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Abstract

We study random r-regular labelled graphs with n vertices. For

r = 0(n ) we give the asymptotic number of them and show that they are

almost all r-connected and hamiltonian. Proofs are based on the analysis of

a simple algorithm for finding "almost" random regular graphs.
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§1. Introduction

This paper is mainly concerned with random r-regular labelled graphs with

n vertices and r = r(n) -* » with n. Bender and Canfield [1] and Bollobas

[2] discuss models for the analysis of r regular graphs when r is

constant. Bollobas's model is more transparent and in fact deals with

1/2
r(n) < (2 logn) . By and large however what is known about random regular

graphs is restricted to constant r.

We will describe a method for analysing random regular graphs which is

valid for r(n) = 0(n ) where for simplicity we take e > 0 to be an

arbitrarily small constant.

Let REG (n,r) denote the set of r-regular graphs with vertex set

V = {l,2,...,n}. We first extend the range of applicability of the

asymptotic formula for the number of labelled r-regular graphs given in [1]

and [2].

As customary, we use the relation A ~ B to denote the relation

A/B -* 1 as n -> <».

Theorem 1

Assume r = 0(n ~ e) for some fixed e > 0. Then

|REG(n,r)| ~ e~X~X

o" r n
2Z (r!) n

where A = —5—. •

We will deduce Theorem 1 as a special case of Theorem 2 below, which deals



with general degree sequences (as in [1], [2]).

Suppose d = (d.,,do,...ad ) is a sequence of positive integers where

n
dn > do>...>d > 2 and 2 d. = 2m is even. Let ^(d) denote the set of
l ^ n i 1 i

graphs with vertex set V and vertex degrees d-.d^.
.

Theorem 2

Let d be as above and assume d,./d = 0(n ). Then

m ! 2 m IT d.!
i=l *

1 n ri
where X = ^- 2 (^i). D

^m . = 1 ^

The method we use is based on the analysis of a constructive method

(CHOOSE below). It seems likely that Theorems 1 and 2 could be proved more

directly. However the advantage to our approach is that it will allow us to

analyse random regular graphs of this size, whereas a direct approach might

not. (Of course, a "direct" proof has not as yet been constructed.)

Let G denote a random graph sampled uniformly from REG (n,r). We will

prove two properties of G extending what is known for constant r.

Theorem 3

1/5—e
Assume r = 0(n ) for some fixed e > 0. Then

(a) lim Pr(G is r-connected) = 1
n-**> r

(b) lim Pr(G is hamiltonian) = 1.
n*» r



Neither result is surprising, they just seem difficult to establish. In

particular, consider (b). It has already been established for various values

of rQ (10
10 in Bollobas [3], 796 in Fenner and Frieze [4], 85 in Frieze

[5]) that if r is constant and r > rn then almost every G is

hamiltonian. Unfortunately one cannot obtain G . by adding random edges to

G and so none of these results imply (b) of the theorem, which seems

obviously true.

Recently, Robinson and Wormald claim to have extended their approach in

[7] to prove that r~ = 3. At the time of writing only an abstract of the

proposed paper is available.

One possibly useful outcome of this work is an efficient procedure for

generating "nearly" random regular graphs.

(If say r = 10 and one wanted to use Bollobas's construction repeatedly

until one found a simple graph one would expect to have to make approximately

e trials).

The basis of our proofs is a simple algorithm CHOOSE which outputs a

regular graph GruQQgp (in "configuration" form-see §2) with probability

1 - o(l) and satisfies the following:

let si be any graph property. Then under the assumptions of Theorem 1

We point out now that because we are dealing with asymptotic results all our

inequalities are only required to hold for large enough n.



§2. Configurations

We are going to work with the Configuration Model of Bollobas [2]. We

i-1 i
let W = {1,2, 2m} and W. = { 2 d. + l 2 d.} so that W1,WO,...,W

1 j=l J j=l J 1 2 n

is a partition of W into sets of size d,,do,...,d . For k € W we define
x £ n

x//(k) € V so that k € W - n >. We will let A =

A configuration F is a partition of W into m pairs. $ denotes the

set of configurations. For F = ({x.,y.}, i = 1,2,...,m) € $ we let JLI(F)

be the multigraph with vertex set V and the m edges {(x.y. ,^(x.) ,^(y. )) -

i = l,2,...,m}. The notation (xy,\{/(x) ,>//(y)) refers to an edge with label xy,

x < y and endpoints ^(x),^(y).

Notice that F -» jn(F) defines a bijection, because we can construct F

from the edge labels of J*(F).

We consider $ to be a probability space in which each F 6 $ is

equally likely.

The multigraph n(F) will in general contain parallel edges and loops.

