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We discuss the relationship between Gilmore-Lawler lower bounds with decomposition for the
quadratic assignment problem and a lagrangean relaxation of a particular integer programming
formulation

1. Introduction

Let m be a positive integer and M ={l,...,m}. The Quadratic Assignment
Problem (QAP) can be formulated as

minimise Z E E X Aipig XipXig it E E bipxipa (1 -I)
ieM peM jeM qeM ieEM peM

subject to Y. x;, =1, peM, (1.2a)
ieM
Y x,=1, ieM, (1.2b)
peM
Xp=0orl, LpeM. (1.2¢)

It is known to be NP-hard and indeed even moderately sized problems with say
m =30 cannot yet be solved in a routine manner.

Surveys of applications and approaches to this problem can be found in Gilmore
[10]; Lawler [14]; Nugent, Vollmann and Ruml [16]; Bazaraa and Elshafei [1];
Bazaraa and Sherali [3]; Los [15]; and Burkard and Stratmann [5].

As X, Xjp = X Xig =0 for i # jand p# g in a solution to (1.2) and a term a;,,, X;, X;, =

QjpipXjp can be added to the linear term one can assume that

ipip
i =0 fori=jorp=gq. (1.3)

We will be considering transforming the g, to @,,, and some comments will be
made on the desirability of ensuring that the &, satisfy (1.3).

A particular special case of this problem is the Koopmans-Beckmann QAP [13]
where we have

ﬂ,‘qu = Czj d:m,l for i; 28 jy qe M: (l 4)
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and corresponding to (1.3) we can assume
ci=d,,=0 foripeM. (1.5)

Several authors have proposed branch and bound algorithms for solving this
problem. One of the earlier approaches was described independently by Gilmore
[10] and Lawler [14]. Recently several researchers including Burkard and Stratmann
[5]1, Edwards [6] and Roucairol [17] have proposed combining a decomposition of
the coefficients ¢;;, d,, into &; +A;+4;, d,, + v, + 0, in an attempt to reduce the
quadratic coefficients to C‘,-J;EI’,,(, and to then apply the Gilmore-Lawler method
[10, 14].

The above authors propose different methods for choosing the 4, g, v, ¢ none of
which are provably the best in the sense of giving the best possible lower bound.

The main purpose of this paper is to link this method to a lagrangean relaxation
approach (see for example, Fisher [7] or Geoffrion [8]) which has the possibility of
computing a stronger lower bound.

In the next section we discuss the Gilmore-Lawler bound with decomposition and
in the final section we describe some integer programming formulations of the QAP
together with a particular lagrangean relaxation.

2. Gilmore—Lawler bounds with decomposition

Let «, fi, y, & be real vectors of dimension m3. Let

Aipjq = Aipjq — Upjg _ﬁ.'_‘,"q — Yipg — 5;‘”‘ fori, p,q, jeM. (2.1)
Substituting (2.1) into (1.1) transforms the objective function of the QAP into
E E E E, ﬁiquxipqu it E E Eif}xf]) (22)

ieM peM jeM geM ieM peM
where

5{0 = br'p +* E aqip =t E ﬁjl:f) i }: Pipq T E 61})_;’ .
qeM JeEM qeM JjeM
We have used the fact that (1.2) implies

E E E Effsipjxip)‘}qzz E (

ij’)j Xjp ©tc.
ieM peM jeM geh ieM peM M

JE

Next for i, pe M let

Jp=minimum Y ¥ 2, 2.3)
JjeEM geM
subject to ), z;, =1, geM, (2.4a)
JeM
Yogp =1, ©ijeM, (2.4b)
qeM
Zj;=0or1, LgeM, (2.4c)
Zp=1 (2.4d)
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It is clear that for all i, pe M

f}px,-f, = ( Z EI a,!,j(;xjf;)X;p,

JeEM qeN

if (1.2) holds and so the expression (2.2) is bounded below by
GLB(&, ﬁs }’s J) = minimum E E (]l.p + 51‘])))‘_.‘.{): (2'5)

ieM peM

subject to (1.2).

We show later that computing bounds when (1.4) holds by decomposing the ¢;;,
d,, is a particular case of the above.

We show first however that y and § are redundant in (2.5).

Let ¢ : M — M be the permutation corresponding to the optimal solution to (2.5),
i.e. x(i, (i) =1 (for notional clarity we temporarily abandon subscripting and use a
more functional notation) in the optimum solution to (2.5). Similarly define
w(i, p, J) for i, p, je M by z (J, w(i, p, j)) =1 in the optimum solution to (2.3).
Thus

GLB(a, B, 7, 0) = .)_;r (JG (D) + b0, 0(i)))
=1 ( L al, (), Js w o), ) + bG, w(i)))-

ieM jeM

In the above expression the contribution from p is

jg{ (;_ZM Y@, (i), w(i, o), /) +”§” v, (i), q)) (2.6)
:h;! 0=0
and the contribution from 4§ is
,e):(; (_,-EEM o, 9(i), J) +,-Z:‘w ot (i), j)) =0 2.7)

Note that (2.6) and (2.7) are identities independent of ¢ and . Thus the value of
GLB does not depend on y, 4.

