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Abstract

We study random r-regular labelled graphs with n vertices. For

1/5-¢

r = O(n ) we give the asymptotic number of them and show that they are

almost all r-connected and hamiltonian. Proofs are based on the analysis of

a simple algorithm for finding "almost"” random regular graphs.
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§1. Introduction

This paper is mainly concerned with random r-regular labelled graphs with
n vertices and r = r(n) 2 ® with n. Bender and Canfield [1] and Bollobas
[2] discuss models for the analysis of r regular graphs when r is
constant. Bollobas’s model is more transparent and in fact deals with
r(n) < (2 logn)llz. By and large however what is known about random regular
graphs is restricted to constant r.

We will describe a method for analysing random regular graphs which is

1/5-¢

valid for r(n) = O(n ) where for simplicity we take e > O to be an

arbitrarily small constant.

Let REG (n,r) denote the set of r-regular graphs with vertex set
Vn = {1,2,...,n}. We first extend the range of applicability of the
asymptotic formula for the number of labelled r-regular graphs given in [1]
and [2].

As customary, we use the relation A ~ B to denote the relation

A/B->1 as n - o,

Theorem 1

1/5-e
n

Assume 1 = Of ) for some fixed € > 0. Then

A2 (rn)!

1
= rn
(%-rn)! 22

|REG(n,r)| ~ e

(rn)"

where A = E%l. 0o

We will deduce Theorem 1 as a special case of Theorem 2 below, which deals



with general degree sequences (as in [1], [2]).

Suppose d = (dl'dz""’dn) is a sequence of positive integers where

n
d1 2 d22...2dn 22 and 3 di = 2m is even. Let %(d) denote the set of
i=1

graphs with vertex set Vn and vertex degrees dl,d2,...,dn.

Theorem 2

Let d be as above and assume d:13/d1/2 =

n

0(n1/2—e

). Then

2
ls(@)| ~ e L2

m!2™ 1 4,
. 1
i=1

where A =

The method we use is based on the analysis of a constructive method
(CHOOSE below). It seems likely that Theorems 1 and 2 could be proved more
directly. However the advantage to our approach is that it will allow us to
analyse random regular graphs of this size, whereas a direct approach might

not. (Of course, a "direct” proof has not as yet been constructed.)

Let Gr denote a random graph sampled uniformly from REG (n,r). We will

prove two properties of Gr extending what is known for constant r.

Theorem 3

1/5-e

Assume r = O(n ) for some fixed € > O. Then

(a) 1lim Pr(G_ 1is r-connected) =1
n-—e r

]
[
.

(b) 1lim Pr(G_ is hamiltonian)
n—xo r



Neither result is surprising, they just seem difficult to establish. In
particular, consider (b). It has already been established for various values
of r, (10'° in Bollobas [3]. 796 in Fenner and Frieze [4], 85 in Frieze

[5]) that if r 1is constant and T 2 Ty then almost every Gr is
hamiltonian. Unfortunately one cannot obtain Gr+1 by adding random edges to
Gr and so none of these results imply (b) of the theorem, which seems
obviously true.

Recently, Robinson and Wormald claim to have extended their approach in
[7] to prove that Ty = 3. At the time of writing only an abstract of the
proposed paper is available.

One possibly useful outcome of this work is an efficient procedure for
generating '"nearly” random regular graphs.

(If say r = 10 and one wanted to use Bollobas’s construction repeatedly
until one found a simple graph one would expect to have to make approximately
e25 trials).

The basis of our proofs is a simple algorithm CHOOSE which outputs a
regular graph GCHOOSE (in "configuration" form-see $2) with probability
1 - o(1) and satisfies the following:

let 4 be any graph property. Then under the assumptions of Theorem 1

Pr(Gr € o) = Pr( € d4) + o(1).

CenoosE

We point out now that because we are dealing with asymptotic results all our

inequalities are only required to hold for large enough n.



§2. Configurations

We are going to work with the Configuration Model of Bollobas [2]. We

i-1 i

let W= {1,2,...,2m} and Wi = {.E dj + 1,...,'2 dj} so that Wl,Wz,...,Wn
Jj=1 j=1

is a partition of W into sets of size dl’d2""’dn' For k € ¥ we define

¥(k) € Vn so that k € Ww(k). Ve will let A = dl'

A configuration F is a partition of W into m pairs. ® denotes the
set of configurations. For F = ({xi,yi}, i=1,2,...,m) €% we let pu(F)
be the multigraph with vertex set Vn and the m edges {(xiyi.¢(xi),w(yi))2
i =1,2,...,m}. The notation (xy.¥(x),¥(y)) refers to an edge with label xy,
x { y and endpoints ¥(x),¥(y).

Notice that F - p(F) defines a bijection, because we can construct F
from the edge labels of u(F).

We consider ® to be a probability space in which each F € & is
equally likely.

The multigraph p(F) will in general contain parallel edges and loops.

Let {x,y} € F be a loop if y¥(x) = ¥(y) and let PB(F) denote the number of

loops in F. {x,y} € F, x <y will be a parallel pair if there exists

{x',y'}, x' <y' where Y(x) = y¥(x') < ¥(y) = ¥(y'). The parallel pair

{x,y} Jjust considered is redundant if the {x',y’'} € F just considered

satisfies x' < x. Let a(F) denote the number of redundant pairs of F.
Thus the simple graph ~(F) obtained from p(F) by deleting loops and

coalescing parallel edges has m - (a(F) + B(F)) edges.

