Karp’s patching algorithm on random perturbations of dense digraphs

Alan Frieze* Peleg Michaeli
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh PA 15213

August 2, 2023

Abstract

We consider the following question. We are given a dense digraph \(D_0 \) with minimum in- and out-degree at least \(\alpha n \), where \(\alpha > 0 \) is a constant. We then add random edges \(R \) to \(D_0 \) to create a digraph \(D \). Here an edge \(e \) is placed independently into \(R \) with probability \(n^{-\epsilon} \) where \(\epsilon > 0 \) is a small positive constant. The edges \(E(D) \) of \(D \) are given independent edge costs \(C(e) \), \(e \in E(D) \), where \(C(e) \) is an independent copy of the exponential mean one random variable \(\text{EXP}(1) \) i.e. \(\mathbb{P}(\text{EXP}(1) \geq x) = e^{-x} \). Let \(C(i,j), i,j \in [n] \) be the associated \(n \times n \) cost matrix where \(C(i,j) = \infty \) if \((i,j) \notin E(D) \). We show that w.h.p. the patching algorithm of Karp finds a tour for the asymmetric traveling salesperson problem that is asymptotically equal to that of the associated assignment problem. Karp’s algorithm runs in polynomial time.

1 Introduction

Let \(\mathcal{D}(\alpha) \) be the set of digraphs with vertex set \([n]\) and with minimum in- and out-degree at least \(\alpha n \). We are given a digraph \(D_0 \in \mathcal{D}(\alpha) \) and then we add random edges \(R \) to \(D_0 \) to create a digraph \(D \). Here an edge \(e \) is placed independently into \(R \) with probability \(n^{-\epsilon} \) where \(\epsilon > 0 \) is a small positive constant. The edges \(E(D) \) of \(D \) are given independent edge costs \(C(e), e \in E(D) \), where \(C(e) \) is a copy of the exponential mean one random variable \(\text{EXP}(1) \) i.e. \(\mathbb{P}(\text{EXP}(1) \geq x) = e^{-x} \). Let \(C(i,j), i,j \in [n] \) be the associated \(n \times n \) cost matrix where \(C(i,j) = \infty \) if \((i,j) \notin E(D) \). One is interested in using the relationship between the Assignment Problem (AP) and the Asymmetric Traveling Salesperson Problem (ATSP) associated with the cost matrix \(C(i,j), i,j \in [n] \) to asymptotically solve the latter.

The problem AP is that of computing the minimum cost perfect matching in the complete bipartite graph \(K_{n,n} \) when edge \((i,j)\) is given a cost \(C(i,j) \). Equivalently, when translated to the complete digraph \(\bar{K}_n \) it becomes the problem of finding the minimum cost collection of vertex disjoint directed cycles that cover all vertices. The problem ATSP is that of finding a single cycle of minimum cost that covers all vertices. As such it is always the case that \(v(\text{ATSP}) \geq v(\text{AP}) \) where \(v(\bullet) \) denotes the optimal cost. Karp [33] considered

*Research supported in part by NSF grant DMS1952285
the case where \(D = \overrightarrow{K}_n \). He showed that if the cost matrix is comprised of independent copies of the uniform
[0, 1] random variable \(U(1) \) then w.h.p. \(v(\text{ATSP}) = (1 + o(1))v(\text{AP}) \). He proves this by the analysis of a patching algorithm. Karp’s result has been refined in \([21], [28] \) and \([34] \).

Karp’s Patching Algorithm: First solve AP to obtain a minimum cost perfect matching \(M \) and let \(\mathcal{A}_M = \{ C_1, C_2, \ldots, C_\ell \} \) be the associated collection of vertex disjoint cycles covering \([n] \). Then patch two of the cycles together, as explained in the next paragraph. Repeat until there is only one cycle.

A pair \(e = (x, y), f = (u, v) \) of edges in different cycles \(C_1, C_2 \) are said to be a patching pair if the edges \(e' = (u, y), f' = (x, v) \) both exist. In which case we can replace \(C_1, C_2 \) by a single cycle \((C_1 \cup C_2 \cup \{e', f'\}) \setminus \{e, f\} \). The edges \(e, f \) are chosen to minimise the increase in cost of the set of cycles.

Theorem 1. Suppose that \(D_0 \in \mathcal{D}(\alpha), \alpha > 0 \) where \(\alpha \) is constant. Suppose that \(D \) is created by adding random edges \(R \) to \(D_0 \) and that each edge of \(D \) is given an independent \(\text{EXP}(1) \) cost. Here an edge \(e \) is placed independently into \(R \) with probability \(n^{-\epsilon} \) where \(\epsilon > 0 \) is a small positive constant. Then w.h.p. \(v(\text{ATSP}) = (1 + o(1))v(\text{AP}) \) and Karp’s patching algorithm finds a tour of the claimed cost in polynomial time.

The use of \(\text{EXP}(1) \) as opposed to \(U(1) \) is an artifact of our proof, but see Section \([5] \).

This model for instances of the ATSP arises in the following context: Karp’s heuristic is well understood for the case of the complete digraph with random weights. If we want to understand its performance on other digraphs then we must be sure that the class of digraphs we consider is Hamiltonian w.h.p. The class of digraphs \(\mathcal{D}(\alpha) \) is a good candidate, but we can only guarantee Hamiltonicity if \(\alpha > 1/2 \). If we want to allow arbitrary \(\alpha \) then the most natural thing to do is add \(o(n^2) \) random edges, as we have done.

It is often the case that adding some randomness to a combinatorial structure can lead to significant positive change. Perhaps the most important example of this and the inspiration for a lot of what has followed, is the seminal result of Spielman and Teng \([15] \) on the performance of the simplex algorithm, see also Vershynin \([47] \) and Dadush and Huiberts \([14] \).

The paper \([15] \) inspired the following model of Bohman, Frieze and Martin \([11] \). They consider adding random edges to an arbitrary member \(G \) of \(\mathcal{G}(\alpha) \). Here \(\alpha \) is a positive constant and \(\mathcal{G}(\alpha) \) is the set of graphs with vertex set \([n] \) and minimum degree at least \(\alpha n \). They show that adding \(O(n) \) random edges to \(G \) is enough to create a Hamilton cycle w.h.p. This is in contrast to the approximately \(\frac{1}{2} n \log n \) edges needed if we rely only on the random edges. Research on this model and its variations has been quite substantial, see for example \([6], [7], [9], [10], [12], [13], [16], [20], [29], [36], [37], [38], [42], [43], [44], [46] \).

Anastos and Frieze \([5] \) introduced a variation on this theme by adding color to the edges. They consider rainbow Hamiltonicity and rainbow connection in the context of a randomly colored dense graph with the addition of randomly colored edges. Aigner-Horev and Hefetz \([2] \) strengthened the Hamiltonicity result of \([5] \) and Balogh, Finlay and Palmer strengthened the rainbow connectivity result of \([5] \). The model in this paper was introduced by Frieze \([24] \).

Notation Let \(G \) denote the bipartite graph with vertex partition \(A = \{a_1, a_2, \ldots, a_n\}, B = \{b_1, b_2, \ldots, b_n\} \) and an edge \(\{a_i, b_j\} \) for every directed edge \((i, j) \in E(D) \). A matching \(M \) of \(G \) induces a collection \(\mathcal{A}_M \) of vertex disjoint paths and cycles in \(D \) and vice-versa. If the matching is perfect, then there are only cycles.
The proof requires a number of definitions of values, graphs, digraphs and trees. It might be helpful to the reader if we list them now along with their definitions. This will only be useful for later reference and so some of the items here are not yet defined.

\[
\begin{align*}
\ell_1 &= n^{4\varepsilon}, \\
r_0 &= n^{1-3\varepsilon}, \\
\gamma_r &= r^{2\varepsilon-1}, \\
\varepsilon_r &= r^{-30\varepsilon}.
\end{align*}
\]

\(G_r\): This is the bipartite subgraph of \(G\) induced by \(A_r, B_r\).

\(G_r(u, v)\): This is the subgraph of \(G_r\) induced by the edges \((a_i, b_j)\) for which \(u_i + v_j > 0\).

\(\Gamma_r(u, v)\): This is the graph obtained from \(G_r(u, v)\) by contracting \(M_r\).

