Rainbow Hamilton Cycles in Random Geometric Graphs

Alan Frieze* and Xavier Pérez-Giménez†

March 5, 2020

Abstract

Let X_1, X_2, \ldots, X_n be chosen independently and uniformly at random from the unit square $[0,1]^d$. Let r be given and let $\mathcal{X} = \{X_1, X_2, \ldots, X_n\}$. The random geometric graph $G = G_{\mathcal{X},r}$ has vertex set \mathcal{X} and an edge X_iX_j whenever $|X_i - X_j| \leq r$. We show that if each edge of G is colored independently from one of $n + o(n)$ colors and r has the smallest value such that G has minimum degree at least two, then G contains a rainbow Hamilton cycle a.a.s.

1 Introduction

Given a graph $G = (V,E)$ plus an edge coloring $c : E \to [q]$, we say that $S \subseteq E$ is rainbow colored if no two edges of S have the same color. There has been a substantial amount of research on the question as to when does an edge colored graph contain a Hamilton cycle. The early research was done in the context of the complete graph K_n when restrictions were placed on the colorings. In this paper we deal with the case where we have a random geometric graph and the edges are colored randomly.

In the case of the Erdős-Rényi random graph $G_{n,m}$, Cooper and Frieze [3] proved that if $m \geq 21n \log n$ and each edge of $G_{n,m}$ is randomly given one of at least $q \geq 21n$ random colors then w.h.p. there is a rainbow Hamilton cycle. Frieze and Loh [6] improved this result to show that if $m \geq \frac{1}{2}(n + o(n)) \log n$ and $q \geq (1 + o(1))n$ then w.h.p. there is a rainbow Hamilton cycle. This was further improved by Ferber and Krivelevich [4] to $m = n(\log n + \log \log n + \omega)/2$ and $q \geq (1 + o(1))n$, where $\omega \to \infty$ with n. This is best possible in terms of the number of edges. The case $q = n$ was considered by Bal and Frieze [2]. They showed that $O(n \log n)$ random edges suffice.

Let X_1, X_2, \ldots, X_n be chosen independently and uniformly at random from the unit square $[0,1]^d$ where $d \geq 2$ is constant. Let r be given and let $\mathcal{X} = \{X_1, X_2, \ldots, X_n\}$. The random geometric graph $G_{\mathcal{X},r}$ has vertex set \mathcal{X} and an edge X_iX_j whenever $|X_i - X_j| \leq r$. Here $|\cdot|$ refers to an arbitrary ℓ_p-norm, where $1 < p \leq \infty$. Suppose now that each edge of $G_{\mathcal{X},r}$ is given a random color from $[q]$. Call the resulting edge colored graph $G_{\mathcal{X},r,q}$. Bal, Bennett, Pérez-Giménez and Pralat [1] considered the problem of the existence of a rainbow

*Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA, USA, 15213. Research supported in part by NSF grant DMS1661063.
†Department of Mathematics, University of Nebraska-Lincoln, Lincoln NE, USA, 68588. Research supported in part by Simons Foundation Grant #587019.
Hamilton cycle $G_{X,r,q}$. They show that for r at the threshold for Hamiltonicity, $q = O(n)$ random colors are sufficient to have a rainbow Hamilton cycle w.h.p. The aim of this paper is to show that $q = n + o(n)$ colors suffice in this context.

Let $\theta = \theta(d,p)$ denote the volume of the unit ℓ_p-ball in d dimensions and let r satisfy

$$r^d = \frac{(2/d) \log n + (4 - d - 2/d) \log \log n + \omega}{22^d},$$

where $\omega = o(\log \log n) \to \infty$.

Theorem 1. Let r be as in (1), let $\eta > 0$ be arbitrarily small and $q = (1 + \eta)n$. Then w.h.p. $G_{X,r,q}$ contains a rainbow Hamilton cycle.

We actually have the stronger hitting time result. Let

$$\hat{r} = \inf \{ r \geq 0 : G_{X,r} \text{ has minimum degree at least 2} \}.$$

Theorem 2. $G_{X,\hat{r},q}$ has a rainbow Hamilton cycle a.a.s.