Ve let Qa,b ={F€®: afF) =a, B(F) =b} for a,b 2 0 and let Fa,b
be a random configuration sampled uniformly from Qa b’ We are of course most
interested in QO 0’ the case where u(F) = v(F). We know that each graph in

n
%(d) is the image under pu of exactly II di! configurations. Our task
i=1



generally then is to estimate IQO O| and prove properties of almost every

F € QO,O'

§3. Sampling from QO,O'

Our problem is to describe a simple process of generating configurations
which, with sufficiently high probability, produces a ("nearly") random member
of FO,O' (When A 1is constant one simply chooses a random F € &.)

We will now describe an algorithm which generates an F € ®

0,0

required distribution, given the conditions of the theorem. To do this we

with the

define first for a > O, b 2 O a bipartite graph Ha b with vertex partition

Qa,b‘éa—l,b and an edge FG, F € Qa,b’ G € Qarl,b whenever the following

condition holds:

(A) 3 non-loops e = {u,v}, f = {x,y} € F such that
(i) e is redundant and f is not parallel in F
(i1) G = (F U {{u.x}, {v.y}}) - {e.f}

(see figure 1).

Condition A describes the set of neighbours of F € Qa We should also

,b’
describe the set of neighbours of G € Qa—l b’ Thus equivalently there is an

edge FG if

(B) 3 non-loops e = {u.x}, e' = {x",y'}, x' <y', ey = {v.y} € G
such that
(1) ¥(u) = ¥(x'). ¥(v) =¥(y'). x' <u,

(11) F = (G U {{u.v}. {x.y}}) - {e;.e,}.



b 2 20, b>0 with

Ged
a

We must also define a similar bipartite graph Hé

bipartition Qa,b'ia,b—l and an edge FG, F € Qa whenever

1b. ,b'—l

(A') 3 loop e = {u,v}, non-loop f = {x,y} € F such that
(i) G =F U {{u,x}, {v.y}} - {e.f}.
(see figure 2).

The equivalent conditions in terms of G are

(B') 3 non-loops e, = {u,x}, e, = {v.y} such that
(1) ¥(u) = ¥(v)

(ii) F = (G U {{u.v}, {x.y}}) - {el,ez}.

If He Qa,b U Qa—l,b (resp. H € Qa,b U Qa,b—l)

’ 1 3 !
(resp. Na,b(H)) denote its neighbour set in Ha,b (resp. Ha,

then we let Na,b(H)

b)'

Consider now the following method of choosing F € @O o

For a finite set S, RANSELECT x € S means select x randomly from S.

Algorithm CHOOSE

O. RANSELECT F € ¢ ;

let a = a(F), b = B(F)

1 FO:':F’
2 fﬂ'_ i=1 to a d_O
RANSELECT F; €N, ...\ (F;_)s

for i =a+l to atb do

RANSELECT F; € N ip-341 (Fi1):

A W

Queput  Feyoosg = Farb:



Note that Fa+b € QO,O' We do not intend to prove that Fa+b is equally
likely to be any member of FO o Indeed it is not. However, within the

limits set by Theorem 1, it is "nearly so".

Theorem 4
Let 4 C® be some property of configurations. Then with the same

assumptions as Theorem 2

Pr(FO,O € d) = Pr(FCHOOSE € o) + o(1). a

Ve devote the next section, the main body of the paper, to the proof of

Theorem 4.

§4. Proof of Theorem 4.

Observe that in line 1 of CHOOSE FO is a random member of Qa b but

~there is bias in the selection of F, € & We modify CHOOSE by adding

1 a-1,b’

a ’'rarely used’ emergency procedure for reselecting Fi' so that Fi remains

a random member of Qa—i+l,b throughout.

To motivate CHOOSEA below assume that F is chosen randomly from Qa b

and G is chosen randomly from Na b(F) as in CHOOSE. If LA b(G) is the

probability that a particular G is chosen then a moments reflection will

convince the reader that

-1 -1
Wa'b(G) = l@a bl 2 'Na,b(F)I .

FeNa.b

+ . -1 :
Let Qa-l,b = {G € Qa—l,b' wa,b(G) > lﬁa—l,bl } be the set of graphs which



. - + P .
are being chosen too often and Qa—l,b = Qa—l,b Qa—l,b' The modification

that we make to CHOOSE in CHOOSEA 1is that, if in line 3, we find

Fi € Q;—i b’ then we reject it, with a small probability, and re-choose from

¢ . in order to maintain uniformity of selection.
a—-i+l,b

Algorithm CHOOSEA (modifications to CHOOSE)

Add lines 3a, 3b and lines 5a, 5b to CHOOSE

-1
To—i+1,bFi) ~ lq’a—i,b'

3a. if F €8 _ then with probability do
i a-i,b - (Fo) do

a-i+l,b‘ i

-1
- P B (G)
3b. F,: =GE€& . . with probability —2-i:P a-i+l,b
1 a-i,b s (lQ !—1 - (G')
a—i’b a_i+1,b
Gep_ .
a-i,b

lines 5a, 5b are similar, QO,b replaces Qari+1,b’ QO,b—l replaces Qa—i,b
and "0.b replaces Ta—i+l.b"

Also we refer to the output of CHOOSEA as FCHOOSEA'

Lemma 5
In Algorithm CHOOSEA, Fi is equally likely to be any member of Qa—i b’

i{a or @& , 1 > a.

