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Abstract

We discuss the expected minimum cost of rainbow spanning trees
and Hamilton cycles in randomly edge colored random graphs.

1 Introduction

The minimum length of structures like spanning trees and Hamilton cycles
among random points in Euclidean space has been a topic of interest for the
better part of a century. Beardwood, Halton and Hammersley [3] showed that
the minimum cost of a tour through n random points in the unit square is
asymptotic to βTSPn

1/2 with high probability (we say an event En occurs with
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high probability or w.h.p. if P(En) → 1 as n → ∞). Here βTSP is a positive
constant, still unknown after more than 60 years. Steele [22] generalised
this result to Euclidean Functionals and showed that the minimum cost of
a spanning tree on n random points is asymptotic to βMSTn

1/2, w.h.p. In
both cases, the cost of edges is determined by the Euclidean distance between
points. Steele’s work shows that there are many instances of optimisation
problems where the expected minimum cost grows like βn1/2 for unknown
constants β. Frieze and Pegden [12] showed the constants for lengths of lower
bound structures for the tour (like the minimum spanning tree, or twice a
matching) really are distinct from the constant for the TSP, even though the
best known explicit bounds on the constants generally overlap.

When the costs are generated independently, the situation becomes much
clearer. In the case of spanning trees where the edges of the complete graph
Kn are given independent uniform [0, 1] random costs, Frieze [8] showed that
E(Ln) ∼ ζ(3) =

∑︁∞
k=1

1
k3
, where Ln denotes the (random) minimum cost of

a spanning tree.

The expected cost of the minimum cost Hamilton cycle in the complete graph
Kn is asymptotic to τ = 1

2

∫︁∞
x=0

y(x)dx where y is the positive solution to(︁
1 + x

2

)︁
e−x+

(︁
1 + y

2

)︁
e−y = 1. This was proved by Wastlünd [25]. Frieze [10]

showed that the expected minimum cost of a Hamilton cycle is asymptotically
equal to the expected minimum cost of a 2-factor.

If we orient the edges then it follows from the work of Karp [16] and Aldous [1]
that the expected minimum cost of a directed Hamilton cycle is asymptotic
to ζ(2) =

∑︁∞
k=1

1
k2

= π2

6
.

In this work we add a spot of color to the problems. We assume that the
edges of the graphs in question have been given uniformly random colors and
ask for minimum cost rainbow Hamilton cycles or spanning trees. In this
context, a set S of edges is rainbow colored if all the colors in S are distinct.
We do this within two contexts: either we have n random points in [0, 1]2

and the cost of an edge is the Euclidean distance between its endpoints, or
else we have independent uniform [0, 1] random costs.

In the first context we let X = {x1,x2, . . . ,xn} where the xi are indepen-
dently chosen uniformly from the unit square [0, 1]2. The cost of edge {xi,xj}
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is the Euclidean length |xi − xj|. Our first results concern the length ZMST

of the minimum rainbow spanning tree in this model, when we randomly
color labeled from a set of n − 1 colors. (Note that with fewer colors, no
rainbow spanning tree would exist. Also, even if we have enough colors there
is always some small probability that there is no rainbow spanning tree at
all, in which case ZMST is undefined.) We let Z∗

MST denote the length of
the minimum spanning tree (without the rainbow constraint); recall that
Z∗

MST ∼ βMST

√
n w.h.p., for some constant βMST.

Theorem 1. In the Euclidean setting, with edges labeled randomly by n− 1
colors, we have ZMST = Θ(

√
n) w.h.p. and ZMST − Z∗

MST = Θ(
√
n) w.h.p.

In particular, Theorem 1 says that the minimum length doesn’t change by
more than a constant factor under a rainbow constraint, but that a constant-
factor change does necessarily occur. To put Theorem 1 in context, there
is an important sense in which it is much less obvious that the minimum
rainbow spanning tree should have length Θ(

√
n) than it is for the various

optimization problems (matchings, 2-factors, linear programming relaxations
of the TSP, etc) to which the general methods derived from Beardwood,
Halton, and Hammersley and from Steele have been applied. In particular,
the rainbow condition seems to preclude a straightforward application of
subadditivity, which explains, for example, why we do not yet know that
ZMST/

√
n has a limit. In some sense, the success of subadditivity approaches

to structure lengths in random point-sets reflects the sense in which the
asymptotic structure lengths really depend only on the local geometry of
the ambient space. (For example, in the Beardwood-Halton-Hammersley
theorem, the unit square can be replaced by any bounded open set of R2 of
measure 1, and the asymptotic length of a tour through n points remains
the same, with the same unknown constant βTSP. But the rainbow condition
we impose is a global constraint on the spanning tree that cannot be easily
decomposed into noninteracting parts.

For the minimum length ZTSP of a rainbow Hamilton cycle in the Euclidean
model, we do not achieve an optimal result up to constant factors unless we
allow a slight excess in the number of available colors.

Theorem 2. In the Euclidean setting, with edges labeled randomly by q =
(1 + ε)n colors, we have (a) ZTSP = O(n1/2 log n), and (b) ZTSP − Z∗

TSP =
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Ω(
√
n) w.h.p. Indeed, (a) holds for any set of n points with randomly colored

edges.