\(M_r\): This is the minimum cost perfect matching between \(A_r\) and \(B_r\).

\(\vec{G}_r(u, v)\): This is the digraph obtained by orienting the edges of \(G_{r+1}(u, v)\) from \(A_{r+1}\) to \(B_{r+1}\), except for the edges of \(M_r\), which are oriented from \(B_r\) to \(A_r\).

\(\vec{\Gamma}_r(u, v)\): This is the digraph obtained from \(\vec{G}_r(u, v)\) by contracting the matching edges.

\(T_r\): This is the spanning tree of \(G_r\) corresponding to an optimal basis.

\(\hat{T}_r\): This is the tree obtained from \(T_r\) by contracting \(M_r\).

\(DT_k\): This is the tree comprising the first \(k\) vertices selected by Dijkstra’s algorithm below.

2 Proof of Theorem 1

We begin by solving AP. We prove the following:

Lemma 2. W.h.p., the solution to AP contains only edges of cost \(C(i, j) \leq \gamma_n = n^{-(1-2\varepsilon)}\).

Lemma 3. W.h.p., after solving AP, the number \(\nu_C\) of cycles is at most \(r_0 \log n\) where \(r_0 = n^{1-3\varepsilon}\).

Bounding the number of cycles has been the most difficult task. Karp proves \(O(\log n)\) w.h.p. for the complete digraph \(\vec{K}_n\). Karp’s proof is very clean but rather fragile. It relies on the key insight that if \(D = \vec{K}_n\) then the optimal assignment comes from a uniform random permutation. This seems unlikely to be true in general and this requires building a proof from scratch.

Given Lemmas 2, 3, the proof is straightforward. We can begin by temporarily replacing costs \(C(e) > \gamma_n\) by infinite costs in order to solve AP. Lemma 2 implies that w.h.p. we get the same optimal assignment as we would without the cost changes. Having solved AP, the memoryless property of the exponential distribution, implies that the unused edges in \(E(D)\) of cost greater than \(\gamma_n\) have a cost which is distributed as \(\gamma_n + EXP(1)\).

Let \(\mathcal{C} = C_1, C_2, \ldots, C_\ell\) be a cycle cover and let \(k_i = |C_i|\) where \(k_1 \leq k_2 \leq \cdots \leq k_\ell\), \(2 \leq \ell \leq r_0 \log n\). (There is nothing more to do if \(\ell = 1\).) Different edges in \(C_i\) give rise to disjoint patching pairs. We ignore the saving associated with deleting the edges \(e, f\) of the cycles and only look at the extra cost \(C(e') + C(f')\) incurred.
We will also only consider the random edges R when looking for a patch. The number of possible patching pairs ν_C satisfies

$$\nu_C \geq \sum_{i < j} k_i k_j = \frac{1}{2} \left(n^2 - \sum_{i=1}^{\ell} k_i^2 \right) \geq \frac{1}{2} \left(n^2 - (n - \ell + 1)^2 + \ell - 1 \right) \geq \frac{\ell n}{2}.$$

Each of these ν_C pairs uses a disjoint set of edges. We define the sets

$$R_\ell = \left\{ e \in R : C(e) \leq \gamma_n + \frac{1}{(\ell n^{1-5\varepsilon/2})^{1/2}} \right\}, \quad 1 \leq \ell \leq r_0.$$

Each edge of $E(\tilde{K}_n) \setminus E(D_0)$ appears in R_ℓ with probability at least $p_\ell = \frac{n^{-\varepsilon}}{\ell n^{1-5\varepsilon/2}}$ independent of other edges. Let \mathcal{E}_ℓ be the event that $|C| = \ell$ and that there is no patch using only edges in R_ℓ. If \mathcal{E}_ℓ does not occur then we reduce the number of cycles by at least one. We have

$$\mathbb{P}(\mathcal{E}_\ell) \leq (1 - p_\ell^{2\ell n/2}) \leq \exp \left\{ -\frac{\ell n}{2} \cdot n^{-2\varepsilon} \cdot \frac{1}{\ell n^{1-5\varepsilon/2}} \right\} = e^{-n^{\varepsilon/2}/2}.$$

It follows that

$$\mathbb{P}(\exists 2 \leq \ell \leq r_0 : \mathcal{E}_\ell) \leq \sum_{\ell=2}^{r_0} \mathbb{P}(\mathcal{E}_\ell | -\mathcal{E}_{\ell+1} \land \cdots \land -\mathcal{E}_{r_0}) \leq \sum_{\ell=2}^{r_0} \mathbb{P}(\mathcal{E}_\ell) \leq \sum_{\ell=2}^{r_0} \frac{e^{-n^{\varepsilon/2}}}{1 - r_0 e^{-n^{\varepsilon/2}}} = o(1).$$

And w.h.p. the patches involved in these cases add at most the following to the cost of the assignment:

$$\sum_{\ell=1}^{r_0} \left(\gamma_n + \frac{1}{(\ell n^{1-5\varepsilon/2})^{1/2}} \right) \leq r_0 \gamma_n + \left(\frac{2r_0}{n^{1-5\varepsilon/2}} \right)^{1/2} = o(1). \quad (1)$$

Given the last equality and the fact that w.h.p. $v(AP) > (1 - o(1))\zeta(2) > 1$ we see that Karp’s patching heuristic is asymptotically optimal. The lower bound of $(1 - o(1))\zeta(2)$ on $v(A)$ comes from [4].

Remark 1. When $\alpha > 1/2$ we believe that can modify the proofs of Lemmas 2 and 3 and avoid the need for the set R. At the present moment there are some difficulties in modifying this section.

3 Proof of Lemma 2

We show that w.h.p. for any pair of vertices $a \in A, b \in B$ and any perfect matching between A and B that there is an M-alternating path from a to b that only uses non-M edges of cost at most γ_n. And for which the difference in cost between added and deleted edges is also at most γ_n. We need to prove a slightly more general version where $r \geq r_0$ replaces n, see Lemma 3.

The idea of the proof is based on the fact that w.h.p. the sub-digraph induced by edges of low cost is a good expander. There is therefore a low cost path between every pair of vertices. Such a path can be used to replace an expensive edge.
Assume now that a_1, a_2, \ldots, a_n is a random permutation of A and similarly for B. For $r \geq r_0$ we let $A_r = \{a_1, a_2, \ldots, a_r\}$ and $B_r = \{b_1, b_2, \ldots, b_r\}$. We let $G_r = (A_r \cup B_r, E_r)$ denote the subgraph of G induced by $A_r \cup B_r$.

Lemma 4. If $r \geq r_0$ then (i) G_r has minimum degree $\alpha_0 r$ where $\alpha_0 = (1 + o(1)) \alpha$, (ii) G_r is connected and (iii) G_r contains a perfect matching with probability $1 - o(n^{-1})$.

Proof. The degree of a vertex dominates $\text{Bin}(r, \alpha)$ and so the minimum degree condition follows from the Chernoff bounds, below. If $p = m/2n^2 = n^{-\varepsilon}/2$ then adding edges to D_0 with probability p will add fewer than m random edges w.h.p. On the other hand the probability that $K_{r, r, p}$ has a perfect matching is $1 - o(n^{-1})$ if $r \geq r_0$. This is because, as shown by Erdős and Rényi [22], the probability there is no perfect matching in $K_{r, r, p}$ is dominated by the probability that there is an isolated vertex. And this is at most $2r(1 - p)^r \leq 2ne^{-rn^{-\varepsilon}} = o(n^{-1})$. A similar argument deals with connectivity. \hfill \Box

Chernoff Bounds: We use the following inequalities associated with the Binomial random variable $\text{Bin}(N, p)$.

$$
\begin{align*}
\mathbb{P}(\text{Bin}(N, p) \leq (1 - \varepsilon)Np) &\leq e^{-\varepsilon^2 Np/2}, \\
\mathbb{P}(\text{Bin}(N, p) \geq (1 + \varepsilon)Np) &\leq e^{-\varepsilon^2 Np/3} \quad \text{for } 0 \leq \varepsilon \leq 1, \\
\mathbb{P}(\text{Bin}(N, p) \geq \gamma Np) &\leq \left(\frac{e}{\gamma}\right)^{\gamma Np} \quad \text{for } \gamma \geq 1.
\end{align*}
$$

Proofs of these inequalities are readily accessible, see for example [27].