Let {x,y} € F be a loop if >/>(x) = >//(y) and let j3(F) denote the number of

loops in F. {x,y} € F, x < y will be a parallel pair if there exists

{x'.y'}, x' < yf where xf/(x) = >K*') < +(Y) = *(y')- The parallel pair

{x,y} just considered is redundant if the {x'.y1} € F just considered

satisfies xr < x. Let a(F) denote the number of redundant pairs of F.

Thus the simple graph T ( F ) obtained from jx(F) by deleting loops and

coalescing parallel edges has m - (cx(F) + P(F)) edges.

We let $ , = {F € $ : a(F) = a, J3(F) = b} for a,b > 0 and let F ,
a,D a,D

be a random configuration sampled uniformly from $ , . We are of course most
a, D

interested in $ Q Q, the case where fx(F) = T ( F ) . We know that each graph in

n
d) is the image under }i of exactly II d.! configurations. Our task



generally then is to estimate |$Q Q| and prove properties of almost every

F € $

§3. Sampling from $~ ~.

Our problem is to describe a simple process of generating configurations

which, with sufficiently high probability, produces a ("nearly") random member

of FQ Q. (When A is constant one simply chooses a random F € $.)

We will now describe an algorithm which generates an F € $ n n with the

required distribution, given the conditions of the theorem. To do this we

define first for a > 0, b > 0 a bipartite graph H , with vertex partition
a, b

$ , ,$ 1 , and an edge FG, F € $ G € $ whenever the following
a,b a-l,b a,b a-l,b

condition holds:

(A) 3 non-loops e = {u,v}, f = {x,y} € F such that

(i) e is redundant and f is not parallel in F

(ii) G = (FU {{u,x}, {v,y}}) - {e,f}

(see figure 1).

Condition A describes the set of neighbours of F € $ _ . We should also
a,b

describe the set of neighbours of G € $ Thus equivalently there is an

edge FG if

(B) 3 non-loops el = {u,x}, e' = {x
r,y'}, x' < y', e 2 = {v,y} € G

such that

(i) *(u) = *(x r), *(v) = *(y'). x' < u.

(ii) F = (G U {{u,v}, {x,y}}) - {e re 2}.



We must also define a similar bipartite graph H' k, a > 0, b > 0 with
a, b

bipartition $ , ,$ , 1 and an edge FG, F € $ G € $ whenever
a,b a,b-l ** a,b a,b-l

(A') 3 loop e = {u,v}, non-loop f = {x,y} € F such that

(i) G = FU {{u,x}, {v.y}} - {e.f}.

(see figure 2).

The equivalent conditions in terms of G are

(B') 3 non-loops e- = {u,x}, e~ = {v,y} such that

( i ) +(u) = +(v)

( i i ) F = (G U {{u,v}, {x,y}}) - { e r e 2 } .

If H € $ , U $ 1 U (resp. H € $ . U $ , , ) then we let N , (H)a,b a - l ,b v ^ a,b a,b-l 7 a,bv '

(resp. Nr , (H)) denote its neighbour set in H , (resp. H' , ).v r a,bv " ^ a,b v r a,b'

Consider now the following method of choosing F € $ 0 „

For a finite set S, RANSELECT x € S means select x randomly from S.

Algorithm CHOOSE

0. RANSELECT F € $ ;

let a = a(F), b = 0(F)

i p : _ p.

2. for i = 1 to a do

3. RANSELECT F± € Na_.+1 fe ( F ^ ) ;

4. for i = a+1 to a+b do

5. RANSELECT F. € K

6. OutEut F(mosE = Fa+b.



Note that F + b € $ We do not intend to prove that F a + b is equally

likely to be any member of F Q ~. Indeed i

limits set by Theorem 1, it is "nearly so".

likely to be any member of F o 0. Indeed it is not. However, within the

Theorem 4

Let si C $ be some property of configurations. Then with the same

assumptions as Theorem 2

Pr(F0 Q € € d) *

We devote the next section, the main body of the paper, to the proof of

Theorem 4.

§4. Proof of Theorem 4.

Observe that in line 1 of CHOOSE F~ is a random member of $ , but
U a, b

there is bias in the selection of Ft € $ We modify CHOOSE by adding
x a~~ x, D

a 'rarely used' emergency procedure for reselecting F., so that F. remains

a random member of $ . i , throughout.
a—l+I.b

To motivate CHOOSEA below assume that F is chosen randomly from $ ,
a, b

and G is chosen randomly from N K(F) as in CHOOSE. If ir ,(G) is the
a, D a, D

probability that a particular G is chosen then a moments reflection will

convince the reader that

a,bv '

L e t *a-l.b = {G *a-l.b: t h e s e t of g r a p h s w h i c h
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are being chosen too often and $ i i _ = $ ^ ^ "" $ 1 i- Th e modification
a-l,b a-l,b a-l,b

that we make to CHOOSE in CHOOSEA is that, if in line 3, we find

F. € $ K, then we reject it, with a small probability, and re-choose from
1 a 1, D

$ . . , in order to maintain uniformity of selection.
a-i+lb

Algorithm CHOOSEA (modifications to CHOOSE)