If one wishes to impose (1.3) on &, (as one might to save a little storage) one can
amend (2.1) to

a_‘;qu. =Aipjqg — aqu —ﬁ,;,‘(; if f?ej and pP#4q,
=0 otherwise,
and only consider ¢, f#, that satisfy
Cpjp = ﬁiiq =0 forip, j,geM.
We clearly have (1.3) satisfied and further

CitaXipXjp = @iig + Oppa + Big) %%, for i, p, jigeM (2.8)
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for x satisfying (1.2). Equation (2.8) can be substituted into (1.1) and we can
proceed as before.

Now let us consider the Koopmans-Beckmann QAP. Let A, &, v, 2€ R™ and let
Ci=cj—Ai—pjand dpy =dpy — v, — 9q for i, p, j,ge M. It is then straightforward to
see that

Cij @pq = Cyj Gpq + Cpjq + Bijq *+ Vipg + Oipj 2.9)
where

Qpjg = Mjdpq, (2.10a)

Bijg = €ij@q — H;Qq» (2.10b)

Yipg = Aidpq —Ai@g—AiVp, (2.10¢)

Oipj = VpCij = Hj Vp- (2.104d)

Thus we substitute (2.9) into (1.1) and (1.3) will still be satisfied. Note that 1 and v
only contribute to the redundant (as far as GLB is concerned) y and 4. Thus A and v
are redundant in this decomposition.

We next check that GLB is identical to the Gilmore~Lawler bound applied to &, d
in this case.

Thus consider for some i, p

Jp=minimum Y ¥ &;d,z,, (2.11)
JjeEM geM

subject to (2.4).

The assignment problem in (2.11) can be restated as how should we order the
vector dpy, dyy, --+5 Ao S A1), +-+» Appmy 5O that &y dppyy + -+« + &y dypm) is minimized
subject to [{]=p (from z;, =1).

This can of course be solved by sorting the ¢;, j#i into ascending order and the
dpq, 9#p into descending order and then forming an inner product.

Edwards [6] makes some modifications to the basic idea but these can be handled
by a suitable definition of a, 8, , 4.

In particular imposing &; =d,, = 0 regardless of 4, 4, v, g is achieved by replacing
(2.10) by having

Opjg =H;dpg if p#q,
=0 if p=¢q
etc. Then (2.8) holds with ay,,, @, replaced by ¢;;d,g, ¢;dp,-
3. An integer programming formulation

In the following integer program y,,, is implicitly XipXjq:
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IP1 minimise Z Z E E al,')jq.yfp_,'r,r + E z wal,m (31)
ieM peM jeM geM eM peM
subject to ), x,=1, peM, (3.2a)
ieM
Y, &=, ieM, (3.2b)
peM
E )pr_,l(;_ SR pa jaqEMr (32C)
E Yipjq =Xig»  hi,geM, (3.2d)
): Vi =Xips b D,gEM, (3.2¢)
E .yipjr,v =X,".,, is b, jEMa (32f)
geM
Yipip = Xip» i, peM, (3.2g)
xp=0orl, i, peM, (3.2h)
1 zyiquaoa i, p, J, qgeM. (321)

We next prove the equivalence of IP1 and QAP.
It is convenient for later reference to prove the equivalence of QAP and

IP2 minimise (3.1),
subject to (3.2a), (3.2b), (3.2g), (3.2h), (3.2i),
& E Yipjg=MXjq, S GEM, (3.3a)
je_uq;” Yipig = MXyp,  , pEM. (3.3b)

Given an x satisfying (1.2) by taking y,;, =x;,Xj, it is straightforward to show that
(x, ¥) is a feasible solution to IP2 and further that the objective values are the same.

Conversely let x, y be a feasible solution to IP2. We will have shown equivalence
if we can show that y,,;, = x;,x;, is satisfied.

(i) Xp=0 = Ypip=0 from (3.3b),
(ii) Xig=0 = ¥y =0 from (3.3a).

Let ¢ be the permutation of M such that x;,; =1 for ie M. We need only show
that yff."n‘(i)jlﬂ(j) =1 for i, jEM.
Now by (1) above Lpem Yinia = Yiotirja for i, j, ge M and so by (3.3a) with g=o())
we have
,z,:” Yipwyjoy=m for jeM.
1€ Vi

The result now follows from (3.2i).