2 Notation and Structure

Let $\varepsilon \ll \eta$ be a constant. We will convention let the set of colors $Q = [m]$ where $m = (1 + 2\eta)n$ and that the colors of the edges of the random geometric graph, $G_{X,r,q}$ are randomly chosen from Q. Let $Q_0 = [1, (1 + \eta)n]$ and $Q_1 = [n + \eta n + 1, n + 2\eta n]$.

We divide $[0,1]^d$ into a set C of $N = \frac{1}{(\varepsilon r)^d}$ cells of side $s = \varepsilon r$ where $\varepsilon \ll \eta$. We remark that

$$N \approx \frac{\theta n}{2^{d-1} \varepsilon^d \log n}.$$

The graph of cells G_C is a graph with vertex set C where two cells are adjacent in G_C if their centres are at ℓ_p-distance at most $r - 2ds$. A cell C is dense if $|C \cap \mathcal{X}| \geq \varepsilon^3 \log n$. Otherwise it is sparse. The set of dense cells is denoted by \mathcal{D} and G_D is the subgraph of G induced by the good cells. The paper [1] shows that a.a.s.

$$G_D \text{ contains a unique giant component } K_g \text{ containing } N - o(N) \text{ cells.}$$

The cells in K_g are good. A cell that is not good, but is adjacent to a cell in K_g is called bad. The remaining cells are called ugly. The following two lemmas describe properties that occur a.a.s and their proofs are in [1]:

Lemma 3.

P1 $|C \cap \mathcal{X}| \leq \log n$ for all $C \in C$.

P2 There are at most $n^{1-\varepsilon/2}$ bad cells.

P3 There are at most $n^{O(\varepsilon^{1/d})}$ ugly cells.

P4 The maximum degree in $G_{X,r,q}$ is at most $2d \log n$.

Lemma 4. Let \mathcal{X}_U denote the set of points in ugly cells. Then there is a collection of paths \mathcal{P} such that
Q1 \mathcal{P} covers \mathcal{X}_U.

Q2 \mathcal{P} covers at most two vertices inside any non-ugly cell.

Q3 Every vertex in \mathcal{X} that is covered by \mathcal{P} is at graph-distance at most $2(20d)^d$ from some vertex in \mathcal{X}_U with respect to the graph G_C.

Q4 For each path $P \in \mathcal{P}$, there is a good cell C_P such that the two endvertices of P lie in cells that are adjacent in G_C to C_P.

Q5 Every two different paths in \mathcal{P} are at ℓ_p-distance at least Ar from each other, A arbitrary.

Q6 The total number of edges on the paths in \mathcal{P} is $n^{O(\varepsilon^{1/d})}$.

For a cell C we let $V(C) = C \cap \mathcal{X}$ and $E(C) = (C \cap \mathcal{X})^2 \subseteq E(G)$. A cell is rainbow if $E(C)$ is rainbow.

We now prove some lemmas related to the colorings of cells.

Lemma 5. A.a.s. (a) there are at most $\log^4 n$ non-rainbow cells, (b) no cell contains 3 repetitions of a color, (c) all non-rainbow cells are good, (d) there are no non-rainbow cells within distance $10r$ of the boundary of $[0,1]^d$ and (e) there are no bad cells adjacent to a non-rainbow cell.

Proof. Now for a fixed cell C,

$$\mathbb{P}(C \text{ is not rainbow colored} \mid P1) \leq (1 + 2\eta)n\mathbb{P}\left(\text{Bin}\left(\log^2 n, \frac{1}{(1 + 2\eta)n}\right) \geq 2\right) = O\left(\frac{\log^4 n}{n}\right). \quad (3)$$

(a) We then have, by the Markov inequality that

$$\mathbb{P}(\neg (a) \mid P1) \leq O\left(\frac{N \log^4 n}{n \log^4 n}\right) = O\left(\frac{1}{\log n}\right).$$

Explanation: we choose a cell C and a color c. Then the number of edges of color c in cell C is dominated by the stated binomial.

(b) We have that

$$\mathbb{P}(\neg (b) \mid P1) \leq (N + 2\eta)n\mathbb{P}\left(\text{Bin}\left(\log^2 n, \frac{1}{(1 + 2\eta)n}\right) \geq 3\right) + N(1 + 2\eta)^2 n^2\mathbb{P}\left(\text{Bin}\left(\log^2 n, \frac{1}{(1 + 2\eta)n}\right) \geq 2\right)^2 = O\left(\frac{\log^7 n}{n}\right).$$

Explanation: The first term in the upper bound for 3 edges of the same color and the second term accounts for two pairs of edges with the same color.