Here like before the starred version Z∗
TSP represents the minimum length in

the absence of the rainbow condition.

In the second scenario, [0, 1]2 is replaced by the complete graph Kn and the
costs C(i, j) are independent uniform [0, 1] random variables. We prove a
general theorem (see Theorem 11) for cheap rainbow substructures in ran-
domly colored structures with random costs. The proof is an adaptation of
some of the recent work on thresholds in spread hypergraphs (see [5]) based
on Frankston, Kahn, Narayanan, and Park’s recent proof of the fractional
Kahn–Kalai conjecture [7]. Our Theorem 11 implies the following:

Theorem 3. The minimum cost solution of the following problems have value
O(1) w.h.p. The proofs are non-constructive.

(a) Traveling Salesperson Problem in Kn with at least n colors for the edges.

(b) Minimum cost perfect matching in complete k-uniform hypergraphs, k ≥
2 with at least n/k colors for the edges.

(c) Minimum cost classes of degree bounded spanning trees in Kn with at
least n− 1 colors for the edges e.g. spanning binary trees.

The rest of the paper is organized as follows. In Section 2 we prove the first
assertion of Theorem 1, i.e. that ZMST = Θ(

√
n) w.h.p. In Section 3 we

prove the first assertion of Theorem 2, i.e. that ZTSP = O(
√
n log n) for n

colors. In Section 4 we prove the remaining assertions in Theorems 1 and 2,
i.e. that ZMST −Z∗

MST = Θ(
√
n) for n colors and that ZTSP −Z∗

TSP = Θ(
√
n)

for (1+ ε)n colors. In Section 5 we prove Theorem 3. Finally, we make some
observations and state open questions in Section 6.
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2 Finding a rainbow spanning tree with n− 1

available colors

In this section, we describe a simple polynomial time algorithm for finding
a rainbow spanning tree of cost O(n1/2). (We realise that finding a cheapest
rainbow tree is solvable in polynomial time, see for example Lawler [17]. But
the weighted matroid intersection algorithm is not so easy to analyse from a
probabilistic point of view.) For x = (x, y) ∈ X we let ξ1(x) = x, ξ2(x) = y.
Assuming that x1 = (x1, y1),x2 = (x2, y2), . . . ,xn = (xn, yn) are ordered in
increasing value of ξ2, let X = {x1,x2, . . . ,xn} and X1 = {x1,x2, . . . ,xn−1}.

We define a weighted bipartite (multi-)graph Γ with bipartition X1∪C where
C = [n−1] is our set of colors. The edge set will be the union E1∪E2 of sets
which we define next; for both sets E1 and E2, an edge (x, c) will correspond
to some edge (x,x′) with ξ2(x) < ξ2(x

′) in the embedded graph that has
been assigned color c. This last property guarantees that a perfect matching
in Γ corresponds to a rainbow spanning tree in the embedded graph. So to
prove the first assertion in Theorem 1, it suffices to show that w.h.p.

Γ contains a perfect matching, (1)

and
the total weight of all edges in Γ is O(n1/2). (2)

First we define the set of directed edges

E+ = {(x,y) ∈ X1 ×X : ξ2(y) > ξ2(x)}.
For x ∈ X , we let N(x) = {y : (x,y) ∈ E+}. We let K be a constant
large enough to make the argument work and define E1 as follows. For each
x ∈ X1, c ∈ C there is an edge ex,c = {x, c} in E1 if c is one of the colors of
the K shortest edges in N(x) (noting that if i > n−K, then we include all
edges ex,c where c is some color of an edge in N(xi)). We will prove that the
total weight of the edges in E1 is O(n1/2) w.h.p. at the end of this section.

In addition, there is another set of edges E2. We first define a set A ⊆ X1.
For a large positive value B and 1 ≤ j ≤ L = log2 n, we let

Aj =

{︃
x ∈ X1 : ∃y s.t.(x,y) ∈ E+ and |x− y| ∈

[︃
Bj2√
n
,
B(j + 1)2√

n

)︃}︃
.
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We then let A =
⋂︁L

j=1Aj. We will show that A is most of X , but first, we
finish defining the edge set E2.

Define a set EA by choosing, for each x ∈ A and j ∈ [L], one edge (x,y) ∈ E+

incident to x of length in the interval

[Bj2/
√
n,B(j + 1)2/

√
n). (3)

The level of e ∈ EA is the unique j such that the length of e lies in
[Bj2/

√
n,B(j + 1)2/

√
n). We obtain E2 by adding, for each color c, the

edges (x, c), where x is a lower endpoint of one of the K lowest level edges
of color c in EA; here, we break ties by choosing a random ordering of the
edges of each fixed level (and this random ordering is chosen independently
for each distinct color). Note that if |A|, is large, as we will now show, then
our choice of L = log2 n guarantees that each color c has K incident edges
in E2 w.h.p.

We have that for any j ∈ [L], if ξ2(x) < 1− n−2/5, then the probability that
x /∈ Aj is at most (︃

1− 2πB2j3

n

)︃n−1

≤ e−6B2j3 . (4)

So,

P(x ̸∈ A) ≤ P(x ̸∈ A | ξ2(x) < 1− n−2/5) + n−2/5 ≤
∑︂
j

e−6B2j3 + n−2/5.