0,at+b-i

Proof

Assume inductively that F is equally likely to be any member of

i-1

Qa—i+1 b (we assume i < a, but only for notational purposes. The case i > a

is handled similarly). If G € Q;—i b then



-1
LA © -l _. .|
-i+1,b a-i,b
Pr(F, =G) =w__... ,(G)(1 - 22~ )
i a-i+l,b "a—i+1,b(c)
-1
= I‘I>a—i,b| )
If Ge€ Q;—i,b then (where w(G) denotes Wa—i+l.b(G))'
lo,_, 17! - w(c)
' -1 a-i,b
Pr(F.=G) = w(G) + = (wm@G) -1 .. 1)
‘ + ari-b 2 (e, T - wEe))
G'es_ . b _ a-i,b
amt. G''ed .
a-i,b
-1
= l(I>a—i.b|
since
3ome) -l ™= 3 (e, 1T - @)
+ a-i,b a-i,b :
G'€d . G''ep .
a-i,b a-i,b

Thus FCHOOSEA is a random choice from QO,O'

Let now 8b denote the event {CHOOSEA executes line 3b or 5b}.

Lemma 6

Let # C & be some property of configurations. Then

Pr(Fy o € #) - PrFgonsg € @)1 < 2Pr(€D).
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Proof
We consider the following experiment: we run CHOOSE and CHOOSEA in
parallel with the same random choices until the first execution of lines 3b or

5b. If 8b does not occur then they have the same output. Thus

Pr(F, o € o) = Pr( )

Fnoosea €

I

Pr( €d and F F

b
F coosEA croose = Feroosea) * Pr(é)

b
Pr(Fooose € 4 20 Feyoose = Fenoosea) * Pr(87)

Pr(Fyonsg € 4) *+ Pr(€”)

IN

By using the same inequality for o we obtain

b
Pr(FO,O €d) 2 Pr(FCHO(BE € d) - Pr(€)

and the lemma follows. o

Thus to prove Theorem 3, it is sufficient to show Pr(&b) = o(1).

b, . .
In order to prove Pr(§°) 1is small we must examine the degree structure

!
of the graphs Ha,b and Ha,b' For F € ‘I,a,b U (I)a-—l,b let da,b(F) denote
its degree in Ha,b' Similarly, for F € Qa,b U Qa,b—l let da'.,b(F) denote

: 3 '
its degree in Ha,b'

For k21 let #Ck = #Ck(F) be the number of cycles of length k in

p(F). (k =1 counts loops, k = 2 counts pairs of parallel edges.)



Lemma 7

(a) F € Qa b 2 > 0, implies

2am ~ 2a(2a + b + 24(A-2)) < d_ | (F) < 2am

(b) G ¢ ® 1 p @ > 0, implies

3o - (b+22) (A1) - 34C,(G) - 44C,(C) < d, 1(6) < 3
where
2. = > d -t d -1
et ypee wix) T 0Ny D
x<y
¥(x)-1
and if e = {x,y}, x {y then t(x) =x - 2 di (= the rank of x in
i=1
Fox))-
(c) Fe Qa b’ b > O, implies
2b(m - b - (A-2) - 2a) ¢ dé b(F) < 2b(m - b).
(d) Ge Qa b-1’ b > 0, implies
n di n di
_21(2 ) - (b-1) - 3#03 - 2a(A_1) < dé,b(c) < 'El (2 ) - (b-l)‘
1= 1=

Proof

11

(a) Consider condition A. There are at most am pairs e,f satisfying (i)
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and each pair yields 2 edges of Hé b’ The upper bound follows. Now fix a

redundant e. For the lower bound we must estimate the number of choices f

so that G as defined in (ii) does not belong to Qa— In the upper bound

1,b°
we ignored the fact that f was not be be a loop or parallel edge, which
accounts for the 2a+b term. We need |¢Y({u,v.x,y})| =4 to avoid creating
loops, which removes at most 2(A-2) choices for f. We must avoid creating
new parallel edges which can be done by avoiding the existence of {p.q} € F
such that p € y(e), q € y(f). This removes at most 2(A-2)(A-1) choices and
gives us the lowér bound.

(b) Consider condition B. For each non-loop e’ = {x',y'} €G, x' <y’

v
that (i) holds and this justifies the upper bound. To get a lower bound we

there are dW(x') - t(e') choices for u and d (y’)—l choices for v such

eliminate choices for which (a) 3 {p.q} € G with ¥(p) = ¥(x), ¥(q) = ¥(y).
creating extra parallel edges in F; there are at most 4#C4 cases or, (fB)

¥({u,v.x,y})| < 3, creating extra loops in F; there are at most 3#03 cases.
Finally we must avoid destroying any loops or parallel edges of G; this
accounts for at most (b+2a)(A-—1)2 cases.