(c) We have that

$$\mathbb{P}(\neg (c) \mid P1, P2, P3) \leq 2n^{1 - \varepsilon/2}(1 + 2\eta)n \times O\left(\frac{\log^8 n}{n^2}\right) = O(n^{-\varepsilon/3}).$$

(d) There are $O(1/r)$ cells within $10r$ of the boundary and so

$$\mathbb{P}(\neg (d)) = O\left(\frac{\log^4 n}{rn}\right) = o(1).$$

3
(e) The graph G_C has maximum degree $O(1)$ and so
\[
\mathbb{P}(\neg (e) \mid P2) \leq O\left(\frac{n^{1-\varepsilon/2} \log^4 n}{n}\right) = o(1).
\]
\[\square\]

We add the non-rainbow cells of Lemma 5 to the set of bad cells. This will remove some cells from K_g. We argue next that K_g remains connected.

Lemma 6. K_g remains connected a.a.s. after the deletion of the non-rainbow cells.

Proof. We now refer to the cells in C as $C(i) : i \in [M]^d$ where $M = N^{1/d}$. We first claim the following.

If $C(i), C(i')$ are not rainbow, then $||i - i'||_1 > 2$. \hspace{1cm} (4)

For a fixed i, observe that there at most d^2 cells i' such that $||i' - i||_1 \leq 2$. It follows from (3) that
\[
\mathbb{P}(\neg (4)) \leq O\left(\frac{d^2 \log^4 n}{n}\right) = o(1).
\]

We also have
\[
\mathbb{P}(\exists C, C' \in C : C \text{ is good but non-rainbow}, C' \text{ is not good}, \{C, C'\} \in E(G_C) \mid P2, P3) = O\left(\frac{n^{1-\varepsilon/2} 5^d \log^4 n}{n}\right) = o(1). \hspace{1cm} (5)
\]

So, suppose now that C is a non-rainbow good cell. Referring to $||i' - i||_1$ as the i-distance between $C(i), C(i')$, we let $N_2(C)$ denote the cells with i-distance 2 of C in G_C, excluding C itself. Note that the cells in $N_2(C)$ are neighbors of C in G_C. Let K_g^b denote K_g before we remove the non-rainbow cells and let K_g^a denote K_g^b, less the cells that have been removed. We can assume by [5] that $N_2(C) \subseteq K_g^a$. Suppose there is a path P in K_g^b that contains C as an interior vertex. Let $C_1 = C(i_1), C_2 = C(i_2)$ be the neighbors of $C = C(i)$ on P where $i_k = i + \theta_k, k = 1, 2$. The lemma now follows from the fact that there is a path Q from C_1 to C_2 that only uses cells at i-distance at most one from C. If $\theta_1 \neq -\theta_2$ then we consider the sequence $(i_1, i_1 + \theta_2, i_2 + \theta_1, i_2)$ which defines a path of length 3 in K_g^b from C_1 to C_2. If $\theta_1 = -\theta_2$ then we use the sequence $i_1, i_1 + \theta_3, i + \theta_3, i + \theta_3 - \theta_1, i_2$ where w.l.o.g. $\theta_1 = (1, 0, \ldots, 0)$ and $\theta_3 = (0, 1, 0, \ldots, 0)$. \[\square\]

Lemma 7. The edges on P are rainbow colored a.a.s.

Proof. The probability the statement of the lemma fails can be bounded by $\left(\frac{n^{O(1/d)}}{2}\right) \times n^{-1} = o(1)$. \[\square\]

[XP: moved here:] Let B_1 denote the colors on edges that are incident with vertices in bad or ugly cells or lie on a path in P.

Lemma 8. No cell C is incident with $k_0 = 20/\varepsilon$ edges with colors from B_1, excluding colors from C if it is bad or ugly.