For large B (and n), we find

P(x ̸∈ A) < e−5B2

.

So
E(|A|) ≥ n− e−5B2

n = n(1− e−5B2

). (5)

We now use an inequality of Warnke to show that |A| is large with very high
probability.

Lemma 4 (Warnke [24]). Let W = (W1,W2, . . . ,Wn) be a family of indepen-
dent random variables with Wi taking values in a set Λi. Let Ω =

∏︁
i∈[n] Λi
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and suppose that G ⊆ Ω and f : Ω → R are given. Suppose also that whenever
x,x′ ∈ Ω differ only in the i-th coordinate

|f(x)− f(x′)| ≤

{︄
ci if x ∈ G.
di otherwise.

If Y = f(X), then for all reals γi > 0,

P(Y ≥ E(Y ) + t) ≤ exp

{︄
− t2

2
∑︁

i∈[n](ci + γi(di − ci))2

}︄
+ P(W /∈ G)

∑︂
i∈[n]

γ−1
i .

(6)

To use this lemma we need to define a “good” event G. So, we let G be the
event that for all x,

νx = |
{︁
y : |x− y| ≤ 2B log4 n/n1/2

}︁
| < 15B2 log8 n.

The Chernoff bounds imply that

P(¬G) = e−Ω(log8 n). (7)

To apply Lemma 4 we let Wi = xi and f(X ) = n − |A| and take ci =
30B2 log8 n and di = n for i ∈ [n]. Putting γi = n−3 and our bound on
P(¬G) in (6), we see that |A| > E(|A|)−n2/3 w.h.p. We conclude that w.h.p.

|A| > (1− e−5B2

)n. (8)

The purpose of this construction of the edge set E2 is to guarantee the fol-
lowing property.

Observation 5. The (multi)-set of neighbors x for a color c in E2 is sym-
metric with respect to permutation of labels of A.

Proof. This follows from construction of the set E2, since each vertex x is
the lower endpoint of exactly one edge in EA(x) for each interval length.
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To summarize, letting N1(·) and N2(·) refer to neighborhoods using edges
from E1 and E2 respectively, the neighborhood sets N1(xi) (i ∈ [n − 1])
are a collection of independent uniform random (multi)sets of C (of size
min{K,n − i}). And the edge (multi)sets N2(c) (c ∈ C) are uniform in the
sense of Observation 5, and we will show in Claim 1 that they exhibit some
approximate correlation in our favor.

We now show using Hall’s theorem that (1) holds. We first show that S ⊆ X1

implies that |N(S)| ≥ |N1(S)| ≥ |S| for |S| ≤ n0 := e−4/K(n − 1). We do
this by finding a perfect matching between X ′ = {xn−K , . . . , xn−1} and a set
Y ⊂ C and subsequently showing that for every S with S ∩ X ′ = ∅ and
|S| ≤ n0, we have |N1(S) \ Y | ≥ |S|. Finding a matching covering X ′ just
requires checking Hall’s condition on X ′: each S ⊆ X ′ of size s has at least(︁
s+1
2

)︁
outgoing E1 edges, so the probability there is a set S ⊆ X ′ violating

Hall’s condition is at most

K∑︂
s=1

(︃
K

s

)︃(︃
|C|
s− 1

)︃(︃
s− 1

|C|

)︃(s+1
2 )

≤ 2K
K∑︂
s=2

(︄
e|C|
s− 1

[︃
s− 1

|C|

]︃(s+1)/2
)︄s

,

which is O(1/n). Thus Hall’s theorem implies the existence of a set Y ⊆ C
with a perfect matching to X ′. For S ⊂ X1 \ X ′, let n1 = n−K − 1, note

P(∃S ⊆ X1 \ X ′, |S| ≤ n0, |N1(S) \ Y | ≤ |S|) ≤
n0∑︂

s=K

(︃
n1

s

)︃(︃
n− 1

s

)︃(︃
s+K

n− 1

)︃Ks

≤
n0∑︂

s=K

(︃
(n− 1)e

s

)︃2s(︃
s+K

n− 1

)︃Ks

≤ eK
2

n0∑︂
s=K

[︄
e2
(︃

s

n− 1

)︃(K−2)
]︄s

= O(n−(K−3)),

where in the second-to-last line we used (1 +K/s)Ks ≤ eK
2
.

To check Halls condition for S with |S| > n0, we look at the sizes of the E2

neighborhoods of subsets of C. If S ⊆ X satisfies |N(S)| ≤ |S| − 1 then for
T = C \N(S) we have

|N2(T )| ≤ |N(T )| ≤ n− 1− |S| ≤ n− 1− |N(S)| − 1 = |T | − 1. (9)
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Note also that
|T | ≤ n− 1− n0 ≤ n2 := 4(n− 1)/K. (10)

Let the positions of the points X be denoted by P . Assume now that P is
given and that |A| ≥ (1− e−5B2

)n.

Claim 1. Let Ec = Ec(S) be the event that color c’s E2-neighbors are in some
set S ⊆ A. Then for any fixed S, T, P,

P

(︄⋂︂
c∈T

Ec(S)
⃓⃓⃓⃓
P = P

)︄
≤ e9|T |

∏︂
c∈T

P(Ec(S) | P = P ).