The equivalence of IP1 and QAP is now easy. If x is a solution to (1.2), then
putting y;,;, = X;, Xj, gives a feasible solution to IP1. Conversely if (x, ) is a feasible
solution to IP1 it is clearly a feasible solution to IP2 and hence we have y,,;, =x;,x;,.
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(Note that we have not used (3.2g) which is redundant as y,;, =x,-f,=x,-p. It is
however needed for the Langrangean relaxation described below. It does of course
remove the variables y,,;, from the problem. We can also remove y,;;, for i+ and
Yipiq fOr p#q as these are automatically zero - see also (3.7).)

Now consider a lagrangean relaxation of IP1 with multipliers a,;, for constraints
(3.2c) and multipliers §;, for constraints (3.2d).

The lagrangean function L(a, f) is thus defined by L(a, §) =

minimum z/:w ,,;M ,;fx, q;M ipja Vivia +‘E):M ,,;M bipxip, (3.4)

subject to (3.2a), (3.2b), (3.2¢), (3.2f), (3.2g), (3.2h), (3.2i) (3.5)
where

pjq = Aipjq — Opjg = Bijq» LpJj,geM,

bp=bp+ L ip+ X Biips iipeM.
qeM jeM

We wish to show that L(a, f)=GLB(a, 8) of (2.5). Note that we have already
demonstrated that GLB is a function of a, § only. This is straightforward.

Thus suppose x* solves (2.5). If x5 =0 let y3;, =0. If xj; =1 let y;;, be the value
of z;, in the solution to (2.3) with this particular , p and so

Jio =jeEM quM Bipjq Yipiq-
This (x* y*) satisfies (3.5) and the value of (3.4) will be that of (2.5) and so
L(a, B)=<GLB(a, B). Conversely if (£, ) solves (3.4), then

j§4 q;M Bipjq Jipia = Jip%ip
and so L(e, f)=GLB(a, §).

It follows then that lower bounds obtained by decomposition in conjunction with
the Gilmore-Lawler method can be no larger than L* = max, 3 L(e, #) which from
Geoffrion (8] is equal to the minimum objective value in the linear relaxation of
IP1, i.e. when (3.2g) is replaced by x;, 0.

4. Computational considerations

Computing L* by solving the linear relaxation of IP1 by the simplex algorithm
does not look very promising as we have 4m?3 + 2m equality constraints to deal with.

A natural approach is to use the sub-gradient algorithm - see Fisher [7] - to try
and find a near optimal set of multipliers a* f*. This however requires O(m?3)
storage space for the multipliers and requires the solution of m2?+1 assignment
problems at each step.

If we have a general (non Koopmans-Beckmann) problem, then since this
requires O(m*) storage for the coefficients the storage problem for the multipliers is
marginal.
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We still have the problem of solving m?+ 1 (small) assignment problems. This
may just be viable using a powerful parallel processing computer like the I.C.L. Dis-
tributed Array Processor.

The most important practical problems are of the Koopmans-Beckmann type and
here the data requires O(m?) storage space. In this case it is worth considering a
restricted set of multipliers i.e. identify a subset SC R2"* and restrict attention to
(o, f)eS.

(a) The simplest approach is to restrict ¢, f so that they can be expressed as

(2)

(1 (3)
Cpjq = Upj" T UUpg T U

1q

4) (%) (6)
ﬂi_,rr,r = MU 2r ”w + uj(,l ’

so that we need only store the 6 m?-vectors u'", ..., u®, The redundancy of 3,6
implies that only u®), u® are non-redundam in computing GLB. Since we would
actually work with the expression @, + uj,, + uf{f’ we would combine #® + u©® into
a single vector u

If we examine L(u) we see that this is the same as replacing (3.2¢), (3.2d) by (3.2a)
and applying lagrangean relaxation (with multipliers # for constraints (3.3a)) to an
integer program which is also equivalent to QAP as IP2 is.

(b) Another approach is to restrict @, ff so that they can be expressed in terms of
1, 0 as in (2.10). The advantage here is that L(a, ff) is the Gilmore-Lawler bound
with decomposition and the assignment problems corresponding to the f, can be
solved easily by sorting. The major drawback however is that the set S is non-convex
and so one cannot use the sub-gradient algorithm to optimise «, ff over S.

One heuristic approach to finding a good g, ¢ that springs to mind is the fol-
lowing:

Given ¢, f§ as defined by (2.10) compute L(«¢, #) and a sub-gradient (da, 4f) and
choose a step length ¢>0. Thus (¢, f')=(a+tda, f+1tAf) is likely to be an im-
provement on ¢, f§ but probably would not be of the form (2.10).