(c) Consider condition A'. There are at most b(m - b) pairs e,f each
giving 2 edges of H;,b' and this gives the upper bound. For a fixed loop e
at most A-2 choices of f create extra loops or parallel edges through
|y({u,x,¥})| = 2 or the existence of {p,q} € F such that y(p) = ¥(u), ¥(q)

= Yy(f). There are at most 2a choices of f which destroy a parallel edge.

This gives the lower bound.

n d,
(d) Consider condition B'. There are at most X2 (21) ways of choosing
i=1

e .5 SO that y(u) = ¥y(v). b-1 of these choices u,v correspond to loops

of G and this gives the upper bound. There are at most 3#03 cases in which
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the construction yields a new parallel edge and at most 2a(A-1) distinct
cases in which a parallel edge is destroyed. u]

Our next task is to give probability bounds for the quantities defined in
the previous lemma.

oKk
Let o = 2 d, for k integer.

i=1 !

Lemma 8

Let F be chosen randomly from &. Then

X -p(ag/m)k/IO k+1 "
(a) Pr(#C, 2 p(oy/m)”) < p for py < p<m /ko,, 1<k(4
where Po is a constant.
1 n di 2 n di(di—l)2
(b) ECp) =5—7((2(,))" - 2 —F)
i=1 i=1
—t2/1605
(c) Pr(IEF - E(zF)l >t) < 2e for all t > O.

Proof

(a) Let pu,t be positive integers.
Pr(#C, 2 p) < E((#C)./(n),)

d. k-1
(3 () EDNLZ 4,

<
SEVn J€S (2m - 2kt)
lSI:k
< (ESVDN (s @1 &t
2(k+1)t(m—kt)kt(u) ngn jes

s|=x
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(1)) o

<
2(k+1)t(m—kt)kt(u)t

k
(S;;;lé—zgit (1 - keyke p
oK+ K, m (n)

IN

t

Let now p = [p(az/m)k] and t = [w9]. Then

kt 8
1-)23

and

t
B_ ¢ (—g;)t < (8/7)t , for sufficiently large pn
u(t) [

and (a) follows.

(b) Suppose we construct F by choosing a random pair of elements e, from

1

¥. then a random pair of elements e, from W - {el} and so on. Viewed in

this light

E(3p) = m E({(x.y))

where x is chosen uniformly from W-{rn} and y is chosen uniformly from

W-{1,2,...,x} and ((x.y) = (dw(x) - t(x))(d¢(y) - 1).

Now



n-1 n d.d,
. . i
EC(y)) = 2 2 ECEINE =i %) = §) somiy
i=l  j=i+l
n d. (d;-1)
* 2 E(C(x.y) W(x) = ¥(¥) = 1) sprs=qy
n-1 n d,-1 dd, n (4,-1)% d,(d,;-1)
=32 3 (D ieryt 2 T mm)
i=1  j=i+l J i=1
n-1 n d, d n d n d,(d,-1)>
1 iy, 1,2 i\%y
= —— (2 = S LMD+ 2 () - 3 ——
m(2m-1) i=l  j=i+l 2772 i=1 2 i=1 4
and the result follows.
We prove (c) by using a martingale inequality. Let Xl,X ,...,Xm be
random variables, and for each i =1,...,m let K(i) denote

(Xl,X2,...,Xi). Suppose that the random variable M
For each i =1,2,...,m. Let

i-1 i .
(4) 5, = sup [EuIxU7Vy - Bulx(hy| s

15

is determined by X(m).

=1,2,...,m.

Here E(Mlx(o)) means just E(M). The following inequality is a special case

of a martingale inequality due to Azuma.

m

/2 3 57

(5) Pr(|M - E(M)| 2 u) < 2 i=1

for any u 2 O.

2



To apply these ideas for F € ® we let X = X, (F) {p TH }, P; > q;. i=
1,2,...,m denote the pairs of F sorted into lexicographically decreasing

order. We prove that when M = EF in (4)

(6) 5, < 4d>

We can then apply (5) and 3 di( y < oy to obtain our result. Fix i and
i=1
1,X2 ,X._ and let Q {F € & : Xj = Xj' j=1,2,...,i-1}. Let
1—1 A A A
=W - U XJ and x = min(Y). For y €Y - {x} let Qy ={Fe€d: Xi =
=1

{x,y}} and observe that these sets partition ®. Now

(i-1)y _ _ 1 3
(7) ECLIXY ) = 50=5137 ﬂz{_{x} ECSIF € ).
We show that for y,y' €Y
(8) |EC| Fe<1>)—E(>:FIFe¢> D] < 4d w(x)

and then (6) follows from (7)., (8), x 2 i and

= (1 1)
6. = max EZFX EZFF€Q .

To prove (8) we consider the following mapping fy y': Qy A»Qy, defined as

follows: suppose F € Qy contains the pair {x',y'} containing y'’, then

16
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£,y (F) = (F - {{x.y}. {x'".y'}1}) U {{x.y'}, {x'.y}} € ‘II;Y,-

These functions are all bijections, f;%y' = fy',y and furthermore F € @y,

y' #y implies
2
I B O MR

and (c) follows.