Add lines 3a, 3b and lines 5a, 5b to CHOOSE

th ith bbility -2_J±L£—I a_i±b3a. If F. € * . . then with probability
1 a"io

_ 1

3b. F.: = G € $"" with probability a~ 1 >

*a-i+l.bllV

11 a-i,b" ^a-i+l.b*

a-i,b

lines 5a, 5b are similar, <JL , replaces $ . - , , $^ , - replaces $ . ,
0,b a— l+l, b U,b—1 a—i,b

and irQ b replaces * a_ 1 + l i b.

Also we refer to the output of CHOOSEA as

Lemma 5

In Algorithm CHOOSEA, F. is equally likely to be any member of $ . K,

l a l, D
i < a or $ n ^ - ., i > a.

Proof

Assume inductively that F._- is equally likely to be any member of

$ , (we assume i < a, but only for notational purposes. The case i > a
a i+l,D

is handled similarly). If G € $ + . , then
' a-i, b



TT . , ,(G) - $ . ,

If G € $ _ then (where TT(G) denotes ir .
a i > D a~~i+l f

Pr(F.=G) = ir(G) + 2 (ir(G') -

a-i,b

a-i.

since

__1 1

5a-i,b G" € §a-i,b

Thus FQjQ0SEA i s a r a n d o m choice from $ Q Q.

Let now & denote the event {CHOOSEA executes line 3b or 5b}.

Lemma 6

Let si C $ be some property of configurations. Then

|Pr{F0,0 € ^ " Pr(FCHOOSE € rf)l ̂  2Pr(«b)
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Proof

We consider the following experiment: we run CHOOSE and CHOOSEA in

parallel with the same random choices until the first execution of lines 3b or

5b. If £ does not occur then they have the same output. Thus

Pr(F0>0 € d) = Pr(F a K ) 0 S E A € d)

Pr(FCHOOSEA € * ^ FOKX)SE = FCHOOSEA>

Pr<FCHOOSE € d "^ FCHOOSE = FCHOOSEA>

By using the same inequality for si we obtain

Pr(FQ Q € d) I P r C F Q ^ ^ € d) - Pr(fi
b)

and the lemma follows. D

Thus to prove Theorem 3, it is sufficient to show Pr(g ) = o(l).

In order to prove Pr(£ ) is small we must examine the degree structure

of the graphs H . and H' ,. For F € $ . U $ . , let d , (F) denote& K a,b a,b a,b a-l,b a,bv J

its degree in H , . Similarly, for F € $ , U $ .. 1 let d' , (F) denote
a,b a,b a,b—1 a,b

its degree in H' ,.
° a,b

For k > 1 let «CL = flCjfF) be the number of cycles of length k in

JLI(F). (k = 1 counts loops, k = 2 counts pairs of parallel edges.)
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Lemma 7

(a) F € $ , , a > 0, impliesa, b

2am - 2a(2a + b + 2A(A-2)) £ d . (F) < 2am
a, D

(b) G € $ , a > 0, implies
v ' a—l,b

- (b+2a)(A-l)2 - 3ttC3(G) - 4«C4(G) £ d& b(G)

where

2 (d., . - t(x))(d.r . - 1)
e={x.y}€G *<X> ^ y >

x<y

(̂)
and if e = {x,y}, x < y then t(x) = x - 2 d. (= the rank of x in

1

(c) F € $ b > 0, implies
a t D

2b(m - b - (A-2) - 2a) £ d' . (F) < 2b(m - b).
a, b

(d) G € $ b > 0, impliesa t D*"~ x

2 ( *) - (b-1) - 3«C - 2a(A-l) £ d' (G) ^ 2 ( *) - (b-1).
i=l Z J a'b i=l 2

Proof

(a) Consider condition A. There are at most am pairs e,f satisfying (i)
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and each pair yields 2 edges of H , . The upper bound follows. Now fix a
a, D

redundant e. For the lower bound we must estimate the number of choices f

so that G as defined in (ii) does not belong to $ 1 K. In the upper bound
a—A, D

we ignored the fact that f was not be be a loop or parallel edge, which

accounts for the 2a+b term. We need |^({u,v,x,y}) | = 4 to avoid creating

loops, which removes at most 2(A-2) choices for f. We must avoid creating

new parallel edges which can be done by avoiding the existence of {p.q} € F

such that p € >//(e), q € >p(f). This removes at most 2(A-2)(A-1) choices and

gives us the lower bound.