Proof. If T = {c1, c2, . . . , cτ} then

P

(︄⋂︂
c∈T

Ec
⃓⃓⃓⃓
P = P

)︄
=

τ∏︂
j=1

P

(︄
Ecj
⃓⃓⃓⃓ ⋂︂
k<j

Eck ,P = P

)︄
.

Now write

P

(︄
Ecj
⃓⃓⃓⃓ ⋂︂
k<j

Eck ,P = P

)︄
=
∑︂
H∈H

P(Ecj | H,P = P )P (H | ∩k<jEck ,P = P ) ,

where each history H ∈ H is an event (defined following (11)) consisting of
the choices for the ≤ K lowest level edges in each of the colors c1, . . . , cj−1

(under each color’s collection of random orderings of edges of each fixed level).

To prove our claim it suffices to show that for all choices of the event H ∈ H,

P(Ecj | H,P = P ) ≤ e9P(Ecj | P = P ) (11)

For this, we write H = ∩i<jHi, where Hi is color i’s random orderings of the
edges of each fixed level as well as its first K edges in EA under this ordering
(which are all edges with lower endpoint in S). Note that each Hi introduces
a set Gi of K edges in EA which are colored by ci and an additional set Fi

of (usually linearly many) edges that may not receive the color ci. We now
let L = (xi,yi), i = 1, 2, . . . , |EA| be a listing of the edges in EA in increasing
order of level, where edges of the same level are ordered uniformly at random,
and we consider some history Hj that determines the event Ecj .
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The probability P(Hj | H,P = P ) is determined by the outcome of an
experiment ΛH = ΛH(P ) (the conditioned experiment) in which we consider
the edges in L one at a time and choose its color according to the constraints
imposed by the event H: when we reach the tth edge, if t ∈ Gi for some i < j,
the edge is colored by ci, and otherwise the tth edge is uniform over C \ It,
where It := {ci : t ∈ Fi}. We compare this conditioned experiment to the
auxiliary experiment Λ = Λ(P ) in which we simply randomly assign random
colors from C to edges in EA; note that∑︂

Hj

P(Hj | P = P ) = P(Ecj | P = P ),

so for (11), it suffices to show

P(Hj | H,P = P ) ≤ e9P(Hj | P = P ) (12)

for every Hj.

Defining p = (n− 1)−1, we have

P(Hj | P = P ) = pK(1− p)|Fj |.

We similarly calculate P(Hj | H,P = P ), the probability in the conditioned
experiment, but now we have parameters at = |It| and pt, the probability that
the tth edge receives color cj in the conditioned experiment. The important
fact is that pt = 0 if t ∈ ∪i<jGi and otherwise

pt = (n− 1− at)
−1 ≤ (n− 1− n2)

−1 < e4.5/Kp

where the last inequality uses our definition of n2 in (10) and the fact that
K is large. We calculate

P(Hj | H,P = P ) =
∏︂
t∈Gj

pt
∏︂
t∈Fj

(1− pt) ≤ e4.5pK
∏︂
t∈Fj

(1− pt).

We finish the proof by noting that 1 − pt ≤ 1 − p if t ̸∈ ∪i<jGj, and if
t ∈ ∪i<jGj then 1− pt = 1 on this set of size (j − 1)K < n2K, so∏︂

t∈Fj

(1− pt) ≤ (1− p)|Fj |(1− p)−n2K < (1− p)|Fj |e4.5

for large enough K and n.

This implies (12) and completes the proof of Claim 1.
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Claim 2. If the event G holds (where G is defined above (7)), then for any
fixed S ⊆ A of size s, (under the probability of choosing random colors for
each edge)

P(Ec(S) | A) ≤
(︃

s

|A|

)︃√
K

+O(n−
√
K+2 log8

√
K n).

Proof. Fix x ∈ A and recall the definition of νx above (7). Let A be the
event that for each x ∈ A, each color appears fewer than

√
K times on edges

of length at most 2Bn−1/2 log4 n. The probability of this event failing for
fixed x ∈ A is at most

|C|
(︃

νx√
K

)︃
|C|−

√
K ,

and taking a union bound over A and using (7) gives the second bound in
the claim.

So we may assume that A holds. Since all edges of E2 have length at most
2Bn−1/2 log4 n, this implies that each c ∈ C has at least

√
K neighbors in

E2. As the distribution of the (multi)-set of neighbors along E2 edges of c is
symmetric with respect to permutation of the vertex set (Observation 5), we
have that

P(Ec(S) | A,A) ≤
(︁

s√
K

)︁(︁ |A|√
K

)︁ ≤
(︃

s

|A|

)︃√
K

.

Note that by (8), if K is large, then the bound in Claim 2 implies

P(Ec(S) | A) ≤
(︃
2s

n

)︃√K/2

.