4d2 is a crude but obvious upper bound here.) O
v(x)

¥We now apply this lemma to obtain information about the graphs Ha,b’
Hé,b' Let now K= {(a,b): 0 {a<a, 0<{(b( BO} where

o, = o5logn/n” < 44°logn and B = o logn/m < 2Alogn (0, < 2mA).
Lemma 9

(a) If F is chosen randomly from & then

~(0y/m)log n/10 ~(0,/m)log n/10
Pr((a(F). B(F)) € K) < (logn) + (logn) .

2
~(o,logn/m)“/2
() Pr_ (I, (6) - om2)| > 6 0,05 logn/m) < e 2

for G € Qa—l,b' (a,b) €K, a > 0.

a
(<) |§a—1,b|/|§a,b| = )\—2' (1+ ea,b)

172
oy logn
where |e_ .| < 100 =———— for (a,b) €K, a > 0.
a,b o,
(@ Iz, Ile 1=2@1+e )
a,b-1 a,b' T A a,b
172

where 'ea,bl < o logn/o,, for (a,b) € K, b > 0.
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Proof
(a) This follows from Lemma 8(a) with k = 1,2 and p = logn. Note that

this implies
(9) |¢’5,BV"I" 2 1/(20,B,) for some (a.b) € K.

Before proceeding to (b) we obtain some approximations to the ratios estimated

in (c), (d). Now

(10a) Fe@z da,b(F) =beQz da,b(G) for a > O,
a,b a-1,b
and
! —
{(10b) Feg da,b(F) —G€§2 dé,b(G) for b > 0.
a’b a,b—l

Now (10a) and Lemma 7 imply

LN , 2am = 2a(2a+b + 24(A-2))
2| Ep1.600)

(11a)

(where Ea b denotes expectation for random variables over @a b)

2
OA logn
2am (1 - - )
2

2 (1%

(the denominator here is a crude upper bound for max{EG: G € Qarl b})

> A3,
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Similarly
o0l .
’ a-1,b'\"G 3 4
(11c) Rl 5 2b(m - b - (A-2) - 2a)
IQa bl n di
' (2 ) - (b—l)
i=1
2bm 94%10gn
= n d, a- n )
()
i=1
> 3
and
12, ! )
(11d) 1@:-1;'1 ¢ — h 2b(m - b)
’ 2 o)~ (1) = 3E, 4, (#G5(€)) ~2a(a-1)
1=
(®). (c). (d).

Let (a,b) be as in (9).
Case 1: 0 <a<a, b=b. Proof of (b) and (c).

It follows from (9) and (11a) that

2
IQa B' —3(10 -(l°gn 02/m)
(12) _'3'[_ 2 A /2a0ﬁ0 2 e , =0 say,

But then



(13) Pr, (% - ECGp)| 2 5 0,05"% logn/m)

< Pr(l3 - EG3p)| 2 5 0,01"% logn/m)/e

~9(a, logn/m)>/16
{ e

on using Lemma 8 (c).

Hence, since da,B(G) $3; for Ge2 _, 5.

2
-9(o,logn/m)~16
(14)  Pr,_; £(d, 56) - E(3p) 2 5 0,05 logn/m) (e 2

for 0<a¢{ a.

For the subsequent analysis we need two inequalities:

1 -k
(15a) nolgfyn  °
and
“‘3‘%/2 3/20
(15b) —3—2n )
%

Proof of (15a)

Use m22n and o, < 2mA and A < n1/5.

2

Proof of (15b)

Observe first that oo 2 02/2/n3/2 and so

5

20
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3172
m o 3
5 N m
03 “ 3/407/4
2 2
3
> u )
4n3/4m7/4A7/4
Now use m 2 2n and A < n1/5—e‘
Now
-2 172
(16) Pra.s(#C4(F) 2 10 0,05 logn/m)

3/20

#C,(F) > 0/ (g, /m)?) by (15b)

IN

Pr(#C,(F) 2 n>/*(o/m)%/0

3.1 3/20 4
-3~ *s=°n * (0,/m)
{n 20 10 2 70

(on using Lemma 8(a) and (15a))

—(azlogn/m)2
e

I
(=]
ﬂ
o
A
o
A
oI

Similarly,

-2 1/2 —(Uzlog n/m)2 -
10 050 logn/m) < e for 0 {a < a.

v

(17) Pr, $(#C5(F)

Thus, on using the lower bound for da S(G) in Lemma 7(b) (and
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5/2, 3/2
o

o. 2 > /n ). we find

5

(18)  Pr,_; g4, §E)EG) < -5.90,0L" *1ogn/m)

—(9(0210gn/m)2/16 —(o2logn/m)2
e +2e

for 0<a¢<a.

Now observe that
2 172
(19) IE(EF) - 2m\“| = 0(o4/m) = o(oy0" “/m)

Using this in (18) completes the proof of (b) for Case 1.

We now show that for 0 { a a,

(20) IE, 55) - EGp)| < 70,0 *10gn/m
and
172
(21a) Ea's(#CB(F)) < 0o0x logn/99m.
172
(21b) Ea’g(#C4(F)) < 050 logn/99m.