(b) Consider condition B. For each non-loop er = {x'.y'} € G, x' < y'

there are d -. ,. - t(e') choices for u and d , ,.-1 choices for v such

that (i) holds and this justifies the upper bound. To get a lower bound we

eliminate choices for which (a) 3 {p.q} € G with >//(p) = xf/(x), >Kq) = HY) >

creating extra parallel edges in F; there are at most 48CL cases or, (|3)

|>K{u,v,x,y}) | < 3. creating extra loops in F; there are at most 3#CL cases.

Finally we must avoid destroying any loops or parallel edges of G; this
2

accounts for at most (b+2a)(A-l) cases.

(c) Consider condition Ar. There are at most b(m - b) pairs e,f each

giving 2 edges of Hf , , and this gives the upper bound. For a fixed loop e
a, D

at most A-2 choices of f create extra loops or parallel edges through

|x//({u,x,y}) | = 2 or the existence of {p,q} € F such that \f>(p) = ̂ (u),

= >P(f). There are at most 2a choices of f which destroy a parallel edge.

This gives the lower bound.
n d.

(d) Consider condition Br. There are at most 2 (o ) ways of choosinge^e^ so that >P(u) = >Kv). b~l of these choices u,v correspond to loops

of G and this gives the upper bound. There are at most 3ttC« cases in which
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the construction yields a new parallel edge and at most 2a(A-l) distinct

cases in which a parallel edge is destroyed. •

Our next task is to give probability bounds for the quantities defined in

the previous lemma.

n k
Let a, = 2 d. for k integer.

K i=l 1

Lemma 8

Let F be chosen randomly from $. Then

. -p(a /m)k/10 k+1

(a) PrCHC^ I p(CT2/m)
K) i p * for pQ $ p i m /lor*, 1 < k < 4.

where p_ is a constant.

n d n d (d - I ) 2

-t2/l0a

Proof

(a) Let p., t be positive integers.

. 2 . \
1 = 1 1 = 1

-t2/
(c) Pr(|2p - ECSp)I > t) < 2e & for all t > 0.

( 2 IT ( j) (k 1)! 2 )V(,x)
SCVn j€S z (2m - 2kt) K t

IS |i

( 2 zr

|s|=k
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2V ' (m-kt)

(k-1)! o\ t

2 m

Let now ji = fpfa^/m) ] and t = [p/9j. Then

and

for sufficiently large ji

and (a) follows.

(b) Suppose we construct F by choosing a random pair of elements e. from

W, then a random pair of elements e~ from W - {e^} and so on. Viewed in

this light

= m E(C(x,y))

where x is chosen uniformly from W-{rn} and y is chosen uniformly from

W - {l,2,...,x} and C(x,y) = (d+(x) - t(x))(d+(y) - 1).

Now
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E(f(x,y)) = 2 2 E(f(x.y)|^(x) = i. *(y) = J) m f L J n

n d.(d.-l)
2 E ( « ) | * ( ) * ( ) i ) ^

n-1 n d -1 dd n (d -I)2 d (d -1)
y y x (j\ i % x J . y x x x

2 j m(2m~1) i=i 2 ^C21""1)

n-1 n d d n d 9 n d (d -1)

> 2 M
d d n

and the result follows.

We prove (c) by using a martingale inequality. Let X1fXo,...,X be
1. Si III

random variables, and for each i = 1 m let )O ' denote

(Xj.Xg, .. . ,X i). Suppose that the random variable M is determined by X ^ .

For each i = l,2,...,m. Let

(4) 6. = sup |E(M|X(i 1 }) - E(M|X(i))| i = 1,2,

Here E(M|X^ ^) means just E(M). The following inequality is a special case

of a martingale inequality due to Azuma.

2 m 2
-u/2 2 8*

(5) Pr( |M - E(M) | > u) < 2e

for any u > 0.
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To apply these ideas for F € $ we let Xi = XjL(F) = {p^q..}, Pi > q±, i =

l,2,...,m denote the pairs of F sorted into lexicographically decreasing

order. We prove that when M = 2p in (4)

(6)

m 4
We can then apply (5) and 2 d ,. v < o^- to obtain our result. Fix i and

Xj.X^, X1_1 and let ft s {F € ft : X. = X.. j = 1.2 i-1}. Let

i-1 - „
Y = W - U X. and x = min(Y). For y € Y - {x} let $ = {F € $ : X. =

"i —1

{x,y}} and observe that these sets partition $. Now

y€Y-{x}

We show that for y,y' € Y

(8) lECSpl F € $ y ) - E ^ l F € $ y , ) |

and then (6) follows from (7), (8), x > i and

6. = max |
1 y€Y-{x}

To prove (8) we consider the following mapping f , : $ -» $ , defined as
y »y y y

follows: suppose F € $ contains the pair {xr,y'} containing y', then
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fy y,(F) = (F - {{x,y}, {x',y'}» U {{x.y'}, {x' ,y}} € $yf.