Lemma 5. For a set $S \subseteq A_r$ we let

$$
N_0(S) = \{ b_j \in B_r : \exists a_i \in S \text{ such that } (a_i, b_j) \in R \text{ and } C(i, j) \leq \beta_r = \frac{\varepsilon \gamma_r}{10} \} \text{ where } \gamma_r = r^{-(1 - 2\varepsilon)}.
$$

If $r \geq r_0$ then with probability $1 - e^{-\Omega(r^{\varepsilon/2})}$,

$$
|N_0(S)| \geq \frac{\varepsilon r^\varepsilon |S|}{40} \text{ for all } S \subseteq A_r, 1 \leq |S| \leq r^{1-\varepsilon}. \tag{2}
$$

Proof. For a fixed $S \subseteq A_r$, $s = |S| \geq 1$ we have that $|N_0(S)|$ is distributed as $\text{Bin}(r, q_s)$ in distribution, where $1 - q_s = (1 - n^{-\varepsilon} + n^{-\varepsilon} e^{-\beta_r})^s \leq (1 - \frac{1}{2} n^{-\varepsilon} \beta_r)^s$. It follows that $q_s \geq n^{-\varepsilon} \beta_r s/3$ for $s \leq r^{1-\varepsilon}$ and so $r q_s \geq \frac{\varepsilon r^{\varepsilon/2} s}{30}$. Let $\nu_s = \frac{\varepsilon r^{\varepsilon/2} s}{40}$. Then, using the Chernoff bounds, we have

$$
\begin{align*}
\mathbb{P} \left(|N_0(S)| < \frac{\varepsilon r^\varepsilon |S|}{40} \right) &\leq \sum_{s=1}^{r^{1-\varepsilon}} \binom{r}{s} \mathbb{P}(\text{Bin}(r, q_s) \leq \nu_s) \\
&\leq \sum_{s=1}^{r^{1-2\varepsilon}} \left(\frac{te}{s} \right)^s e^{-\Omega(\varepsilon r^{\varepsilon/2} s)} = \sum_{s=1}^{r^{1-2\varepsilon}} \left(\frac{te}{s} \cdot e^{-\Omega(\varepsilon r^{\varepsilon/2})} \right)^s = e^{-\Omega(\varepsilon r^{\varepsilon/2})}.
\end{align*}
$$

We let AP_r denote the problem of finding a minimum weight matching between A_r and B_r.

Lemma 6. If $r \geq r_0$ then with probability $1 - e^{-\Omega(r^{\varepsilon/2})}$ the optimal solution to AP_r contains only edges of cost $C(i, j) \leq \gamma_r$.
Proof. Suppose that the solution M_r to AP contains an edge e of cost greater than γ_r. Assume w.l.o.g. that $e = (a_1, b_1)$. Let an alternating path $P = (a_1 = x_1, y_1, \ldots, x_k = y_k, y_k = b_1)$ be acceptable if (i) $x_1, \ldots, x_k \in A_r$, $y_1, \ldots, y_k \in B_r$, (ii) $(x_{i+1}, y_i) \in M_r$, $i = 1, 2, \ldots, k$ and (iii) $C(x_i, y_i) \leq \beta_r$, $i = 1, 2, \ldots, k$. The existence of such a path with $k \leq 5\varepsilon^{-1}$ contradicts the optimality of M_r.

Now consider the sequence of sets $S_0 = \{a_1\}, S_1, S_2, \ldots \subseteq A, T_1, T_2, \ldots \subseteq B$ defined as follows:

\[T_i = N_0 \left(\bigcup_{j<i} S_j \right) \] and $S_i = \phi^{-1}(T_i)$, where $M_r = \{(a_i, \phi(a_i)) : i = 1, 2, \ldots, r\}$. It follows from \cite{2} that w.h.p.

\[|S_i| = |T_i| \leq r^{1-\varepsilon} \] implies that $|S_i| \geq \left(\frac{\varepsilon r^2}{40} \right) i$.

So define i_0 to be the smallest integer i such that $\left(\frac{\varepsilon r^2}{40} \right) i \geq r^{1-\varepsilon}$. Note that $i_0 < 2/\varepsilon$. Thus w.h.p. $|S_{i_0}| \geq r^{1-\varepsilon}$.

Replace S_{i_0} by a subset of S_{i_0} of size $r^{1-\varepsilon}$ and then after this, we have that w.h.p. $|S_{i_0+1}| \geq \frac{\varepsilon r}{40}$.

For a set $T \subseteq B_r$ we let

\[\tilde{N}_0(T) = \{a_i \in A_r : \exists b_j \in T \text{ such that } (a_i, b_j) \in E(D) \text{ and } C(i, j) \leq \beta_r\} \].

We then define $\tilde{T}_0 = \{b_1\}, \tilde{T}_1, \tilde{T}_2, \ldots, \tilde{T}_{i_0+1} \subseteq B, \tilde{S}_1, \tilde{S}_2, \ldots, \tilde{S}_{i_0+1} \subseteq A_r$ by $\tilde{S}_i = \tilde{N}_0 \left(\bigcup_{j<i} \tilde{T}_j \right)$ and $\tilde{T}_i = \phi(\tilde{S}_i)$ and argue as above that $|\tilde{T}_{i_0+1}| \geq \frac{\varepsilon r}{40}$ with probability $1 - e^{-\Omega(\varepsilon r^2/2)}$.

For $S \subseteq A_r, T \subseteq B_r$ let

\[E_R(S, T) = \{a_i \in S, b_j \in T : (i, j) \in R, C(i, j) \leq \beta_r\} \].

Then,

\[\mathbb{P} \left(\exists S \subseteq A_r, T \subseteq B_r : |S|, |T| \geq \frac{\varepsilon r}{40}, E_R(S, T) = \emptyset \right) \leq 2^r \exp \left\{ - \frac{\varepsilon^2 r^2}{16000 r^{1-2\varepsilon}} \right\} = e^{-\Omega(r^{1+2\varepsilon})}. \]

It follows that w.h.p. there will be an edge in $E_R(S_{i_0+1}, \tilde{T}_{i_0+1})$ and we have found an alternating path of length at most $2i_0 + 3$ using edges of cost at most β_r and this completes the proof of Lemma \cite{6} and hence Lemma \cite{2}.

\[
\square
\]

4 Proof of Lemma \cite{3}

The proof is quite complicated and so we outline the ingredients of our strategy.

1. We analyse the sequential shortest path algorithm for solving the assignment problem. By this, we mean that given M_r, we obtain M_{r+1} by solving a shortest path problem. A shortest path here corresponds to an augmenting path that increases the matching cost by the minimum.

2. We estimate the number of short cycles created in this process. We bound the number of short cycles only, as there cannot be many vertex disjoint long cycles.

3. Edge lengths in this shortest path problem are as given, except that the lengths of the edges in M_r are negated. This corresponds to the traversal of a matching edge being associated with its deletion in going from M_r to M_{r+1}. Consequently, there will be edges of negative arc length corresponding to the edges of M_r. We modify costs in a standard way to make them non-negative. For this we use the optimal variables $u_i, v_j, i, j = 1, 2, \ldots, r$ to the linear program D_r dual to the linear programming formulation $L\mathcal{P}_r$ of the assignment problem for computing M_r. We replace $C(i, j)$ by $\tilde{C}(i, j) = C(i, j) - u_i - v_j \geq 0$.

4. Once we have made the costs non-negative, we can use Dijkstra’s algorithm. We then estimate the number of short cycles created during the execution of Dijkstra’s algorithm.

5. To analyse Dijkstra’s algorithm, we need to understand the distribution of amended costs. This involves understanding the structure of basic solutions to \mathcal{LP}_r. Basic solutions are associated with spanning trees of G_r and we show (Lemma [11]) that the optimal basic solution is associated with a uniform spanning tree T_r of $G(u, v)$.

6. Basic and non-basic variables have very different amended costs $\hat{C}(i, j)$. The former have $\hat{C}(i, j) = 0$ and the latter are independent (shifted) exponentials.