Proof of (20)

It follows from (13) that



2
-9(o,logn/m)"/16
(E(2p) - 60,05 2logn/m)(1 - ¢ 2 )

?rrj
AR
v

(A4

E(3p) - 7o o *logn/m
and

s ~9(0,logn/m) /16
E, $(3p) < E(3p) + 60,0; “logn/im + 2(A-1)%An e

< E(3p) + To,0; *logn/m

and (20) follows.

Proof of (21b)

It follows from (16) that

-2 1/2 2 1/2
Ea,E{#C4) <10 050 logn/m + (8 )Pr b(#C 2 10 0505 logn/m)

2
2 1/2 (azlogn/m)

10 “o 0,0 “logn/m + (8 )e

IN

1/2
050 logn/99m.

I

The proof of (2la) is almost identical.

Now from (11a) and (20) we have
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2
_ 9A%1ogn

LI . 2am (1 =)
172

22) > .
( 12, bl E(3p) + To,0; “logn/m

But now we can use (19) and

(23) 2mA° > 0%/8m

\V}

in (22) to give us the required lower bound. The upper bound follows in

the same way from (11b), (19), (20), (21) and (23).

Case 2: a <a<a, b=b. Proof of (b) and (c).

We inductively show that, for a € a < a,,

0
1/2
e | _ =y =4 o1 -
(24) —a:b 5 1,3,2(aa)al ; ;005 _— jaa, g
2 ]
|Q| al 02

Now for a = a this follows from (8) and so assume it is true for
a,a+l,...,a-1 for some a > a. Note that this implies (20) and (21) (with a
replaced by a-1). Using these inequalities in (10b) yields (24).

This then implies (20) and (21), (with a now and not a-1), which

yields (b). Finally (20) and (21) and (10) give (c).

Case 3: 0<a<a., O0<b<b. Proof of (b) and (d)

Using (11c) and (24) we obtain



lz, I  -B _
(25) —2:b 4 %9 o¢b<h.

|2]

This enables us to show (see 2la) Ea b-1 (#CB(G)) < a2aé/2logn/99m in (11d)

and then (d) follows from (11c) and (11d). The proof of (b) follows as in

previous cases.

Case 41 0<afa,, b<b( Bo. Proof of (b) and (d).

This time we inductively show that for b ¢ b ¢ 60

|2, 41 b-b b! °él21°g“ b-b
(26) —E—ZB)\ gr (1 - ——F—)

—Ué/z(logn)2/m
20e .

Now for b = b this follows from (20) and so assume it is true for
b,b+l,...,b-1 for some b > b. Note that this enables us to show
Ea,b—l(#CB(G)) < o2aé/210gn/99m in (10d) and then (26) follows from (10d).
But then (10c) and (10d) now imply (d) and the proof of (b) follows as in

previous cases. O

Ve can now estimate the probability that §b OCCUrs.

Lemma 10

Let éb be as defined prior to Lemma 4. Then, with the assumptions of

Theorem 2,
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Pr(£?) = o(1).

Proof

Let K as defined prior to Lemma 8. Then, by Lemma 8(a),

(27) Pr(&?) g(a i)eKPr(8b|Fo €8, ) Pr(Fy €, )+ o(l).

So we can restrict our attention to estimating
Pr(ébIF €% .) where (a,b) €K
0 a,b ’ :

Let now 8? denote the occurrence of 8b on the ith execution of the main

loop of CHOOSEA. Then

a+b b
> Pr(&/|F, €@
=1 i o0 a

Pr(e"|F, € 2 ) < W)

b -1.+
Pr(&lFg e, )= 3 (my i1 p(©) - 12,5 1)
Ce  1.b

2 1/72
< Pra—i.b(dari+1,b(c) 2 2m\” + 60205 logn/m)

2
-1, .2 172 3A°1
+ 3 (18,_;,q | (@n2" + 60,0."“logn/m)/(2(a-i+1)n(1 - ———HQEEa)
Ges'
a-i+l,b

-1,+
- IQa—i,bl )
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2
. -1 . _ 3A71logn
(on using Wa—i+1,b(G) < IQa—i+1.b| da—i+1,b(G)/(2(a i+1)m(1 n }))

172
~(o,logn/m)>/2 " s (I@a_i bl a2 200lognog Ly
{e e _. - STt -
a-i,b cest Taari+1,b' (a-i+1) o,
a-i+l1,b
‘("21°g“/'“)2/ 2 -1 172 +
{e + lQa—i.bI +2 (1 + 301logn o5 /02 - 1)
Ge(I>a-i+1,b
172
< 302 logn oy /02.
Case 2: a < i < atb (let b' = atb-i)
Pr(e?|F. €8 ) <
i"o a,b’ =
n d
-1 iy _ , _ _ -1 _ -1,+
f (IQO,b'+1| (151(2 ) — b'+1)(2b'(m - b’ - A+2)) Iﬁo,b:l )
cesy .,

172
< 2 logn o /02.

af ter making approximations as in Case 1.

