 ≥ 5dε−2 log n.

Let E denote the event that δ+(Dn,p1) > (1− ε)np1. The Chernoff bounds imply that

P(E) ≤ nP(Bin(n, p1) ≤ (1− ε)np1) ≤ ne−ε
2np1/2 = o(1). (5)

Let

L(s) = 2

(
κ

s

)(
n

d(κ− s)/de

)(
κ− s
κ

)(κ−s)(1−ε)np1/d

be an upper bound on the probability that some set of size s does not satisfy (4) conditional
on E . The range of s we need to consider is between κ−dn+1 and κ−1. For, if |S| < κ−dn
then (4) is true with N(S) = ∅, and if s = κ then as δ+(D) ≥ (1− ε)np1, T = ∅.

The probability that (4) is not satisfied is therefore bounded by Θ where

Θ = P(E) +
κ−1∑

s=κ−dn+1

L(s). (6)

As P(E) = o(1), we can concentrate on the summation term in (6).

Now, choosing κ ≥ (1 + ε)dn, and putting d(κ− s)/de = (κ− s)/d+ fs, 0 ≤ fs < 1,

κ−1∑
s=κ−dn+1

L(s) ≤ 2ned
κ−1∑

s=κ−dn+1

(
κe

κ− s

(
ned

κ− s

)1/d(
κ− s
κ

)n(1−ε)p1/d
)κ−s

≤ 2ned
κ−1∑

s=κ−dn+1

(
e2

(
κ− s
κ

)n(1−ε)p1/d−2
)κ−s

≤ 2ned
κ−1∑

s=κ−dn+1

(
e2

(1 + ε)n(1−ε)p1/d−2

)κ−s
= o(1). (7)

In the second line we used np1 ≥ 5d log n/ε2 to imply that n(1− ε)p1/d � 1 + 1/d, and as
κ > n to replace (n/κ)1/d < 1. In the third line we substituted κ−s ≤ dn−1 into (κ−s)/κ.
In the last line we used κ − s ≥ 1 in the exponent and d = O(n/ log n) from the bound on
np1 to obtain the final o(1).

Thus w.h.p. N contains a flow of value of nd. The capacities of N are integers and so we can
assume this flow is integer valued. It decomposes into nd paths from σ to τ each of which
assigns a colour x to a vertex v. By construction a colour can be assigned at most once to
an edge and each vertex is assigned d colours. This defines a rainbow colored digraph D
in which each vertex has out-degree d. It is easy to argue that D is distributed as D[κ]

d−out.

Indeed we could start with D[κ]
n,p1 and then replace each edge (v, w) by (v, πv(w)) where the

πv, v ∈ V are independent permutations of V \{v}. After this transformation the digraph is
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still distributed as D[κ]
n,p1 . We run the network flow algorithm and w.h.p. we obtain a rainbow

colored digraph D in which each vertex has out-degree d. By replacing each edge (v, w) by

(v, π−1
v (w)) we obtain a rainbow subgraph of the original D[κ]

n,p1 which is distributed as D[κ]
d−out.

Ignoring orientation, we have a rainbow colored copy of Gd−out.

Lemma 4. For every ε > 0 there exists Cε > 0 such that if d ≥ Cε log n then w.h.p. Gd−out
contains a copy of Gn,(2−ε)d/n.

Proof. Let p = (2−ε)d and let 1−p = (1−p1)2 and let D1 = Dn,p1 be as in Lemma 3. In the
digraph D1, each v ∈ [n] independently chooses Bin(n, p1) random out-neighbors and for
large enough Cε the Chernoff bounds imply that w.h.p. Bin(n, p1) ≤ (1+ε/2)np1 ≤ d for all
v ∈ [n]. So, w.h.p. Dd−out contains a copy of Dn,(1−ε/2)d/n and so after ignoring orientation,
Gd−out contains a copy of Gn,(2−ε)d/n.

We can now prove Theorems 1 and 2. It follows from Lemmas 3 and 4 with d = ∆/2 that

w.h.p. G[κ]
n,p contains a rainbow copy Γ of Gn,p1 where p1 = (1 − ε/2)p. For Theorem 1 we

apply the result (2) of Alon and Furédi [1] and for Theorem 2 we apply the result (3) of
Riordan [7]. (There is enough slack in the statements of Theorems 1 and 2 to absorb a factor
1 + ε in the lower bounds on p.)
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