-1 ^
These functions are all bijections, f , = f , and furthermore F € $ ,

y.y y »y y
y' £ y implies

y.y'

and (c) follows.

2
(4d* > is a crude but obvious upper bound here.)

We now apply this lemma to obtain information about the graphs H , ,
a, b

IT b. Let now K = {(a,b): 0 < a < aQ, 0 < b < PQ} where

2 2 2
a0 = a 2 l o g n / m < ̂  lo^n a n d Pn = ao l o g n / m ^ ̂ iog11 (ao - 2 m A ) -

Lemma 9

(a) If F is chosen randomly from $ then

-(aQ/m)2log n/10 -(aQ/m)log n/10
Pr((a(F), P(F)) € K) < (logn) * + (logn) ^

2
2 . 1/2 -(cr9logn/m) /2

(b) Pra b( |da b(G) - 2m?O| I 6 a^^losn/) < 2

for G € $ (a,b) € K, a > 0.
a—1,b '

1/2.
CT5 l o g n

where k a b l < 100 for (a,b) € K, a > 0.

where k a b I < a^/2logn/a2> for (a,b) € K, b > 0.
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Proof

(a) This follows from Lemma 8(a) with k = 1,2 and p = logn. Note that

this implies

(9) |$- g|/|$| > l/(2a()j30) for some (i,b) € K.

Before proceeding to (b) we obtain some approximations to the ratios estimated

in (c), (d). Now

(10a) 2 d K(F) = 2 d , (G) for a > 0,
F€$ , a'b G€$ , , a'b

a,b a-l,b

and

(10b) 2 d' K(F) = 2 d' K(G) for b > 0.
F€$ , a'b G€$ , , a > b

a,b a,b-l

Now (10a) and Lemma 7 imply

2am - 2a(2a+b + 2A(A-2))

(where E , denotes expectation for random variables over $ , )

2am (1 -

> ;
| (A-l)2 An

(the denominator here is a crude upper bound for max{2ri: G € $ , })
la a~ i, D
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Similarly

(lib)
l$a-l J 2am

, . (2~ - 2a(A-l)2 - bA(A-l)

(llc)

b

2b(m - b - (A-2) - 2a)
n di
2 ( *) - (b-1)

2bm 9A
2 n d.

1
n ).

and

(lld)
n di
2 (2

X - 3Ea>b_1(«C3(G)) -2a(A-l)

(b), (c). (d).

Let (a,b) be as in (9).

Case 1: 0 < a £ a, b = b. Proof of (b) and (c).

It follows from (9) and (lla) that

(12)
l$ab'

V2a0J30 > e , = 0 say,

for 0 £ a < a.

But then
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(13) Pra g< |2p - ECSp) | I 5 a^
2 logn/m)

M K - E ^ ) ! > 5 aoaV2 logn/m)/0

-9(aologn/m)
2/16

2

on using Lemma 8 (c).

Hence, since d r<G) < 2^ for G € $ i r-,

(14)

for 0 < a < a.

-9(aologn/m)
216

For the subsequent analysis we need two inequalities'.

i - *
(I5a) m /a? ̂  n

and

3 1/2
,1C.,

 m g 5 3/20(15b) ^ — > n
CT2

Proof of (15a)

Use m > 2n and a» £ 2mA and A < n

Proof of (15b)

Observe first that ov > a^ /n and so
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3 1/2

3
i

>

3m
3/4 7/4

3m
. 3/4 7/4.7/44n m A

Now use m > 2n and A < n

Now

(16) Pra,b(4*C4(F) - 1 0

Pra g(*C4(F) > n
3/2°(a2/m)

4) by (15b)

Pr(«C4(F) 2 n
3/2°(a2/m)

4/0

3 1 3/20
" 20 * 10 * n *

(on using Lemma 8(a) and (15a))

2
-(cr0logn/m)

2

for 0 i a < a.

Similarly,

-2 1/2 -(CToloS n/™)
(17) Pra g(«C3(F) > 10 a2ag^logn/m) < e

 Z for 0 < a < a.

Thus, on using the lower bound for d r<G) in Lemma 7(b) (and
a, D
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°5 ~ a l / 2 / n 3 / 2 ) - we flnd

1/9
(18) ^ a - l b ^ a b ^ ' ^ V " -59CT

2
CT5 logn/m)

-(9(CT9logn/m)
2/16 -(a logn/m)2

^ +2e Z

for 0 < a < a.

Now observe that

(19) |E(2p) - 2m\2| = 0(CT3/m) =

Using this in (18) completes the proof of (b) for Case 1.

We now show that for 0 £ a < a,

(20) ^a.b^V " E ( V I

and

(21a)

(21b) E a 5<aC4(F)) < a2a^
/2logn/99m.

Proof of (20)

It follows from (13) that
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and

and (20) follows.