Thus

Pr(€®) = o(1) + O((logn az/?/0,) (o2 10gn/n"))

= o(1) + 0((logn)2 aé/zoz/mz)



Now let 3. =d./d , i=1,2,...,n, m=m/d, and o, = o, /d for k 2 2.
i i" n 1 k k1

Then

aé/202/m2 = dilz aélz 02/m2

< ?m)1? & on 4 /n°
< 4 d>/(nd )2
= 0(n %)
and the result follows.

Theorem 4 now follows from Lemma 6 and Lemma 10.

§5. Proof of Theorem 2

It follows from Lemma 7(a) that

Bl ~ 3 s, I

(a.b)eK
Furthermore (a,b) € K implies
e .| 2a+b a-1 b-1
a,b A
= oI (1+e_..,) I (1+¢f ;)
H! - -
IQO,OI alb! . o a-i,b =0 0,b-j
7\2a+b
=amr (1+6,)
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%G By 2asb
A
2| ~ I‘I’o,ola‘fo bz alh!
A2 2
~ |QO,0| e since % >> AN and BO >> A

The result now follows from

n

_ (2m)! _

o] = L_L' a-and 12y ol = (T a0l
m!2 i=1

Observe that the following (technical) strengthening of Theorem 2 is possible.

It is used in the proof of Theorem 3b.

3
Theorem 2

The condition d?/di/z = 0(n1/2_e) in Theorem 2 can be weakened to
172 2 -€
o 02/m < An

for some absolute constant A > O.

The conclusion can then be expressed

2
|(eA+A |Q0’0|/|Q|) -1] € n_&/2 for large n.
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Proof
Lemma 9 was proved with the stronger assumption, which was then shown to

imply the weaker (less complex) assumption at the end of the proof of Lemma

10. o

§6. Proof of Theorem 3

We proceed as in the proofs for r constant, but make minor changes.
The only technical difficulty lies in the fact that our construction of
FCHOOSE requires us to delete edges from the initially chosen FO. However
we delete few edges and so a given edge is unlikely to be deleted.

Lemma 11

Consider Algorithm CHOOSE. Assume FO €K and u € FO is not a loop or

redundant edge. Then, independently of previous choices,
Pr(u€F, |u€F, )<
i i-1/ = rn

for i

1,2,...,at+b.

Proof
Assume first that i { a. Consider condition A of 383 and assume edge
F. ,F. of H__. comes from some fixed e in (i). Then there are at
i-1'1 a—-i+1,b
least %rn - (2a + b + 2r(r-2)) equally likely choices for f (see the proof

of Lemma 7a). This implies the result for i {( a. For i > a use the proof

of Lemma Tc. 0
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Corollary 12

Proof
Let S = {u u2,...,us}. If sn FCHOOSE = ¢ then for some
1< i1 < i2 <...< is < a, + BO < rzlogn + r logn we find that an element of

S 1is deleted at iteration il’i2""’is of Algorithm CHOOSE. Then, by Lemma

11,

[rzlognj + [r lognJ 3
Pr(SNF

m=¢)$5! S (;l'_l)

s
4r log n.s
< (— ) o

Proof of Theorem 3a

Since the result is known for r constant, we shall assume r > 100. If
FtHOOSE is not r-connected then there exists a set R C Vn. IR| = r-1 and
sets A,B, 2 < |A| < |B|, partitioning Vn - R such that every edge joining

A,B in FO is missing in FCHOOSE' We refer to this event as gR,A,B'

Let SA be the event FO contains 2k or more pairs contained in

W,= U W. Nowfix A, 2 < |A| = k < r(logn)®. Then
i€A

Pr(U ) < Pr(8A) + i Pr(é&

I2,)
R ‘R.A.B A

R,A.B

IN

(r-2)k - -2)k—
(gi)(k)2k ( 1) s ((rt2)k)(rn1)t(4r iogn)(r 2)k-t

I

(gik)2k r—12(r—2)k(4r iggg)(r—2)k.
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Hence
r logn)2 n rek,2k r-1,8r lo (r-2)k
P U U e < 3 rek en
r(IAlﬁr(logn)z R R.A.B) Ked WG +n () )
r(logn)® 3 3k .
$ 2 ((L:—n") + pk*T-8(r-2)k,
= o(1).

For [A] = k> r(logn)2 we observe that if & occurs then there must be

R,A,B
at most rzlogn + r logn + r(r-1) { rk/10 edges between A and Vn - A in

u(FO). But the probability that this occurs for some A, r(logn)2 < Al <

[\'3__]"—‘

is at most

5n
s n rk )(E)Qrkllo
k=r(logn)2 k rk/10’'n
1
"
ne.k rk/10,k.9rk/10
<3 5 (0T
k=r(logn)
ln 2 r-1
2 10
k /10.k
= 3 L) e (10e)™ %)
k=r(logn)
¢ s R ((%agr/1o % (loe)r/IO)k
k>r(logn)

o(1) as r 2 100.
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Thus all possibilities for |A| are covered and the part (a) of the

theorem is proved. o

Proof of Theorem 3b

Since the case r constant (and large) is already established we shall
assume that r > ® with n.
We modify the argument from Fenner and Frieze [4].

We need to show that

Pr(¢(FCHOOSE) is hamiltonian) = 1 - o(1).