We can now finish the proof that Γ has a perfect matching. Recalling (9),
we just need to show that |N2(T )| ≥ |T | for every T ⊆ C with |T | ≤ n2. But
the probability of this event is at most

P(∃S ⊆ A, T ⊆ C, |S| = |T | = t : N2(T ) ⊆ S | P = P ) ≤
(︃
n

t

)︃2(︃
2e9t

n

)︃t
√

K/2

.
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Summing over t (and recalling n2 = 4(n− 1)/K for a large constant K), we
get

P(∃S, T, |S| = |T | ≤ n2 : N2(T ) ⊆ S) ≤ o(1)+

n2∑︂
t=1

(︃
n

t

)︃2(︃
2e9t

n

)︃t
√

K/2

= o(1).

This completes the proof that Γ has a perfect matching M w.h.p. This
matching M gives us an acyclic rainbow set of n− 1 edges and so defines a
rainbow spanning tree.

We now crudely bound the cost of M by the cost of all the edges in Γ. We
begin with the cost of E2. We show that under our assumption that |A| > n/2
(see (8)) the expected cost of the edges in E2 is O(n1/2). Moreover, given
A, the cost of edges from E2 is an O(n−1/2 log4 n)-Lipschitz function of the
colors of EA (the Lipschitz constant coming from our definition of EA), so
we can convert the bound on the expectation to a probability bound using
Warnke’s inequality, Lemma 4. To bound the expected cost given A, we fix
a color c and define Y as the index of the Kth lowest index edge of color c in
EA. Since edges of index j have weight O(j2n−1/2), it suffices to show that

P(Y > j) < exp[−Ω(j)]. (13)

The event Y > j means that color c appeared fewer than K times among
the edges of EA with index at most j. And under our assumption that
|A| > n/2, this is at most the probability that X < K where X is distributed
as Binomial(jn/2, 1/n). If j > 4K, the Chernoff bounds immediately give
(13) (and for smaller j, we may take the implicit constant in (13) small
enough to make the inequality trivial), completing the proof.

We now turn to the cost of the edges in E1. First, if i > n − 2n−1/2, then
we use the trivial bound that the K shortest edges incident to xi each have
length at most 1; so the total length of the E1 edges incident to xi with
i > n − 2n−1/2 is at most 2Kn1/2. For smaller i, we define Z = Zi as the
expected value of the Kth shortest edge incident to xi and show

EZ = O(n−1/2).

(As in the previous case of E2 edges, we can sum this bound over i ≤ n−2n1/2

to get a bound on the expected cost of E1 edges incident to xi’s with i ≤
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n − 2n1/2, and this expectation bound can be converted to a probability
bound using Lemma 4.) For this bound, we show that for large enough D0,
if D0 < D < n1/2, then

P(Z > Dn−1/2) < exp[−D/8]. (14)

We prove this bound for i = n − 2n1/2 noting that the argument is the
same or easier for smaller i. First, Chernoff bounds imply that ξ2(xi) ∈
[1− 4n−1/2, 1− n−1/2] with probability at most exp[−n1/2/4]. Now, suppose
ξ2(xi) = y ∈ [1 − 4n−1/2, 1 − n−1/2] and (without loss of generality) that
x := ξ1(xi) ≤ 1/2. Then the event Z > Dn−1/2 is contained (for moderately
large D) in the event that the rectangle [x, x+Dn−1/2/2]× [y, 1] has at most
K−1 points from the set xi+1, . . . ,xn. Since the locations of these points are
uniform in the rectangle [0, 1]× [y, 1] (under our condition that ξ2(xi) = y),
the probability of this event is exactly P(X < K) where X is distributed
as Binomial(2n1/2, Dn−1/2/2). Noting that EX = D, the Chernoff bounds
immediately imply (14) for large enough D, completing the proof.

3 Proof of Theorem 2(a)

We start by revealing the positions of the vertices and setting aside a set R
of r arbitrary vertices where r = Cn1/2 for some constant C large enough to
make the following argument work. Set N ′ = [n] \ R and n′ = n − r. We
then run the following greedy algorithm on N ′ for k0 := n′ − r steps: we
begin with A = ∅ and let GA = (N ′, A) be the graph induced by the selected
edges A (we will maintain that GA is a disjoint set of paths). We consider
the natural greedy algorithm which iteratively adds the cheapest edge to A
that (i) does not create a cycle in GA, (ii) does not create a vertex of degree
3 in GA, and (iii) does not repeat a color. The algorithm is implemented
as follows: we start with all edges available and the edges naturally ordered
by length; at stage i + 1, we choose the cheapest available edge and reveal
its color c; if this color appears already in GA, then we move to the next
cheapest available edge and repeat the process until the revealed color does
not appear in GA; we add this edge to GA; we then remove from the available
edges any edge whose addition to A would violate condition (i) or (ii) above.
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After k iterations, say there are m nontrivial paths of lengths ℓ1, ℓ2, . . . , ℓm ≥
1 where ℓ1 + · · ·+ ℓm = k. Let x1, . . . ,xm be made up from one endpoint of
each path and let xm+1, . . . ,xn′−k be the isolated vertices (not in any edge
of A). Let Xk = {x1, . . . ,xn′−k}.

We claim that with failure probability o(1/n), there is an edge of Xk of length
at most λk = Cn1/2/(n′ − k) whose color does not appear in A. To see this,
partition [0, 1]2 into mk = 2/λ2

k sub-squares of side λk/2
1/2, and let S be an

arbitrary set of points of size n′ − k. Let si denote the number of points of
S in square i. Then, by convexity,

mk∑︂
i=1

(︃
si
2

)︃
≥ mk

(︃
|Xk|/mk

2

)︃
≥ C2n/5.