One could then choose x in order to minimise

Y Y ¥ (epy—tideg) (4.1a)

peM jeM geM

and having chosen g one could choose ¢ to minimise

Y X ¥ (Big—eqci—m (4.1b)

ieM jeM qeM
The values of ux and o that minimise (4.1) might then produce (via (2.10a),

(2.10b)) a solution ‘close’ to «’, fi".
The formulae for g ¢ that minimise (4.1) are

w=( %, Z%ud)/( T T ), jeu,

PEM qeM PeEM qeM

Q(,':< b5 E Biig (cij — u,))/( ): (c;j — ,ll)) geM.

ieM je rL‘UjE
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Table 1
p m 150 B Y itl b2 it2 bv
1 4 8062 806 2 806 1 806*
2 4 179 184 6 184 4 184+
3 5 50¢ 50 1 50 1 50*
4 6 824 86 166 82 1 86*
5 7 1374 148 376 138 30 148*
6 8 1869 194 411 187 20 214+
7 12 4934 - - 494 350 578
8 15 9639 - - 963 1 1150*
9 20 20574 - - 2057 1 2570
10 36 3196.819 - - 3196.81 1 4119.55
11 7 505" 559 23 511 50 559*
12 4 130° 132 6 132 2 132+
13 8 727 811 211 733 130 891+
14 8 10043116 11174262 821 10135364 220 11902372+
15 9 11298¢ 17293 347 12569 100 25388*

amethod 4 Pmethod 5 ®methods 1,3 9methods 1,2,3 “method 2

We have carried out some computational experiments to try to evaluate the
strength of the proposed bounds. The results of these experiments are given in Table
1 above.

So far we have tested 2 ideas:

(i) The use of the subgradient algorithm to try to get an approximate value for
max L(q, B). The largest problem size we have tried this on is with m=9. We hope
to tackle larger m later on using the I.C.L. Distributed Array Processor.

(ii) The idea of (b) above to use the subgradient algorithm in conjunction with
4.1).

Explanation of Table 1

P: Source of problems. Problem 1 is from Gavett and Plyter [9].

Problem 2 is from Roucairol [17].

Problems 3-9 are from Nugent, Vollmann and Ruml [16].

Problem 10 is from Steinberg [18] (Euclidean distance).

Problem 11 is from Lawler [14].

Problems 12-15 are from Burkard and Gerstl [4], being respectively B12, B39,
B40, B32.

1b0. This is the maximum of 5 lower bounds using choices for g, g as suggested by:
1. Gilmore [10] (#=p0=0).

Roucairol [17] (g =min;.; ¢;, 0 =min, 4 dp,).

Burkard and Stratmann [5] (4; =min;.; ¢;, 0, =0).

Roucairol [17] (no simple formula, method 2 of her paper).

Edwards [6] (4 =(E; ¢;)/(n—1), 0= (E, dg)/(n—1)).

nwhwn
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These values minimise L}, ; (¢;; — ;) ete. and are sifilar but not identical to those
in [6]).

Ib1. This is the largest value obtained for L(g, #) using the subgradient algorithm.

itl. The number of iterations of the subgradient algorithm needed to reach 1bl.
(The approach of Bazaraa and Goode [2] was most successful except on examples
3-6 where the Held, Wolfe and Crowder [11] approach seemed better, though we
think we can get the former method to work as well on these.)

Ib2. This is the largest lower bound obtained using the idea of (b).
it2. The number of iterations needed to reach 1b2.

bv. The value of the best known solution to these problems. An * indicates that this
is known to be minimal.

Table 1 shows that bl is a stronger bound than Ib0, indeed for m <7 above
Ibl =bv.

However computing bl is very time consuming and we are banking on parallel
computation to make it practical for the larger problems.

1b2 is not much better than Ibl and evidently approach (b) needs to be refined.

We finish by describing an integer program equivalent to QAP which has
$(m*—2m3 +3m?) variables and m?+2m constraints as opposed to that given in
Bazaraa and Sherali [3] which has the same number of variables but has 2m? con-
straints.

We should point out that Kaufman and Broeckx [12] have produced an integer
programming formulation with only 2m? variables and m?+ 2m constraints. The
following formulation however does seem to have a simpler structure than that in
the above paper [12].

minimise le):” ,,2:\, jEZU ,,EE Bipja Vipia + E” ,,EZ, bipXip (4.22)
subject to .Z;, Xu=l; peM, (4.2b)
Y, Xp=1, ieM, (4.2¢)

peM
z ,:;\ Yipia =MXjy, Jj,q€M, (4.2d)
Yivia = Yigip LpJ,qeM, (4.2e)
Viplp =Xip,s i, peM, (4.2f)
Yiip = Yipig =0, i#j, p#qgeM, (4.2g)
xip,=0orl, i, peM, (4.2h)

0=ypjg=1, iLpp Jj,geM. (4.21)
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(4.1e)-(4.1g) are only implicit constraints. Their effect is simply to reduce the
number of variables. Writing the program in this way simplifies the notation.
The proof of equivalence is almost identical to that of IP2 and is omitted.
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