Proof. Then
\[
\mathbb{P}(\exists C \mid P1, P2, P3, P4) \leq N\left(\frac{2^d \log^2 n}{k_0}\right) \left(\frac{2^d n^{1-\varepsilon/3} \varepsilon^3 \log^2 n}{(1 + \eta)n}\right)^{k_0} \leq n^{1+o(1)-k_0 \varepsilon/10} = o(1).
\]

Explanation: P1 and P4 imply that no cell is incident to more than $2^d \log^2 n$ edges. P2, P3 and P4 imply that $|B_1| \leq 2^d n^{1-\varepsilon/3} \varepsilon^3 \log n$. \[\square\]
We now prove some lemmas concerning the existence of paths in $G_{m,p}$.

Lemma 9. Suppose that $0 < p < 1$ is constant. Then,

(a) $\mathbb{P}(G_{m,p} \text{ is not Hamiltonian}) \leq e^{-mp/4}$ for m sufficiently large.

(b) Let $\psi(G)$ denote the minimum number of vertex disjoint paths that cover the vertices of G. Then if $k = O(1)$ then

$$\mathbb{P}(\psi(G_{m,p}) \geq k) \leq e^{-kmp/4}.$$

Proof.

(a) We first observe that if $N_G(S)$ is the disjoint neighborhood of S in a graph G then with $G = G_{m,p}$,

$$\mathbb{P}(\exists S, 1 \leq |S| \leq m/6 : |N_G(S)| \leq 2|S|) \leq \sum_{s=1}^{m/6} \binom{m}{s} \left(\frac{m}{2s}(1-p)^{s(m-3s)} \leq \sum_{s=1}^{m/6} \frac{me}{s} \cdot \frac{m^2e^2}{4s^2} \cdot e^{-mp/2} \right)^s \leq e^{-mp/3}.$$

So, writing $G_{m,p} \supseteq G_{m,p/2} \cup G_{m,p/2}$ and applying Pósa’s argument, we see that, if $q = p/2$ then

$$\mathbb{P}(G_{m,p} \text{ is not Hamiltonian}) \leq e^{-mq/3} + m \exp \left\{ - \left(\frac{m/6}{2} \right)^q \right\} \leq e^{-mp/4}.$$

Outline explanation: Given that $|N_G(S)| > 2|S|$ for $G = G_{m,q}, |S| \leq m/6$, Pósa’s lemma implies that there are at least $\binom{m}{2}^6$ non-edges, whose addition to a connected non-Hamiltonian graph will increase the length of the longest path length by one. (If the graph has a Hamilton path, then there are this number of edges that create a Hamilton cycle.) See [5], Chapter 6 for more details.

(b) Let V_ℓ be the set of vertices of degree at most $\ell = O(1)$ in $G_{m,p}$. Then for $r = O(1),$

$$\mathbb{P}(|V_\ell| \geq r) \leq \binom{m}{r} \mathbb{P}(\text{Bin}(m - r, p) \leq \ell)^r \leq m^r \left(\sum_{i=0}^{\ell} \binom{m-r}{i} p^i (1-p)^{m-r-i} \right)^r \leq m^{r+\ell r} e^{r(r+\ell-m)p} \leq e^{-(m-o(m))pr}.$$

Suppose now that we arbitrarily add edges to vertices of degree at most $3k$ in $G_{m,p}$ so that the new graph H has minimum degree $\ell = 3k$. Arguing as in (a) we see that

$$\mathbb{P}(\exists S, 1 \leq |S| \leq m/6 : |N_H(S)| \leq 2|S|) \leq \sum_{s=k}^{m/6} \binom{m}{s} \left(\frac{m}{2s}(1-p)^{s(m-3s)} \leq \sum_{s=k}^{m/6} \frac{me}{s} \cdot \frac{m^2e^2}{4s^2} \cdot e^{-mp/2} \right)^s \leq e^{-kmp/3}.$$

It then follows that

$$\mathbb{P}(H \text{ is not Hamiltonian}) \leq e^{-kmp/3} + m \exp \left\{ - \left(\frac{m/6}{2} \right)^q \right\} \leq e^{-kmp/4}.$$

Now if $|V_{3k}| \leq k$ and H is Hamiltonian, we have $\psi(G_{m,p}) \leq k$.

\[\square\]
3 Coloring procedure

We now describe how we select our rainbow Hamilton cycle.