Then, the probability that there is a set S of n′ − k points (from N ′) and a
set Q of q − k colors (from our palette of size q := (1 + ε)n) such that no
sub-square contains a pair of points joined by an edge with color in Q can
be bounded by(︃

n′

n′ − k

)︃(︃
q

q − k

)︃(︃
k

q

)︃C2n/5

=

(︃
n′

k

)︃(︃
q

k

)︃(︃
k

q

)︃C2n/5

≤

(︄
ne

k
· qe
k

·
(︃
k

q

)︃C2n/(5k)
)︄k

≤

(︄
e2(1 + ε)

(︃
1

1 + ε

)︃C2n/(5k)−2
)︄k

= o(n−1),

for sufficiently large C = C(ε).

At the end of the greedy algorithm, there are exactly r components of GA

since at each step the number of components drops by one. We claim that
we can complete GA to a rainbow Hamilton cycle using edges in a graph
∇(N ′, R), the edges with one end in N ′ and one end in R, noting that the
colors of all edges in ∇(N ′, R) remain unrevealed. Use C1 for the set of colors
appearing in GA.

The only edges in∇(N ′, R) that are relevant for completingGA to a Hamilton
cycle are those incident to an endpoint of a (possibly trivial) path in GA.
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Supposing that there are p nontrivial paths in GA, we think of the relevant
edges of∇(N ′, R) as a partially directed bipartite graph B = (X, Y ;E) where
|X| = |Y | = |R|. X is the union of P , one vertex for each non-trivial path,
and I, one vertex for each isolated vertex. Y is a copy of R and E is the union
of the complete bipartite graph on I ∪Y together with the complete directed
graph on P ∪ Y . Observe that a (partially directed) rainbow Hamilton cycle
on B using colors from C \ C1 together with the edges from GA forms a
rainbow Hamilton cycle on [n]. Moreover, since |R| ≈

√
n, the cost of any

Hamilton cycle on B is O(
√
n). So to finish the proof, it suffices to find a

rainbow Hamilton cycle on B using C \ C1.

Reveal the colors on B, noting that an edge receives a color from C \C1 with
probability p1 = ε/(1+ ε). So let the edges of Γ1 = Bp1 be randomly colored
using a palette of q′ ≥ εn colors. Note next that the expected number of
times a particular color is used is at most λ := 2r2/q′ = O(1). It is not
difficult then to show using McDiarmid’s inequality [19] that the set of colors
C2 used exactly once satisfies |C1| ≳ q′e−λ with failure probability o(1/n).
Now consider the subgraph Γ2 consisting of edges in Γ1 whose colors are in
C2. Conditioning on |Γ2| = m, Γ2 will be distributed as (a supergraph of)
Bm, a random set of m edges from B. All we need to prove now is the
following:

Proposition 6. With probability 1− o(1/n), Γ2 contains a Hamilton cycle.

Proof. This follows from a result of Frieze [9] if B contains no directed edges.
Moreover, Γ2 can be coupled with Bp2 , the binomial random subgraph of B
with p2 ∼ e−λq′/n with failure probability o(1/n). To finish, note that Mc-
Diarmid’s coupling [18] shows that Bp2 is more likely to contain a Hamilton
cycle thanKr,r,p2 (which contains a Hamilton cycle with probability 1−o(1/n)
by [9]).

This completes the proof of Theorem 2.
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4 Separating ZMST from Z∗
MST and ZTSP from

Z∗
TSP – Theorem 2(b)

We can show the separations

ZMST − Z∗
MST = Ω(

√
n) w.h.p (15)

ZTSP − Z∗
TSP = Ω(

√
n) w.h.p. (16)

using the methods of [12] (which there were used to show, among other
things, that Z∗

TSP − Z∗
MST = Ω(

√
n)).

We begin with a simple lemma.

Lemma 7. Let S be a set of size α = Θ(n) that is randomly colored using
β = Θ(n) colors. Then w.h.p. there are Θ(n) colors that are used more than
once.

Proof. Let Z denote the number of colors that appear more than once. Then

E(Z) = β

(︄
1−

(︃
1− 1

β

)︃α

− α · 1
β

(︃
1− 1

β

)︃α−1
)︄

= Θ(n).

Now changing the color of one edge changes Z by at most one. So, applying
McDiarmid’s inequality [19] we have

P (Z ≤ E(Z)/2) ≤ exp

{︃
−E(Z)2

2α

}︃
= e−Ω(n).

Now back to the main argument. For notational convenience, in this section
we scale X so that we are instead working with a set Yn of n random points
in a square of side length

√
n; note that there is thus one point on average,

per unit of area.

We first recall a definition and lemma used in [12]. Given ε,D > 0 and a
finite set of points S ⊆ Rd and a universe Y , we say that T ⊆ Y is an (ε,D)-
copy of S if there is a bijection f between T and S such that ||x− f(x)|| < ε
for all x ∈ T , and such that T is at distance > D from Y \ T . First we have:
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Proposition 8 (see Observation 2.1 in [12]). Given any finite point set S,
any ε > 0, and any D, Yn w.h.p contains at least CS

ε,Dn (ε,D)-copies of S,
for some constant CS

ε,D > 0.