7. Basic variables are problematic in that they will appear in the Dijkstra tree, if they are oriented in the right way. We need to know that they are unlikely to create a short cycle. Basic solutions to \mathcal{LP}_r correspond to random spanning trees of the graph induced by edges such that $u_i + v_j \geq 0$. We have to show that this graph has high minimum degree, Lemma [8]. Given this, we can use basic properties of random spanning trees to show that the endpoints of basic edges are unlikely to create short cycles.

8. We need to argue that the depth of the tree constructed by Dijkstra’s algorithm is not too large. This is made up of basic and non-basic edges. We deal with basic edges by showing the diameter of T_r is small, Lemma [10]. Non-basic edges can be handled by a first moment calculation.

As you can see there are several ingredients to our proof and we now proceed to construct them.

We consider the linear program \mathcal{LP}_r that underlies the assignment problem and its dual \mathcal{D}_r. We show that we can choose optimal dual variables of absolute value at most $2\gamma_r = 2r^{-(1-2\varepsilon)}$. We obtain M_{r+1} from M_r via an augmenting path P_r and we examine the expected number of short cycles created by this path. A simple accounting then proves Lemma [3].

We consider the linear program \mathcal{LP}_r for finding M_r. To be precise we let \mathcal{LP}_r be the linear program

\[
\text{Minimise } \sum_{i,j \in [r]} C(i,j)x_{i,j} \text{ subject to } \sum_{j \in [r]} x_{i,j} = 1, i \in [r], \sum_{i \in [r]} x_{i,j} = 1, j \in [r], x_{i,j} \geq 0.
\]

The linear program \mathcal{D}_r dual to \mathcal{LP}_r is given by:

\[
\text{Maximise } \sum_{i=1}^{r} u_i + \sum_{j=1}^{r} v_j \text{ subject to } u_i + v_j \leq C(i,j), i, j \in [r].
\]

4.1 Trees and bases

An optimal basis of \mathcal{LP}_r can be represented by a spanning tree T_r of G_r that contains the perfect matching M_r, see for example Ahuja, Magnanti and Orlin [1], Chapter 11. We have that for every optimal basis T_r,

\[
C(i,j) = u_i + v_j \text{ for } (a_i, b_j) \in E(T_r)
\]

and

\[
C(i,j) \geq u_i + v_j \text{ for } (a_i, b_j) \notin E(T_r).\]

Note that if λ is arbitrary then replacing u_i by $\hat{u}_i = u_i - \lambda, i = 1, 2, \ldots, r$ and v_i by $\hat{v}_i = v_i + \lambda, i = 1, 2, \ldots, r$ has no affect on these constraints. We say that u, v and \hat{u}, \hat{v} are equivalent. It follows that we can always fix the value of one component of u, v.

For a fixed tree T and u,v let $C(T,u,v)$ denote the set of cost matrices C such that the edges of T satisfy \textcolor{red}{[3]}. The following lemma implies that the space of cost matrices (essentially) partitions into sets defined by T,u,v. As such, we can prove Lemma \textcolor{red}{[3]} by showing that there are few cycles for almost all u,v and spanning trees satisfying \textcolor{red}{[3], [4]}.

Lemma 7. (a) Fix u,v. If T_1,T_2 are distinct spanning trees of G_r then $C(T_1,u,v) \cap C(T_2,u,v)$ has conditional measure zero.

(b) If $u_1 = u_1' = 0$ and $(u,v) \neq (u',v')$ then for any spanning tree T of G_r, we have that $C(T,u,v) \cap C(T',u',v') = \emptyset$.

Proof. (a) Suppose that $C \in C(T_1,u,v) \cap C(T_2,u,v)$. We root T_1,T_2 at a_1 and let $u_1 = 0$. The equations \textcolor{red}{[3]} imply that for $i \in [r]$, u_i is the alternating sum and difference of costs on the path $P_{i,k}$ from a_1 to a_i in T_k. So, unless $P_{i,1} = P_{i,2}$ for all i, there will be an additional non-trivial linear combination of the $C(i,j)$ that equals zero. This has probability zero.

(b) There is a 1-1 correspondence between the costs of the tree edges and u,v. \hfill \Box

Fix M_r and let $G_r(u,v)$ be the subgraph of G_r induced by the edges (a_i,b_j) for which $u_i + v_j \geq 0$. We need to know that w.h.p. each vertex a_i is connected in G_r to many b_j for which $u_i + v_j \geq 0$. We fix a tree T and condition on $T_r = T$. For $i = 1,2,\ldots,r$ let $L_{i,+} = \{j : (i,j) \in E(G)\}$ and let $L_{i,-} = \{i : (i,j) \in E(G)\}$. Then for $i = 1,2,\ldots,r$ let $A_{i,+}$ be the event that $|\{j \in L_{i,+} : u_i + v_j \geq 0\}| \leq \eta r$ and let $A_{i,-}$ be the event that $|\{i \in L_{i,-} : u_i + v_j \geq 0\}| \leq \eta r$ where η will be some small positive constant.

Lemma 8. Fix a spanning tree T of G_r.

$$\mathbb{P}(A_{i,+} \cup A_{j,-} \mid T_r = T) = O(n^{-10}) \text{ for } i,j = 1,2,\ldots,r.$$

Proof. In the following analysis T is fixed. Throughout the proof we assume that the costs $C(i,j)$ for $(a_i,b_j) \in T$ are distributed as independent $\text{EXP}(1)$, conditional on $C(i,j) \leq \gamma_r$. Lemma \textcolor{red}{[6]} is the justification for this in that we can solve the assignment problem, only using edges of cost at most γ_r. Furthermore, in G_r, the number of edges of cost at most γ_r is dominated by $\text{Bin}(r,\gamma)$ and so w.h.p. the maximum degree of the trees we consider can be bounded by $2r^{2e}$.

We fix s and put $u_s = 0$. The remaining values $u_i,i \neq s,v_j$ are then determined by the costs of the edges of the tree T. Let B be the event that $C(i,j) \geq u_i + v_j$ for $(a_i,b_j) \notin E(T)$. Note that if B occurs then $T_r = T$.

For each $i \in [r]$ there is some $j \in [r]$ such that $u_i + v_j = C(i,j)$. This is because of the fact that a_i meets at least one edge of T and we assume that \textcolor{red}{[3]} holds. We also know that if B occurs then $u_i + v_j \leq C(i',j)$ for all $i' \neq i$. It follows that $u_i - u_i' \geq C(i,j) - C(i',j) \geq -\gamma_r$ for all $i' \neq i$. Since i is arbitrary, we deduce that $|u_i - u_i'| \leq \gamma_r$ for all $i,i' \in [r]$. This implies that $|u_i| \leq \gamma_r$ for $i \in r$. We deduce by a similar argument that $|v_j - v_j'| \leq \gamma_r$ for all $j,j' \in [r]$. Now because for the optimal matching edges $(i,\phi(i)),i \in [r]$ we have $u_i + v_{\phi(i)} = C(i,\phi(i))$, we see that $|v_j| \leq 2\gamma_r$ for $j \in [r]$.

Let E be the event that $|u_i|,|v_j| \leq 2\gamma_r$ for all i,j. It follows from the argument in the previous paragraph that $B \subseteq E$.

We now condition on the set E_T of edges (and the associated costs) of $(a_i,b_j) \notin E(T)$ such that $C(i,j) \geq 2\gamma_r$. Let $F_T = \{(a_i,b_j) \notin E(T)\} \setminus E_T$. Note that $|F_T|$ is dominated by $\text{Bin}(r^2,1-e^{-2\gamma})$ and so $|F_T| \leq 3r^2\gamma_r$ with probability $1 - o(n^{-2})$.