Proof of (21b)

It follows from (16) that

Ea,b<**C4) * 10"2a2

1 / 9 -9(a logn/m)2/16
( E ( V " ̂ 2

a5 logn/m)(1 " e )

E(2p) -

2
-9(a9logn/m)
e

10-2 1/2 2m ""(a2lQgn/m^

The proof of (21a) is almost identical.

Now from (lla) and (20) we have
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rj _ 9A logn.
(22) - *.« v L n

1 a.b1

But now we can use (19) and

(23) 2mX2

in (22) to give us the required lower bound. The upper bound follows in

the same way from (lib), (19), (20), (21) and (23).

Case 2: a < a < aQ, b = b. Proof of (b) and (c).

We inductively show that, for a £ a < afl,

{24) J k b [ y_ | A-3 X2(a-a) if (1 _ 100
|| a

Now for a = a this follows from (8) and so assume it is true for

a,a+l, ... ,a-l for some a > a. Note that this implies (20) and (21) (with a

replaced by a-1). Using these inequalities in (10b) yields (24).

This then implies (20) and (21), (with a now and not a-1), which

yields (b). Finally (20) and (21) and (10) give (c).

Case 3: 0 < a < aQ9 0 < b < b. Proof of (b) and (d)

Using (lie) and (24) we obtain
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(25) a>b > A ° 9 0 < b < b.

1*1

1/2
This enables us to show (see 21a) E & b l («C3(G)) < a ^ logn/99m in (lid)

and then (d) follows from (lie) and (lid). The proof of (b) follows as in

previous cases.

Case 4: 0 < a < aQ, b < b < /3Q. Proof of (b) and (d).

This time we inductively show that for b < b < /?

(26) Jib" > , ,-b b! .
|| b °2

>9e

1/2.. .2 y^ (logn) /m
b

Now for b = b this follows from (20) and so assume it is true for

b,b+l,. .. ,b-l for some b > b. Note that this enables us to show

I/O

Ea b - l ^ ^ V 0 ^ ~ o2oj/ lagn/99m in (lOd) and then (26) follows from (lOd).

But then (10c) and (lOd) now imply (d) and the proof of (b) follows as in

previous cases. D

We can now estimate the probability that 6 occurs.

Lemma 10

Let & be as defined prior to Lemma 4. Then, with the assumptions of

Theorem 2,
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Pr(Sb) =

Proof

Let K as defined prior to Lemma 8. Then, by Lemma 8(a),

(27) Pr(gb) < 2 Pr(gb|F € $ ) Pr(F € $ ) + o(l).
(a,b)€K U a > b U a > b

So we can restrict our attention to estimating

Pr(lb|F0 € $ a ) where (a,b) € K.

Let now S. denote the occurrence of £ on the i execution of the main

loop of CHOOSEA. Then

a+b ,
F~ € $ , ) < 2 Pr(g. |F~ € $ ) .
u a,b " . A 1 u a,b

Case l: 1 < i < a.

Let f denote max{O,f} when f € 9L Then

a-l,b

1 / 9

2
6a2a^/2logn/m)/(2(a-i+l)m(l - 3 A

 n ° g n ) )
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(on using ira_i+1>b(G) < >b(G)/(2(a-i+l).(l -

-(a2logn/m)
2/2

^ • 1

* |
K -i.l.b

-(a logn/m)2/2
| 2 (1 + 3011ogn ffg /a2 - 1)

K -i+l.b

< 302 logn

Case 2: a < i < a+b (let b' = a+b-i)

2 ( d j

i=l 2
'(m " b' " A + 2 »

i-K+

2 logn 1/2/

after making approximations as in Case 1.

Thus

0((logn

0((logn)
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Now l e t d. = d . /d , i = 1,2 n, m = mAL and a, = tfj/dj for k > 2 .

Then

1/2 , 2 ,5/2 "1/2 ~ "2
5 2 n b 2

/ ,5/2 "A1/2 "2 " " "2< d (2m) d1 2m dVm

= 0(n e)

and the result follows.

Theorem 4 now follows from Lemma 6 and Lemma 10.

§5. Proof of Theorem 2

It follows from Lemma 7(a) that

2 I* |
(a,b)€K a'b

Furthermore (a,b) € K implies

liR ' I = , K , II (1 + e . , ) IT ( 1 + e» , . )

lfo,o' a ! b ! i=o a - 1 > b j=o 0>b-J

X
a!b!
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where I9 , I < n
a, b

Hence

aO

a=0 b=0

e since a~ >> X and j3̂  >> X.

The result now follows from

|$ I = ( lid r
m!^ 1=1

D

Observe that the following (technical) strengthening of Theorem 2 is possible.

It is used in the proof of Theorem 3b.