This already suffices to show (15). Indeed, apply Proposition 8 to a set S
consisting of two points at unit distance, with ε = 1/4 and D = 4. We learn
that w.h.p. the number κ of (1

4
, 4)-copies of S in Yn satisfies κ ≥ Cn for

a constant C. Since the colors of edges are independent of the geometry of
the points, we can apply Lemma 7 with α = κ, β = q to show that w.h.p.
there are Ω(κ) colors that are repeated among the κ edges which join the
two points in a given copy. Thus for any rainbow MST, there are at least
Ω(n) copies in which it does not use the edge between the two points. We
can add this edge and delete one of the edges leaving the copy to produce
a spanning tree shorter by at least unit distance. Doing this for each of
these Ω(n) copies produces a spanning tree shorter than the rainbow MST
by Ω(n). Upon rescaling to the unit square, this corresponds to the existence
of a spanning tree of length Ω(

√
n) less than the length of the rainbow MST.

To prove (16), we will additionally use the following results from [12]:

Proposition 9 (Observation 2.9 in [12]). Suppose that Sε,D is an (ε,D) copy
of a fixed set S for fixed ε and sufficiently large D, and that at least 2 pairs
of edges of a shortest TSP tour L join Sε,D to V \ Sε,D. Then the pairs are
nearly straight (i.e., the angle for each pair is arbitrarily close to π as ε → 0,
and k,D → ∞). Moreover, any tour without this property can be shortened
by a length bounded below by a function just of ε, S, and D by changing just
how it passes through Sε,D.

Proposition 10 (see Observation 2.10 in [12]). Suppose that Sε,D is an
(ε,D)-copy of any fixed set S for fixed ε and sufficiently large D. Then there
are at most 2 pairs of edges in a shortest TSP tour which join Sε,D to V \Sε,D.
Moreover, any tour with at least 3 such pairs can be shortened by a length
bounded below by a function just of ε, S, and D by changing just how it
passes through Sε,D.

We now let v1, v2, v3 denote the vertices of a fixed unit equilateral triangle,
and choose a large D, small δ and even smaller ε, so that 1 ≫ δ ≫ ε > 0,
and apply 8 to a set S consisting of three pairs of distinct points pi, qi,
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Figure 1: An instance of the set S used, together with an example of how
an (uncolored) optimum tour may traverse this set in a way consistent with
Propositions 10 and 9.

i = 1, 2, 3, where the points pi, qi are both within distance δ of vi (Figure 1).
In particular, we learn that there are κ ≥ Cn (ε,D)-copies of this set S in
Yn.

Propositions 9 (applied both to S and to the individual pairs {pi, qi} sepa-
rately) and 10 (applied to S) now imply that for each such copy, any rainbow
tour through Yn tour either:

(a) Traverses the copy that in a way that uses all of the edges {pi, qi}, i =
1, 2, 3, or else

(b) Traverses the copy in a way that can be improved by at least a fixed
distance γ > 0 by only changing the path(s) the tour takes through the
copy.

Our goal is to show that there are a linear number of copies for which the
optimum rainbow tour falls into case b; this then implies that in the (rescaled)
unit square, the optimum rainbow tour is longer by an additive factor of
Ω(

√
n). Note that overall, there are 3κ ≥ 3Cn edges {pi, qi} over all i =

1, 2, 3 and all (ε,D)-copies of S. The colors of edges are independent of the
geometry of the points. Applying Lemma 7 with α = 3κ, β = q we see that
w.h.p. there are Ω(n) colors that are repeated in the (ε,D)-copies of S. Thus
w.h.p. there are Ω(n) instances of case (b) with respect to the rainbow tour,
as desired.

5 Proof of Theorem 3

Here we assume that the costs C(i, j) are independent uniform [0, 1]. The
general idea is to replace an edge (i, j) of color c with an edge {i, c, j} in a
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random 3-uniform hypergraph. There is a technical problem in that we are
not allowed to have {i, c, j} , {i, c′, j} for c ̸= c′. We deal with this by merging
the arguments of Frankston, Kahn, Narayanan and Park [7] and Bell, Frieze
and Marbach [5].

Let X be a finite set and let H be an r-bounded hypergraph on X. For
k ≥ r, let X∗ = X × [k]. Let H∗ denote the family consisting of all possible
rainbow copies of H using the color set [k]. Let ξx (x ∈ X) be independent
random variables, each uniform from [0, 1], and set

ξH = min
S∈H∗

∑︂
x∈S

ξx.

We prove

Theorem 11. Let H be a κ-spread, r-uniform hypergraph on vertex set X.
Suppose that (i) κ = Ω(r) and (ii) |X| ≤ κ2r/ log5 r. If we randomly color
the elements of H with k ≥ r colors, then ξH ≤ 3C0r/κ w.h.p. (assuming
r → ∞) for some absolute constant C0 > 0.

(The paper [13] removes conditions (i) and (ii), but the proof doesn’t adapt
well to deal with the costs, as far as we can see.)