\vfill
\end{document}
Let $Y = \{C(i, j) : (a_i, b_j) \in E(T)\}$ and let $\delta_1(Y)$ be the indicator for $A_{s,+} \land \mathcal{E}$. We write

$$\mathbb{P}(A_{s,+} \mid \mathcal{B}) = \mathbb{P}(A_{s,+} \land \mathcal{E} \mid \mathcal{B}) = \frac{\int \delta_1(Y) \mathbb{P}(\mathcal{B} \mid Y) \, d\mathbb{P}}{\int \mathbb{P}(\mathcal{B} \mid Y) \, d\mathbb{P}}$$

(5)

Then we note that since $(a_i, b_j) \notin F_T \cup E(T)$ satisfies the condition \([4]\),

$$\mathbb{P}(\mathcal{B} \mid Y) = \prod_{(a_i, b_j) \in F_T} \exp \{-(u_i(Y) + v_j(Y))^+\} = e^{-W},$$

(6)

where $W = W(Y) = \sum_{(a_i, b_j) \in F_T} (u_i(Y) + v_j(Y))^+ \leq 12r^2\gamma_r^2 = 12r^{4\epsilon}$. Then we have

$$\int_Y \delta_1(Y) \mathbb{P}(\mathcal{B} \mid Y) \, d\mathbb{P} = \int_Y e^{-W} \delta_1(Y) \, d\mathbb{P} \leq \left(\int_Y e^{-2W} \, d\mathbb{P}\right)^{1/2} \times \left(\int_Y \delta_1(Y)^2 \, d\mathbb{P}\right)^{1/2} = e^{-E(W)} \left(\int_Y e^{-2(W-E(W))} \, d\mathbb{P}\right)^{1/2} \times \mathbb{P}(A_{s,+} \mid E)^{1/2} \leq e^{-E(W)} e^{12r^{4\epsilon}} \mathbb{P}(A_{s,+} \mid E)^{1/2}.$$

(7)

$$\int \mathbb{P}(\mathcal{B} \mid Y) \, d\mathbb{P} = \mathbb{E}(e^{-W}) \geq e^{-E(W)}.$$

(8)

Let b_j be a neighbor of a_s in G_r and let $P_j = (i_1 = s, j_1, i_2, j_2, \ldots, i_k, j_k = j)$ define the path from a_s to b_j in T. If $k \geq 4$, let \mathcal{E}_s be the event that $|u_i| \leq \gamma_r$ for a_i on the path from a_s to $a_{s_{k-4}}$. So, $\mathbb{P}(\mathcal{E}_s) \geq \mathbb{P}(\mathcal{E}) \geq 1 - o(1)$. Using \mathcal{E}_s in place of \mathcal{E} avoids conditioning on the future.

It then follows from (5), (7) and (8) that

$$\mathbb{P}(A_{s,+} \mid \mathcal{B}) \leq e^{12r^{4\epsilon}} \mathbb{P}(A_{s,+} \mid E) \preceq e^{12r^{4\epsilon}} \mathbb{P}(A_{s,+}) \preceq e^{12r^{4\epsilon}} \mathbb{P}(A_{s,+} \mid \mathcal{E}_s)$$

(9)

Note that if \mathcal{B} occurs and (3) holds then $T_r = T$. Let b_j be a neighbor of a_s in G_r and let $P_j = (i_1 = s, j_1, i_2, j_2, \ldots, i_k, j_k = j)$ define the path from a_s to b_j in T. Then it follows from (3) that $v_{ji} = v_{ji-1} - C(i_{j-1}) + C(i_j))$. Thus v_j is the final value S_k of a random walk $S_t = X_0 + X_1 + \cdots + X_t, t = 0, 1, \ldots, k$, where $X_0 \geq 0$ and each $X_t, t \geq 1$ is the difference between two independent copies of EXP(1) that are conditionally bounded above by γ_r. Given \mathcal{E} we can assume that the partial sums S_i satisfy $|S_i| \leq 2\gamma_r$ for $i = 1, 2, \ldots, k-1$. Assume for the moment that $k \geq 4$ and let $x = u_{i_{k-3}} \in [-2\gamma_r, 2\gamma_r]$. Given x we see that there is some positive probability $p_0 = p_0(x)$ that $S_k > 0$. Indeed,

$$p_0 = \mathbb{P}(S_k > 0) = \mathbb{P}(x + Z_1 - Z_2 > 0),$$

(10)

where $Z_1 = Z_{1,1} + Z_{1,2} + Z_{1,3}$ and $Z_2 = Z_{2,1} + Z_{2,2}$ are the sums of independent EXP(1) random variables, each conditioned on being bounded above by γ_r and such that $|x + \sum_{j=1}^t (Z_{1,j} - Z_{2,j})| \leq 2\gamma_r$ for $t = 1, 2$ and that $|x + Z_1 - Z_2| \leq 2\gamma_r$. The absolute constant $\eta_0 = p_0(-2\gamma_r) > 0$ is such that $\min \{x \geq -2\gamma_r : p_0(x)\} \geq \eta_0$.

We now partition (most of) the neighbors of a_s into N_0, N_1, N_2 where $N_t = \{b_j : k \geq 3, k \mod 3 = t\}$, k being the number of edges in the path P_j from a_s to b_j. Now because T has maximum degree $2r^{2\epsilon}$, as observed at the beginning of the proof of this lemma, we know that there exists t such that $|N_t| \geq (\alpha r^{2\epsilon} - (2r^{2\epsilon})^3)/3 \geq \alpha r/4$. It then follows from (10) that $|L_{s,+}|$ dominates $Bin(\alpha r/4, \eta_0)$ and then $\mathbb{P}(|L_{s,+}| | \leq \alpha \eta_0/10 = O(e^{-\Omega(r)})$ follows from the Chernoff bounds. Similarly for $L_{1,-}$. Applying the union bound over r choices for s and applying (9) gives the lemma with $\eta = \eta_0/10$. \qed
Let $\mathcal{T}_r(\underline{u}, \underline{v})$ denote the set of spanning trees of $G_r(\underline{u}, \underline{v})$ that contain the edges of M_r. This is non-empty because $T_r \in \mathcal{T}_r(\underline{u}, \underline{v})$.

Lemma 9. If $T \in \mathcal{T}_r(\underline{u}, \underline{v})$ then

$$
\mathbb{P}(T_r = T \mid \underline{u}, \underline{v}) = \prod_{(a, b) \in G_r(\underline{u}, \underline{v})} e^{-(u_i + v_j)},
$$

(11)

which is independent of T.

Proof. Fixing $\underline{u}, \underline{v}$ and T_r fixes the lengths of the edges in T_r. If $(a_i, b_j) \notin E(T_r)$ then $\mathbb{P}(C(i, j) \geq u_i + v_j) = e^{-(u_i + v_j)}$ where $x^+ = \max \{x, 0\}$. Thus,

$$
\mathbb{P}(T_r = T \mid \underline{u}, \underline{v}) = \prod_{(a, b) \notin E(T)} e^{-(u_i + v_j)} \prod_{(a, b) \in E(T)} e^{-(u_i + v_j)} = \prod_{(a, b) \in G_r(\underline{u}, \underline{v})} e^{-(u_i + v_j)}.
$$

(12)

Thus

$$
T_r \text{ is a uniform random member of } \mathcal{T}_r(\underline{u}, \underline{v}).
$$

(13)

Setting up for Dijkstra's algorithm We let $\hat{G}_r(\underline{u}, \underline{v})$ be the orientation of $G_{r+1}(\underline{u}, \underline{v})$ with edges oriented from A_{r+1} to B_{r+1} except for the edges of M_r which are oriented from B_r to A_r. We obtain M_{r+1} from M_r by finding a minimum cost (augmenting) path $P_r = (x_1 = a_{r+1}, y_1, x_2, \ldots, x_{\sigma}, y_{\sigma} = b_{r+1})$ from a_{r+1} to b_{r+1} in $\hat{G}_r(\underline{u}, \underline{v})$. In which case

$$
M_{r+1} = (M_r \cup \{(x_j, y_j) : i = 1, 2, \ldots, \sigma\}) \setminus \{(x_{i+1}, y_i) : i = 1, 2, \ldots, \sigma\}.
$$

To find P_r, we let

$$
u_{r+1} = \min \{C(r + 1, j) - v_j(T_r) : j \in [r]\} \quad \text{and} \quad v_{r+1} = \min \{C(r + 1, r + 1) - u_{r+1}, \min \{C(i, r + 1) - u_i(T_r) : i \in [r]\}\}.
$$

(14)

We use costs $\hat{C}(i, j) = C(i, j) - u_i - v_j$ in our search for a shortest augmenting path. Our choice of u_{r+1}, v_{r+1} and \[3\], \[4\] implies that $\hat{C}(i, j) \geq 0$ and that matching edges have cost zero. This idea for making edge costs non-negative is well known, see for example Kleinberg and Tardos \[35\]. The \hat{C} cost of a path P from a_{r+1} to $b_{r+1} \in B$ differs from its C cost by $-(u_{r+1} + v_{r+1})$, independent of P.