3.1 Good cells

Let T_C be a spanning tree of the giant K_p. Suppose that C_1, C_2, \ldots, C_M is an enumeration of the good cells that follows from a depth first search of T_C. We examine them in this order and when we reach C_i we will have constructed a cycle H_{i-1} through $V(C_1) \cup \cdots \cup V(C_{i-1})$. Let $C_\pi(i)$ denote the parent of C_i in this search. Let A denote the allowable colors at this point, i.e. those colors not used in H_{i-1} or in B_1. Let G_i denote the edge-colored subgraph of G induced by $V(C_i)$ and the edges with colors in A. We note that G_i contains a copy of $G_{m,p}$ where $m \geq \varepsilon^3 \log n$ and $p = \eta/2$. We first try to construct a cycle D_i using edges of color in $A \cap Q_0$. Note that D_i is necessarily a rainbow cycle. It follows from Lemma 9(a) that we succeed with probability at least $1 - n^{-\varepsilon^3/4}$. So, a.a.s. we fail to construct D_i at most $o(n)$ times overall.

For $j < i$, let $E_{i,j}$ denote the edges of H_{i-1} that are incident with exactly one point in C_j. We justify the following claim later.

Claim A: A.a.s., at all times in the coloring process, if $j < i$, then $|E_{i,j}| = o(\log n)$.

(a) If C_i contains a spanning cycle D_i then we try to patch it into H_{i-1} as follows: we search for an edge $e_1 = \{a, b\}$ of D_i and an edge $e_2 = \{c, d\}$ of $H_{i-1} \cap E(C_\pi(i-1))$ such that (i) $f_1 = \{a, c\}, f_2 = \{b, d\}$ are both edges of G and (ii) f_1, f_2 use colors from $Q_1 \setminus B_1$ that have not been used in H_{i-1}, D_i. We then delete e_1, e_2 and replace them with f_1, f_2 creating H_i.

We note that to this point we have used $o(n)$ patching colors from Q_1 and that the probability of failing to patch D_i is at most $(1 - \eta^2/4)^{\Omega(\log^2 n)} = n^{-\omega(1)}$. To obtain this bound, we see that there are $\Omega(\log n)$ choices for each of e_1 and for each such choice there are $\Omega(\log n)$ choices for e_2. We can make these choices so that an edge can occur at most once as f_1, f_2 and so all these possibilities are independent. Finally, the probability that both of f_1, f_2 are both acceptable is at least $(\eta/2)^2$. We need Claim A to justify the number of choices for e_2. So, in this case we can assume that D_i is patched into H_{i-1}.

We can select the cycle D_i by exposing the edges that use available colors, but without exposing the actual color. Of course, having selected D_i we expose the colors of its edges. We call this deferred coloring.

(b) There is no D_i. Lemma 9(b) implies that if $\psi_0 = \frac{5}{\varepsilon^3 \eta}$ then

\[\mathbb{P}(\exists \text{ good cell } C : \psi(G_i) \geq \psi_0) \leq n e^{-\psi_0 \varepsilon^3 \eta \log n / 40} = o(1). \] (6)

We expose the set of paths using deferred coloring. Let P be one of the at most ψ_0 paths and let c, d be the endpoints of P. We now consider all edges $f_i = \{c_i, d_i\}, i = 1, 2, \ldots, k$ of H_{i-1} that are within distance r of c, d. Here $k \geq \alpha \log n$, $\alpha \geq \varepsilon^3 / 2 - o(1)$. We consider adding P to H_{i-1} by deleting f_i and adding edges $\{c_i, c\}, \{d_i, d\}$. We say that such a swap is a failure, if the new cycle is not rainbow. The probability that all swaps lead to a failure is at most $(1 - \eta^2/4)^{\alpha \log n / 2} \leq n^{-\xi_0}, \xi_0 = \eta^2 \varepsilon / 8$. (We estimate $\alpha \log n / 2$ by taking every other pair and the $o(1)$ accounts for the edges of H_{i-1} alluded to in Claim A.