Proof. We let ℓ0 be the least i such that r/2i < log r, and let ℓ be the least
i > ℓ0 such that r/2i < 1. We sort the elements of X = {x1, x2, . . . , xN} so
that ξx1 < ξx2 < · · · < ξxN

. We then let pi = Ci/κ where

Ci =

{︄
C0 i ≤ ℓ0.
log r

log log r
ℓ0 < i ≤ ℓ.

Here C0 is a large constant. Let Li = Npi and define n0 to be the smallest
integer such that 2−n0 ≤ log r and let n be the least i > n0 such that r/2i < 1.
Then for i ∈ [n] we let

ai =
i∑︂

j=1

Li and εi =
2ai
N

.
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Then let W ∗
1 = {x1, x2, . . . , xa1} , W ∗

2 = {xa1+1, xa1+2, . . . , xa2} etc. Note
that W ∗

1 ,W
∗
2 , . . . ,W

∗
n are randomly colored random sets of size Li . The

Chernoff bounds imply that

P(∃i : max {ξx : x ∈ W ∗
i } ≥ εi) =

n∑︂
i=1

P(Bin (N, εi) ≤ εiN)

≤
n∑︂

i=1

e−εiN/8 ≤ 2e−a1/4 = 2e−C0N/κ. (17)

In [5] (as we will explain shortly), it is proved that with probability 1− log log r

log1/4 r
,

there is a rainbow colored edge e such that |e \
⋃︁

j≤iW
∗
j | ≤ r/2i−1. We will

use the main theorem (and its proof which we discuss below) from [5]:

Theorem 12 (Theorem 2 in [5]). Let H be an r-bounded, κ-spread hypergraph
and let X = V (H) be randomly colored from Q = [q] where q ≥ r. Suppose
also that (i) κ = Ω(r), that is, there exists a constant L > 0 such that κ ≥ Lr
for all valid r, and that (ii) N ≤ κ2r/ log5 r. Then there is a constant C > 0
such that if

m ≥ (C log2 r)|X|
κ

(18)

then Xm contains a rainbow colored edge of H w.h.p.

The proof of Theorem 12 in [5] proceeds by iteratively choosing random sets
of colored elements W ∗

i (just as we have in our current proof). Theorem 12
is proved by iteratively applying the lemma we state next. Here H∗ is the set
of possible rainbow colored edges of H. For H∗ ∈ H∗, T ∗(W ∗, H∗) is G∗ \W ∗

for some G∗ ∈ H∗.

Lemma 13 (Lemma 5 in [5]). Let H∗ ∈ H∗ be good with respect to W ∗ if
H∗ ∼ W ∗ and |T ∗(W ∗, H∗)| < r/2. Let

S be the event | {H∗ ∈ H∗ : H∗ is good} | < (1− ε)|H∗|(1− p)r.

Then

P(S) ≤ exp

{︃
−ε2κ2q(1− p)

16e3N

}︃
+

2K

C
r/3
0 ε (1− p)r

In other words, so long as the unlikely event S does not occur, we have
that for each rainbow colored edge H∗, there is some rainbow colored edge
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G∗ that is mostly contained in W ∗. The proof of Theorem 12 proceeds by
iteratively applying Lemma 13, each time replacing H∗ with the hypergraph
whose edges are the T ∗(W ∗, H∗) (i.e. portions of edges of H∗ which are not
contained in W ∗). In [5] they show that during all applications of the Lemma
13, the unlikely event S never happens w.h.p. This means that the rainbow
edge H∗ we obtain in the end was good for every application of Lemma 13.
In particular, we have

|H∗ \
⋃︂
j≤i

W ∗
j | ≤

r

2i−1
, i=1, . . . , ℓ. (19)

In our setting, since W ∗
i was the set of vertices of cost at most εi, the rainbow

edge H∗ we obtain from Theorem 12 costs at most

n∑︂
i=1

rεi
2i−1

=
r

N

n∑︂
i=1

1

2i−1

i∑︂
j=1

Npi

= r

(︄
ℓ0∑︂
i=1

Ci

2i−1κ
+

ℓ∑︂
i=ℓ0+1

Cℓ0 + (i− ℓ0) log r

2i−1κ

)︄
≤ 3C0r

κ
= O(1).

All of the examples given in Theorem 3 have the requisite spread to justify
the claim. For (1) – (3) we have r = O(n) and κ = Ω(nk−1). (For (3), we
have k = 2.)

This concludes the proof of Theorem 3.

6 Observations and open questions

We have estimated the effect of adding a rainbow constraint in the proba-
bilistic analysis of some random combinatorial optimization problems. For
the Euclidean case we are tight up to a constant if we are dealing with the
minimum spanning tree problem. For the TSP and (1 + ε)n colors, there is
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a factor of log n between our lower and upper bounds. It is an open question
as to whether this is actually necessary.

Karp [15] gave a polynomial time algorithm that is asymptotically optimal
for the TSP in the unit square. It would be interesting to see if there is
an analogous algorithm for the Rainbow TSP in the unit square. One also
wonders if the algorithms of Arora [2] or Mitchell [20] can be adapted to the
same problem.

Can we find the correct constants for any of the problems mentioned in
Theorem 3?
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