4.2 Analysis of the augmenting path

We now introduce some more conditioning, \mathcal{C}. We fix $M_r = \{(a_i, b_{\phi(i)}) : i = 1, 2, \ldots, r\}$ and $\underline{u}, \underline{v} \notin \mathcal{U}$. We then have the constraints that

$$
C(i, \phi(i)) = u_i + v_{\phi(i)} \text{ for } i = 1, 2, \ldots, r
$$

$$
C(i, j) \geq u_i + v_j, \text{ otherwise.}
$$

(15)

Note that with this conditioning, the tree T_r of basic variables is not completely determined. The tree T_r will not be exposed all at once, but we will expose it as necessary. We define u_{r+1}, v_{r+1} as in \[14\]
Let \(\theta_{i,\ell} = d_k - d_i + u_i - u_{\ell} + C(\ell, \phi_r(\ell)) \). Note that if \(i \leq k < \ell \) then \(0 \leq d_i + \hat{C}(i, \ell) - d_k = C(i, \ell) - \theta_{i,\ell} \). The memoryless property of the exponential distribution implies that the non-basic/non-tree values \(C(i, \ell) \) are independently distributed as follows:

\[
\begin{align*}
\text{If } \theta_{i,\ell} \geq 0 & \text{ then } d_i + \hat{C}(i, \ell) - d_k \text{ is distributed as } EXP(1). \\
\text{Otherwise, } d_i + \hat{C}(i, \ell) - d_k & \text{ is distributed as } -\theta_{i,\ell} + EXP(1) \leq u_{\ell} - u_i + EXP(1).
\end{align*}
\]

(16)

If we increase any subset of non-basic \(C(i, \ell) \) by arbitrary amounts then \(T_r \) will continue to define an optimal basis. This justifies our claim of independence.

The augmenting path \(P_r = (x_1 = a_{r+1}, y_1, x_2, \ldots, x_\sigma, y_\sigma = b_{r+1}) \). Suppose that \(1 \leq \tau < \sigma \) and that \(\hat{M}_{r,\tau} \) is the matching obtained from \(M_r \) by adding the edges \(\{(x_i, y_i)\}, i = 1, 2, \ldots, \tau \) and deleting the edges \(\{x_i, y_i\}, i = 1, 2, \ldots, \tau \). Suppose now that \(x_r = a_i \) and \(y_r = b_j \). Observe that in the digraph \(D \), vertex \(i \) is the head of a path, \(Q \), say, in the set of paths and cycles \(A_{\hat{M}_{r,\tau}} \). (\(Q \) is directed towards \(i \).) We say that vertex \(x_r \) creates a short cycle if \(j \) lies on \(Q \) and the sub-path of \(Q \) from \(j \) to \(i \) has length at most \(\ell_1 := n^{4\varepsilon} \). Extending the notation, we say that \(x_\sigma \) creates a short cycle if \(\tau + 1 \) \((y_\sigma = b_{r+1})\) is the tail of \(Q \) and the length of \(Q \) is at most \(\ell_1 \). For \(r \geq r_0 \) we only count the creation of a small cycle by an edge \((x, y)\) if this is the first such edge involving \(x \). (In this way we avoid an overcount of the number of short cycles.) Call this a **virgin short cycle**. Let \(\chi_r \) denote the number of virgin short cycles created in iteration \(r \). We then have that

\[
\mathbb{E}(\nu_C) \leq \frac{r_0}{2} + \frac{n}{\ell_1} + \sum_{r = r_0}^{n} \mathbb{E}(\chi_r).
\]

(17)

Here \(n/\ell_1 \) bounds the number of large cycles induced by \(M_n \) and the sum bounds the expected number of small cycles ever created. The \(r_0/2 \) term bounds the contributions from the matching \(M_0 \).

We claim that

\[
\Sigma_C := \sum_{r = r_0}^{n} \mathbb{E}(\chi_r) \leq \ell_1 n^{1-11\varepsilon}.
\]

(18)

Assume (18) for the moment. Then we have,

\[
\mathbb{E}(\nu_C) \leq \frac{r_0}{2} + \frac{n}{\ell_1} + 10\ell_1 n^{1-11\varepsilon} \leq r_0.
\]

(19)

Lemma 3 now follows from the Markov inequality. It only remains to prove (18).

4.2.1 Proof of (18)

We fix \(r \geq r_0 \). The costs of edges incident with \(a_{r+1}, b_{r+1} \) are unconditioned at the start of the search for \(P_r \). As such the probability they create short cycles is \(O(\ell_1/r) \) and can be ignored in the analysis below. In expectation, they only contribute \(O(\ell_1 \log n) \) to the number of short cycles.

We use Dijkstra’s algorithm to find the shortest augmenting path from \(a_{r+1} \) to \(b_{r+1} \) in the digraph \(\hat{G}_r(u, v) \). Because each \(b_j \in B_r \) has a unique out-neighbor \(a_{\phi^{-1}(j)} \) and \(\hat{C}(b_j, a_{\phi^{-1}(j)}) = 0 \), we can think of the Dijkstra algorithm as operating on a digraph \(\Gamma_{r+1}(u, v) \) with vertex set \(A_{r+1} \). The edges of \(\Gamma_{r+1}(u, v) \) are derived from paths \((a_i, \phi(a_j), a_j) \) in \(\hat{G}_r(u, v) \). (We are just contracting the edges of \(M_r \).) The cost of this edge will be \(\hat{C}(i,j) \) which is the cost of the path \((a_i, \phi(a_j), a_j) \) in \(\hat{G}_r(u, v) \). Given an alternating path \(P = (a_{i_1}, b_{j_1}, a_{i_2}, \ldots, a_{i_k}) \) where \(\phi(a_{i_t}) = b_{j_t} \) for \(t \geq 2 \) there is a corresponding \(\psi(P) = (a_{i_1}, a_{i_2}, \ldots, a_{i_k}) \) of the same length in \(\hat{G}_r(u, v) \).
The Dijkstra algorithm applied to $\tilde{G}_r(u,v)$ produces a sequence of values $0 = d_1 \leq d_2 \leq \cdots \leq d_{r+1}$. The d_i are the costs of shortest paths. Suppose that after k rounds we have a set of vertices S_k for which we have found a shortest path of length d_i to $a_i \in S_k$ and that d_i for $a_i \notin S_k$ is our current estimate for the cost of a shortest path from a_{r+1} to a_i. The algorithm chooses $a_i \notin S_k$ to add to S_k to create S_{k+1}. Here l^* minimises $d_i + \tilde{C}(i,l)$ over $a_i \in S_k, a_i \notin S_k$. It then updates the $d_i, a_i \notin S_{k+1}$ appropriately. We let DT_k denote the tree of known shortest paths after k rounds of the Dijkstra algorithm. Here $DT_1 = a_{r+1}$.

A path $(a, \phi(a'), a')$ in the tree T_r gives rise to a basic edge (a, a'). We treat the basic and non-basic non-M_r edges separately.

Basic Edges Basic edges have \tilde{C} value zero and so if there are basic edges oriented from DT_k to $A_{r+1}\setminus DT_k$ then one of them will be added to the shortest path tree and we will have $d_{k+1} = d_k$. We need to argue that they are unlikely to create short cycles. At this point we will only have exposed basic edges that are part of DT_k.

Fix $a_i \in DT_k$. We want to show that given the history of the algorithm, the probability of creating a short cycle via an edge incident with a_i is sufficiently small. At the time a_i is added to DT_r there will be a set L_1 of size at most ℓ_1 for which adding the edge corresponding to $(a_i, b_j, a_{\phi^{-1}(j)})$, $a_j \in L_1$ creates a short cycle. This set is not increased by the future execution of the algorithm. At this point we have only exposed basic edges that are part of DT_k.