Theorem 2

3 1/2 1/2—e.
The condition d/d = 0(n ) in Theorem 2 can be weakened to

1/2 , 2 , A -e
S a2 -

for some absolute constant A > 0.

The conclusion can then be expressed

" £ / 2
0 0|/|$|) - 1| < n"

£ / 2 for large n.
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Proof

Lemma 9 was proved with the stronger assumption, which was then shown to

imply the weaker (less complex) assumption at the end of the proof of Lemma

10. •

§6. Proof of Theorem 3

We proceed as in the proofs for r constant, but make minor changes.

The only technical difficulty lies in the fact that our construction of

^CHOOSE r e cl u i r e s u s t o delete edges from the initially chosen F^. However

we delete few edges and so a given edge is unlikely to be deleted.

Lemma 11

Consider Algorithm CHOOSE. Assume Fn € K and u € F~ is not a loop or

redundant edge. Then, independently of previous choices,

Pr(u C F j | u € F.^) < ^

for i = 1,2,...,a+b.

Proof

Assume first that i < a. Consider condition A of §3 and assume edge

F._1F. of H __. - , comes from some fixed e in (i). Then there are at

least rfn - (2a + b + 2r(r-2)) equally likely choices for f (see the proof

of Lemma 7a). This implies the result for i < a. For i > a use the proof

of Lemma 7c. •
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Corollary 12

Assume S C FQ. Then • ) < (2LJL2&JL) ISI

Proof

Let S = u } . If S PI = • then for some

1 < i . < i~ < . . . < i < aQ +
2

< r logn + r logn we find that an element of

S is deleted at iteration ilfi i of Algorithm CHOOSE. Then, by Lemma
S

FOKX)SE = •> <~ s !

|r lognj + [r lognj

(4r *°s n) s
n

Proof of Theorem 3a

Since the result is known for r constant, we shall assume r > 100. If

^CHOOSE
i s n o t r~ c o n n e c t e <* then there exists a set R C V , |R| = r-1 and

,

sets A,B, 2 < |A| < |B|, partitioning V - R such that every edge joining

A,B in FQ is missing in

Let Si be the event

r e f e r t o t h i s e v e n t a s ^R A B'

contains 2k or more pairs contained in

2WA = U W.. Now fix A, 2 < |A| = k < r(logn)2. Then
A i€A X

Pr(U
R R

Pr(«

n
( r 2 ) k (r-

n

logn, (r-2)k-t
n }

,rek.2k + nr-l2(r-2)k(4r logn.(r-2)k
V2n * * n *
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Hence

2 * ((lifk)k + nk+r-.8(r-2)k.
k=2 ^

For |A| = k > r(logn) we observe that if gR . „ occurs then there must be

2
at most r logn + r logn + r(r-l) < rk/10 edges between A and V - A in

jx(F0). But the probability that this occurs for some A, r(logn) < |A| < ̂ n

is at most

2*
y n rk, ,, . 2 k rk/1k=r(logn)

T
k=r(logn)Z K

- y. ((—i
k=r(logn)

k>r(logn)

k.grk/lO

n

1 (lOe) (-)

To T~1
I e (lOe)

| F 2e (lOe)

r/lO.k

r/lO.k

= o(l) as r > 100.
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Thus all possibilities for |A| are covered and the part (a) of the

theorem is proved. Q

Proof of Theorem 3b

Since the case r constant (and large) is already established we shall

assume that r -* «> with n.

We modify the argument from Fenner and Frieze [4].

We need to show that

is

We consider the following blue-green colouring of F € $: let

n
J C Wr...W^ C Wr be fixed subsets of size |Y/2l and W' = U Wj. Now for

i = 1,2 ,n choose w± € Wj[ - W^ and let W " = W' U

We will use a to denote an arbitrary choice of w1two,...,w .
i. £a n

Let Fb = Fb(a) = {e € F: e 0 W " * ^} and F = F - Fb-

A graph G with vertex set V is said to have the neighbourhood property if

s 9 V | s | < ^ n implies |NG(S)|^2|S| where

NG(S) = {w € V R - S: 3 v € S s.t. {v.w} € E(G)}.

If F € $ let *'(F) be the graph (Vn>{*(e): e € F and e 0 W * +}.

Lemma 13

has the neighbourhood property) = 1 - o(l).
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Proof

Fix k > r/6 and let A = {1,2 ,k}, B = {k+1,... ,3k-l} and

C = {3k+l,. .. ,n}. Then by considering the "first" rk/4 pairs involving

A n W we see that

n fr-i x. A ̂ . \ , ^3k 4rlognvkr/4
Pr(FAunnoi? has n o A - C pairs) < (— + Ss—)

(JHUUbb ' vn n

Hence

Aunnoi? has n o A - C pairs) < (— +
(JHUUbb ' vn n

does not have the neighbourhood property)

k=r/6

n/4
< 2 uJ
k=r/6 K

3 3
, n e ,3k 4rlogn^r/4

w h e r e U k = ( _ + _ 2 i n ) .