We consider the following blue-green colouring of F € &: let

n
Wi Cc Wl....Wﬁ C Wr be fixed subsets of size [r/2] and W' = U W{. Now for

i=1
i = e, . .- ' e - ] roo.
i=1,2,....,n choose w, € Wl Wl and let W W' u {wl. ,wﬁ}.
We will use o to denote an arbitrary choice of WisWgu oo ouW .

Let Fb = Fb(a) ={e€F: eN W' #¢} and Fg =F - Fb'

A graph G with vertex set »Vn is said to have the neighbourhood property if

1 . .
SC Vn’ Is] < D implies |NG(S)| > 2|S| where
NG(S) = {w € Vn -S:3veS s.t. {v,w} € E(G)}.
If Fe€d® let ¢'(F) be the graph (Vn,{¢(e): e€F and e N W ¥ ¢}.

Lemma 13

Pr(¢'(FCHOOSE) has the neighbourhood property) = 1 - o(1).



Proof
Fix k 2 r/6 and let A = {1,2,...,k}, B = {k+1,...,3k-1} and
C = {3k+1,...,n}. Then by considering the "first" rk/4 pairs involving

ANVW we see that

: 3k . 4rl kr/4
Pr(F('}lOOSE has no A-C pairs) ¢ (n—+ —Eﬁg—g—l-) T,
Hence
Pr(¢(F/. ) does not have the neighbourhood property)
n/4
¢3S (GIEE oy
k=r/6
n/4
£ > u
k=r/6 X
n3e3 3k . 4rl r/4
where u, = (—+ ———252) .
k 3 'n n
4k
For k < 32rlogn, u < n3e3n-r/5 (r = 0(n1/5—e)) and for k > 32rlogn,
33,3 r/4

u < (n"e"/k™)(25k/8n) and it is easy to see that

/4
2 = of1).
ker/6 K
Lemma 14
Pr(IFyo0se ~ Fénoose! 2 o) = 1 - o(1)-
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Proof

It is sufficient to show that
Pr(|F, - F{l 2 52) =1 - o(1).

let Z = |F0 - Fél.

(4) and (5) with M = Z. Using the same sort of argument as in Lemma 8(c) we

It is easy to see that E(Z) ~ 52. Next consider

see that 6i {1 and the lemma follows from (5). 8]

Now define

WO = {F € QO,O: (i) ¢(F) is connected,
(ii) ¢'(F) has the neighbourhood property,

(iii) |F - F'| > rn/10}
We deduce from Theorems 3a, 4 and Lemmas 13 and 14 that

IWOI/IQO O| =1-o0(1). Let ¥ = {F € ¥,: §F) is not hamiltonian}. We must

show

(28) = o(1).

For F € FO.O we let
a(F,o0) =1 if (i) ¢(Fb) has the neighbourhood property,
(ii) longest paths in ¢(Fb) are longest in ¢(F),
(iii) no e € Fé is such that (e) joins the endpoints
of a longest path of ¢(Fb)
(iv) F € Wl

=0 otherwise.



((ii) above is not actually necessary but helps to verify (iii)). Observe

that
(29) a(F,o0) =1 implies IFéI 2 rn/11.
We observe next (as in [4]) that

F € Wl implies 3 a(F,o0) 21
o

and so

For a fixed values 0 of o and F of Fb let
xO(E,F) = I{Fé: F=F, U F satisfies Fb(a) = F}|
and
xl(é,F) = I{Fg: F = Fg UF satisfies Fb(a) =F and a(F,0) = 1}].
We show that there exists a constant O < v+ < 1 such that

(30) X, (0.F)| < +"™[x,(e.F)| for a1l o.F.
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It will then follow that

l¥;1 < 3 2 a(F.o0)
Fo
=22 [X,(0.F)]
F
<23 Xy (a.F)]
Fo

= ’rn|§0,0| [r2]®

and (28) follows.
To prove (30) we observe that if nl(a.?) > O then using (i) and (iii)

of the definition of a(F,o0) and Posa’s Theorem [6] we see that

(31) 3S = {vlvz,.... k} CV and sets S,.S,,....5
CV_ of size k > l-n such that F_ has no
- 'n 4 g
pair {x,y} with ¥(x) = vy and Y¥(y) € Si for some

i = 1,2,...,k.

Suppose that for some such fixed (o,F) we find ¢(F) is a graph with degrees

di,dé,...,dé. Then XO(E.F) is (essentially) the set of configurations with
3 — -— [ 3 — — ! 3 -— -— 1
degree sequence d1 =T dl' d2 =T d2""’dn =T dn

and X1 is the subset of these configurations which contain no edge as

n
described in (31). Observe that (29) implies = d
i=1

>R Jet ¥ be the set

1 1

of configurations defined using & and let 30 0 be those without loops or



parallel edges. We need to show that
(32) Pro 0(? contains no pair as defined in (31)) ¢ T

for some ~ < 1.

But it is simple to show that
(33) Pr(F contains no pair as defined in (31)) < 7;n

for some 11 < 1.

Also by Theorem 2*

2, ol k2
0,0 1 —(A+A
(34) — 23 (A+A7)
2]
~ n ~
where A = O(r). (We use 3 di 2 rn/11 at this point.)
i=1

(33) and (34) imply (32) which implies (30) and hence the theorem.

38
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