We let $\Gamma_r(u,v)$ denote the (multi)graph obtained from $G_r(u,v)$ by contracting the edges of M_r and let \tilde{T}_r be the tree obtained from T_r by contracting these edges. We have to consider multigraphs because we may find that $(a_i, \phi(b_j))$ and $(a_j, \phi(a_i))$ are both edges of $G_r(u,v)$. Of course, \tilde{T}_r can only contain at most one of such a pair. It follows from \cite{13} that \tilde{T}_r is a random spanning tree of $\Gamma_r(u,v)$. Let $e = (a_i, x), x \in A_r$. We claim that

$$\mathbb{P}((a_i, x) \in \tilde{T}_r) = O\left(\frac{1}{r}\right)$$

from which we can deduce that

$$\mathbb{P}(\text{an added basic edge is bad}) = O\left(\frac{\ell_1}{r}\right),$$

where *bad* means that the edge creates a short cycle.

To prove \cite{20} we use two well known facts: (i) if $e = \{a, b\}$ is an edge of a connected graph G and T denotes a uniform random spanning tree then $\mathbb{P}(e \in T) = R_{\text{eff}}(a,b)$ where R_{eff} denotes effective resistance, see for example \cite{40}; (ii) $R_{\text{eff}}(a,b) = \frac{\tau(a,b) + \tau(b,a)}{2|E(G)|}$ where $\tau(x,y)$ is the expected time for a random walk starting at x to reach y, see for example \cite{19}. We note that in the context of \cite{20}, we may have exposed some edges of T_r. Fortunately, edge inclusion in a random spanning tree is negatively correlated i.e. $\mathbb{P}(e \in T_r \mid f_1, \ldots, f_s \in T_r) \leq \mathbb{P}(e \in T_r)$, see for example \cite{40}.

Given (i) and (ii) and Lemma 9, it only remains to show that with $G = G_r(u,v)$ that $\tau(a, x) = O(r)$. For this we only have to show that the mixing time for a random walk on $G_r(u,v)$ is sufficiently small. After this we can use the fact that the expected time to visit a vertex a from stationarity is $1/\pi_a \leq r/\eta a$ where η is from Lemma 8 and where π denotes the stationary distribution, see for example \cite{39}. We estimate the mixing time of a walk by its conductance.

Let $\deg(v) \geq \eta r$ denote degree in $G_r(u,v)$. For $S \subseteq A_r$, let $\Phi_S = e(S, \bar{S})/\deg(S)$ where $e(S, \bar{S})$ is the number of edges of $\Gamma^+_r(u,v)$ with one end in S and $\deg(S) = \sum_{v \in S} \deg(v)$. Let $\Phi = \min \{\Phi_S : \deg(S) \leq \deg(A_r)/2\}$.
Note that if \(\deg(S) \leq \deg(A_r)/2 \) then \(\deg(\bar{S}) \geq \deg(A_r)/2 \geq \eta r^2/2 \) which implies that \(|\bar{S}| \geq \eta r/2 \) and so \(|S| \leq (1 - \eta/2)r \).

Assume first that \(|S| \leq \eta r/2 \). Then

\[
\Phi_S \geq \sum_{v \in S} (\deg(v) - |S|) \frac{\eta (\eta r/2)|S|}{r|S|} = \frac{\eta}{2}.
\]

If \(\eta r/2 \leq |S| \leq (1 - \eta/2)r \) then we use the random edges \(R \). The Chernoff bounds imply that w.h.p. \(e(S, \bar{S}) \geq \eta(1 - \eta/2)r^{2-\varepsilon}/3 \). (The probability of this not being true is \(e^{-\Omega(r^{2-\varepsilon})} \) and this survives a union bound of fewer than \(2^r \) choices for \(S \).) So,

\[
\Phi_S \geq \frac{\eta(1 - \eta/2)r^{2-\varepsilon}/3}{r^2/2} = \frac{2\eta(1 - \eta/2)r^{-\varepsilon}}{3}.
\] (22)

It then follows that after \(r \) steps of the random walk the total variation distance between the walk and the steady state is \(e^{-\Omega(r^{1-2\varepsilon})} \), see for example [39]. This completes our verification of (20) and hence (21).

We will also need a bound on the number of basic edges in any path in the tree \(DT_r \) constructed by Dijkstra’s algorithm. Aldous [3], Chung, Horn and Lu [14] discuss the diameter of random spanning trees. Section 6 of [3] provides an upper bound for the diameter that we use for the following.

Lemma 10. The diameter of \(\hat{T}_r \) is \(O(r^{1/2+3\varepsilon}) \) with probability \(1 - o(r^{-2}) \).

Proof. Let \(A \) be the adjacency matrix of \(\Gamma_r^+ \) and let \(D \) be the diagonal matrix of degrees \(\deg(v), v \in A_r \) and let \(L = I - D^{-1/2}AD^{-1/2} \) be the Laplacian. Let \(0 = \lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_{r-1} \) be the eigenvalues of \(L \) and let \(\sigma = 1 - \lambda_1 \). We have \(\lambda_1 \geq \Phi^2/2 \) (see for example Jerrum and Sinclair [32]). So we have

\[
\sigma \leq 1 - \frac{1}{2} \left(\frac{2\eta(1 - \eta/2)r^{-\varepsilon}}{3} \right)^2 \leq 1 - \frac{\eta^2}{20r^{2\varepsilon}}.
\] (23)

Now let \(\rho_0 = r^{1/2} \) and \(\delta \) denote the minimum degree in \(\Gamma_r^+ \) and

\[
s = \left\lceil \frac{3}{\log(1/\sigma)} \cdot \frac{r^2}{(\rho_0 + 1)\delta} \right\rceil = O(r^{1/2+2\varepsilon}).
\]

It is shown in [14] that

\[
\mathbb{P}(diam(T) \geq 2(\rho_0 + js)) \leq \frac{r}{2^{2j-2}}.
\] (24)

Putting \(j = 5 \log r \) into (24) yields the lemma.

(Unfortunately, there are no equation references for (24). It appears in Section 6 of [3] and Section 5 of [14]. In [14], \(\sigma = \max \{1 - \lambda_1, \lambda_{n-1} - 1\} \). It is used to bound the mixing time of a lazy random walk on \(\Gamma_r^+ \) and in our context we can drop the \(\lambda_{n-1} \) term.)

Non-Basic Edges Each \(a_i \in DT_k \) corresponds to an alternating path \(P_t \). As such there are at most \(\ell_1 \) choices of \(\ell \) such that \((i, \ell) \) would create a bad edge. This is true throughout an execution of the Dijkstra algorithm. Also, while we initially only know that the \(C(i, \ell), \ell \neq \phi(i) \) are \(EXP(1) \) subject to \(\phi \), as Dijkstra’s algorithm progresses, we learn lower bounds on \(C(i, \ell) \) through \(\phi \). The costs \(C(i, \ell) \) will still be independent, seeing as the constraints added are all of the form \(C(i, \ell) \geq \theta_{i,\ell} \).
The following analysis will show that generally speaking there will be many choices of non-basic edge that can be added to the Dijkstra tree. In which case, we are unlikely to choose a bad edge.

Suppose that vertices are added to DT_r in the sequence $i = i_1, i_2, \ldots, i_r$. For $r_0 < j \leq r$ let

$$F(i, j) = |\Phi(i, j)| \text{ where } \Phi(i, j) = \{ t > j : u_{i_t} \leq u_{i_j} + \gamma_j \varepsilon_r \} \text{ where } \varepsilon_r = r^{-30\varepsilon}.$$

We bound the size of $X_r(i) = \{ j \leq r : F(i, j) \leq r\varepsilon_r^2 \}$ from above.

Claim 1. $|X_r(i)| \leq 4r\varepsilon_r$.

Proof. Assume without loss that $i_t = t$ and replace the notation $\Phi(i, j)$ by $\Phi(u, j)$. We show that we can assume that $u_1 \leq u_2 \leq \cdots \leq u_r$. Assume that $u_k = \max \{ u_1, \ldots, u_r \}$ and that $k < r$. Consider amending u by interchanging u_k and u_r. Fix $j < r$. We enumerate the possibilities and show that $F(u, j)$ does not increase.

If $j \geq k$ then we have that $k \notin \Phi(u, j)$ and $\Phi(u, j)$ may lose element r, since u_r has increased. Assume then that $j < k$.