4k

For k < 32rlogn, uk < n
3e3n""r/5 (r = 0(n1/5~e)) and for k > 32rlogn,

3 3 3 r/4
u, < (n e /k )(25k/8n) and it is easy to see that

n/4

k=r/6 K

Lemma 14
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Proof

It is sufficient to show that

let Z = |FQ - F^|. It is easy to see that E(Z) ~ |2-. Next consider

(4) and (5) with M = Z. Using the same sort of argument as in Lemma 8(c) we

see that 6. < 1 and the lemma follows from (5). D

Now define

= {F € $ Q : (i) *(F) is connected,

(ii) •'(F) has the neighbourhood property,

(iii) |F - F'| > rn/10}

We deduce from Theorems 3a, 4 and Lemmas 13 and 14 that

|*Q|/|$0 Q| = 1 - o(l). Let *j = {F € tfQ: $(F) is not hami 1 tonian}. We must

show

(28) - i =o(l).

For F € FQ Q we let

a(F,a) = 1 if (i) •(*w) ̂ aLS t^ie neighbourhood property,

(ii) longest paths in *(Fb) are longest in

(iii) no e € F is such that >/>(e) joins the endpoints

of a longest path of

(iv) F € *x

= 0 otherwise.
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((ii) above is not actually necessary but helps to verify (iii)). Observe

that

(29) a(F,a) = 1 implies |F | I rn/11.

We observe next (as in [4]) that

F € *j implies 2 a(F,a) > 1
a

and so

U i 2 2 a(F,a).
F € $0.0 CT

For a fixed values a of a and F of F, let
b

XQ(a,F) = |{F : F = F U F satisfies Fb(a) = F} |

and

^a.F) = |{F : F = F U F satisfies \{o) = F and a(F,a) = 1}

We show that there exists a constant 0 < nr < 1 such that

(30) IX^a.F)! < -rrn|Xo(a,F)| for all a,F
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It will then follow that

| < 2 2 a(F.a)
1 F a

= 22 |X (a,F)|
F a l

2 2 |X (c
Fa

l*0,0I

and (28) follows.

To prove (30) we observe that if n^a.F) > 0 then using (i) and (iii)

of the definition of a(F,a) and Posa's Theorem [6] we see that

(31) 3 S = {v1v2.....vk} C Vn and sets Sj.S^....^

C V of size k > -r n such that F has no
- n - 4 g

pair {x,y} with *(x) = v. and *(y) € S. for some

i = 1,2,....k.

Suppose that for some such fixed (<7,F) we find 4>(F) is a graph with degrees

d' d' ...,d'. Then XQ(<7,F) is (essentially) the set of configurations with

degree sequence d1 = r - d' do = r - d' ...,d = r - d'
l 1 Z z n n

and X. is the subset of these configurations which contain no edge as

n ~ ~
described in (31). Observe that (29) implies 2 d . > jT". Let $ be the set

of configurations defined using d and let $ 0 0 be those without loops or
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parallel edges. We need to show that

(32) PrQ 0(F contains no pair as defined in (31)) < nr rn

for some T < 1.

But it is simple to show that

rn(33) Pr(F contains no pair as defined in (31)) < nr-

for some nr- < 1.

Also by Theorem 2

(34) J^i > I e-
1*1

~ n ^
where X = 0(r). (We use 2 d. > rn/11 at this point.)

i=l a

(33) and (34) imply (32) which implies (30) and hence the theorem. D



39

References

[1] E.A. Bender and E.R. Canfield, "The asymptotic number of labelled graphs
with given degree sequences". Journal of Combinatorial Theory (A) 24
(1978) 296-307.

[2] B. Bollobas, "A probabilistic proof of an asymptotic formula for the
number of labelled regular graphs", European Journal on Combinatorics
1 (1980) 311-316.

[3] B. Bollobas, "Almost all regular graphs are hami 1 tonian", European
Journal on Combinatorics 4 (1983) 97-106.

[4] T.I. Fenner and A.M. Frieze, "Hamilton cycles in random regular graphs",
Journal of Combinatorial Theory (B) 37 (1984) 103-112.

[5] A.M. Frieze, "Finding hami 1 ton cycles in sparse random graphs", to appear
in Journal of Combinatorial Theory (B).

[6] L. Posa, "Hamiltonian circuits in random graphs", Discrete Mathematics 14
(1976) 359-364.

[7] R.W. Robinson and N.C. Wormald, "Existence of long cycles in random cubic
graphs", Progress in Enumeration and Design, Proceedings of Katerloo
Conference on Combinatorics (1984) 251-270.



OCT 0 I 2003

1
3 fiH6E 01352 LOflfl