If all swaps lead to non-rainbow cycles, then we consider making the swap involving $f = f_1$ and then deleting the unique edges $g_l = \{x_l, y_l\}, l = 1, 2$ of the same color as $\{c, c\}, \{d, d\}$ in H_{i-1}. First consider the
path \(\hat{P} \) that covers all the vertices of \(H_{i-1} \) and \(P \) that is obtained by adding both edges \(\{c, c_1\}, \{d, d_1\} \) and then deleting \(g_1 \). We will subsequently delete \(g_2 \) using the method proposed next. Suppose that \(x = x_1 \) lies in cell \(C_x \) and \(y = y_1 \) lies in cell \(C_y \). What we do now is to search for an edge \(\{u, v\} \) of \(E(\hat{P}) \) with \(u \in E(C_x), v \in E(C_y) \) such that the cycle \(\hat{P} + \{u, x\} + \{v, y\} - \{u, v\} \) is rainbow. In this attempt, we can restrict ourselves to edges \(\{u, x\}, \{v, y\} \) with colors in \(Q_1 \). Because (i) we will only search for \(o(n) \) edges of color in \(Q_1 \), and (ii) because

Claim B: a.a.s., no cell occurs as \(C_x \) or \(C_y \) more than \(o(\log n) \) times,

and (iii) because every point in \(C_x \) is within \(\ell_p \) distance \(r \) of every point in \(C_y \), we see that we succeed with probability at least \(1 - n^{-\xi_0} \). Having dealt with \(g_1 \) we follow the same procedure with \(g_2 \). So, with probability at least \(1 - 2n^{-\xi_0} \) we succeed in adding \(P \) to \(H_{i-1} \) to create a rainbow cycle. If we fail, then we are left with a cycle containing one or two repeated colors. We think of this as the first stage in a branching process that creates repeated colors.

We repeat the same process to try to remove any repeated colors. The expected number of repeated colors after \(l \) stages is \((4n^{-\xi_0})^l\). So, with probability at least \(1 - n^{-2+o(1)} \) we can say that after at most \(2/\xi_0 \) stages, we have created a rainbow cycle through the vertices of \(P \) and \(H_{i-1} \). Furthermore, we will have used at most \(2^{1/\xi_0} \) colors from \(Q_1 \). We repeat the same process to absorb all the paths of \(C_i \) to create \(H_i \).

We must now deal with the claims A and B. We note that Claim B implies Claim A. The only way that \(E_{i,j} \) can get too large is through a cell being chosen too many times as \(C_x \). It cannot get too large because it occurs many times as \(C_{\pi(i)} \). This follows from the fact that \(G_c \) has maximum degree \(\varepsilon^{-3} \). At any stage, for a cell \(C \), the probability it is chosen in the addition of \(C_i \) is equal to

\[
P((b) \text{ occurs and edge } f_1 \text{ uses a repeated color}) \times P(\text{color appears in } C) = O \left(\frac{i \log n}{n^{1+\eta^{-3}/4}} \cdot \frac{1}{i} \right) = O \left(\frac{1}{N n^{\eta^{-3}/4}} \right). \tag{7}
\]

So, using the Markov inequality, a.a.s. the number of times that \(C \) occurs as \(C_x \) is dominated by the maximum size of a box when \(O(N n^{-\eta^{-3}/8}) \) balls are thrown randomly into \(N \) boxes. And we note that a.a.s. this maximum is \(O(1) \).

Let now \(H \) denote the rainbow cycle that uses all the points in good cells.

3.2 Bad cells

We note that \(H \) does not use any color incident with a point in non-good cells. We add the points in bad cells, cell by cell, growing \(H \) as we go. We avoid using the colors in the paths \(\mathcal{P} \) promised in Lemma 8. If the cell \(C \) contains more than \(2k_0 + 1 \) points then because it forms a clique in \(G \), it contains \(k_0 \) edge disjoint Hamilton cycles (w.r.t. \(X \cap C \)) and Lemma 8 implies that at least one of these \(H_C \) is free from colors repeated in other non-good cells. We can then patch \(H_C \) into \(H \) avoiding edges from \(B_1 \). This follows from the fact that bad cells have at least one good neighbor. If \(C \) contains at most \(2k_0 \) vertices then we insert these vertices one by one. We can do this because for a good cell \(C \) there are at most \(\pi/\varepsilon^2 \) bad cells contained in the disk with the same center as \(C \) and radius \(r \).
3.3 Ugly cells

We patch the points in the ugly cells into H by using the paths \mathcal{P} of Lemma 4. By avoiding colors repeated in other non-good cells, we have avoided using the colors of \mathcal{P}. We also require the claim in Lemma 7.

References