<table>
<thead>
<tr>
<th>Before</th>
<th>$k \notin \Phi(u, j), r \notin \Phi(u, j)$</th>
<th>After</th>
<th>No change.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>$k \notin \Phi(u, j), r \in \Phi(u, j)$</td>
<td>After</td>
<td>$k \in \Phi(u, j), r \notin \Phi(u, j)$</td>
</tr>
<tr>
<td>Before</td>
<td>$k \in \Phi(u, j), r \notin \Phi(u, j)$</td>
<td>After</td>
<td>Not possible.</td>
</tr>
<tr>
<td>Before</td>
<td>$k \in \Phi(u, j), r \in \Phi(u, j)$</td>
<td>After</td>
<td>No change.</td>
</tr>
</tbody>
</table>

So in all cases $F(u, j)$ does not increase. u_r is now the maximum of the u_i. After this we apply the argument to u_1, \ldots, u_{r-1} and so on.

Next let k_1 be the smallest index k in $X_r(i)$ and let $J_1 = [u_{k_1}, u_{k_1} + \gamma_r \varepsilon_r]$. The interval J_1 contains at most $r\varepsilon_r^2$ of the values u_i. Then let k_2 be the smallest index k in $X_r(i)$ with $k > u_{k_1} + \gamma_r \varepsilon_r$ and let $J_2 = [u_{k_2}, u_{k_2} + \gamma_r \varepsilon_r]$ and so on. Using the fact that $u \notin U$ we see that in this way we cover $X_r(i)$ with at most $4\varepsilon_r^{-1}$ intervals each containing at most $r\varepsilon_r^2$ of the values u_j for which $j \in X_r(i)$.

Let

$$K_r = \{ k : |X_r(i) \cap [k - r\varepsilon_r^2/2, k]| \geq r\varepsilon_r^2/4 \} .$$

We argue that

$$|K_r| \leq 2|X_r(i)| \leq 8r\varepsilon_r .$$ \hspace{1cm} (25)

Indeed, let $z_{j,k}$ be the indicator for (j, k) satisfying $k - r\varepsilon_r^2/2 \leq j \leq k$ and $j \in X_r(i)$. Then if $z = \sum_{j,k} z_{j,k}$ we have

$$z \geq \sum_{k \in K_r} r\varepsilon_r^2/4 = |K_r| r\varepsilon_r^2 /4 .$$

$$z \leq \sum_{j \in X_r(i)} r\varepsilon_r^2/2 \leq r\varepsilon_r^2 \cdot |X_r(i)| /2 .$$

and (25) follows.

It follows from the definition of K_r that if $k \notin K_r$ then there are at least $r\varepsilon_r^2/4 \times r\varepsilon_r^2$ pairs (i, ℓ) such that $i \leq k < \ell$ and $u_\ell \leq u_i + \gamma_r \varepsilon_r$. Note that $\theta_{i,\ell} \geq -\varepsilon_r \gamma_r$ for each such pair. We next estimate for $k \notin K_r$ and $0 \leq k \leq r$ and $j \leq k < m \leq r$ the probability that (j, m) minimises $d_i + \tilde{C}(i, \ell)$. The Chernoff bounds imply
that w.h.p. $r^2\varepsilon_n^3n^{-\varepsilon}/5$ of these pairs appear as (unexposed) edges in the random edge set R. Given this, it follows from the final inequality in (16) that

$$
\mathbb{P}(\text{an added non-basic edge is bad}) \leq \ell_1 \left(\varepsilon_r \gamma_r + \frac{5n^3}{r^2 \varepsilon^4} \right) \leq 2\ell_1 \varepsilon_r \gamma_r.
$$

(26)

Explanation: There are at most ℓ_1 possibilities for a bad edge $e = (a_j, a_m)$ being added. The term $\varepsilon_r \gamma_r$ bounds the probability that the cost of edge e is less than $\varepsilon_r \gamma_r$. Failing this, e will have to compete with at least $r^2\varepsilon_n^3n^{-\varepsilon}/5$ other pairs for the minimum.

We will now put a bound on the length L of a sequence $(t_k, x_k), k = 1, 2, \ldots, L$ where t_k, $k \notin K_r$ is an iteration index where a non-basic edge (y_k, x_k) is added to DT_r. The expected number of such sequences can be bounded by

$$
\sum_{t_1 < t_2 < \ldots < t_L} (2\varepsilon_r \gamma_r)^L \leq \left(\frac{r}{L} \right)^2 (2\varepsilon_r \gamma_r)^L \leq \left(\frac{2r^2e^2\varepsilon_r \gamma_r}{L^2} \right)^L = o(n^{-2}),
$$

(27)

if $L^2 \geq 3e^2\varepsilon_r \gamma_r r^2$ or $L \geq 3e^2 r^{1/2 - 16\varepsilon}$.

Explanation: We condition on the tails y_k of the edges added at the given times. Then there are at most r possibilities for the head x_k and then $2\varepsilon_r \gamma_r$ bounds the probability that (y_k, x_k) is added, see (26).

Combining Lemma 10 and (27) we obtain a bound of $r^{1-13\varepsilon}$ on the diameter of DT_r. (Each path in DT_r consists of a sequence of non-basic edges separated by paths of \hat{T}_r and so we multiply the two bounds.)

Let $\zeta_{r,k}$ be the 0,1 indicator for e_k being a virgin bad edge i.e. one that creates a virgin short cycle. Note that $\sum_{r=r_0}^{n} \sum_{k=1}^{r} \zeta_{r,k} \leq n$.

We have that with C equal to the hidden constant in (21),

$$
\sum_{r=r_0}^{n} \sum_{k=1}^{r} \mathbb{P}(e_k \text{ is bad | } C) \zeta_{r,k} \leq C\ell_1 \sum_{r=r_0}^{n} \frac{r^{1-13\varepsilon}}{r} + 2 \sum_{r=r_0}^{n} \ell_1 \sum_{k=k_0}^{r} \gamma_r \varepsilon_r \zeta_{r,k}.
$$

(28)

Explanation: For each $a_i \in DT_k$, the set of possible bad edges does not increase for each $k' > k$. This is because each $a_i \in DT_k$ is associated with an alternating path that does not change with k'. The first term bounds the expected number of bad basic edges, using (21) and our bound on the diameter of DT_r. The second sum deals with non-basic edges and uses (26).

Now

$$
\ell_1 \sum_{r=r_0}^{n} \frac{r^{1-13\varepsilon}}{r} \leq \ell_1 n^{1-11\varepsilon}
$$

and

$$
\sum_{r=r_0}^{n} \sum_{k=1}^{r} \zeta_{r,k} \ell_1 \gamma_r \varepsilon_r \leq \ell_1 \gamma_{r_0} \varepsilon_{r_0} \sum_{r=r_0}^{n} \sum_{k=1}^{r} \zeta_{r,k} \leq \ell_1 \gamma_{r_0} \varepsilon_{r_0} n = o(1).
$$

Finally, it follows from (25) and the fact that only edges of cost at most γ_r are added that for any $k \leq r$, $\mathbb{P}(e_k \text{ is bad | } C) \leq \ell_1 \gamma_r$. (There are always at most ℓ_1 choices of edge that could be bad and the probability they have cost at most γ_r is $1 - e^{-\gamma_r} \leq \gamma_r$.) So,

$$
\sum_{r=r_0}^{n} \sum_{k \in K_r} \mathbb{P}(e_k \text{ is bad | } C) \zeta_{r,k} \leq \ell_1 \sum_{r=r_0}^{n} |K_r| \gamma_r \leq 8\ell_1 \sum_{r=r_0}^{n} r \gamma_r \varepsilon_r \leq \ell_1 n^{1-20\varepsilon}.
$$

This completes the justification for (18) and the proof of Lemma 3.
5 Final Remarks

We have extended the proof of the validity of Karp’s patching algorithm to random perturbations of dense graphs with minimum in- and out-degree at least αn and independent $\mathop{XP}(1)$ edge weights. We can extend the analysis to costs with a density function $f(x)$ that satisfies $f(x) = 1 + O(x)$ as $x \to 0$. Janson [31] describes a nice coupling in the case of shortest paths, see Theorem 7 of that paper.

References

[44] E. Powierski. [Ramsey properties of randomly perturbed dense graphs](#)

