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Abstract

We consider the problem of generating uniformly random parti-
tions of the vertex set of a graph such that every piece induces a
connected subgraph. For the case where we want to have partitions
with linearly many pieces of bounded size, we obtain approximate sam-
pling algorithms based on Glauber dynamics which are fixed-parameter
tractable with respect to the bandwidth of G, with simple-exponential
dependence on the bandwidth. For example, for rectangles of con-
stant or logarithmic width this gives polynomial-time sampling al-
gorithms. More generally, this gives sub-exponential algorithms for
bounded-degree graphs without large expander sub-graphs (for exam-
ple, we obtain 2O(

√
n) time algorithms for square grids).

In the case where we instead want partitions with a small number
of pieces of linear size, we show that Glauber dynamics can have ex-
ponential mixing time, even just for the case of 2 pieces, and even for
2-connected sub-graphs of the grid with bounded bandwidth.

1 Introduction

In this paper we consider the mixing time of Glauber dyanmics for uniform
sampling of partitions of the vertex-set of a bounded-degree graph into q
subsets which each induce connected subgraphs of G. Our positive results
in this paper focus on the case where q is linear in the number of vertices of
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G and each subset in the partition is constrained to have bounded size ≤ B;
in particular, this generalizes the setting of the well-studied monomer-dimer
model [18, 17] where B = 2.

The problem of randomly partitioning a graph into connected pieces
arises naturally in the context of evaluating political districtings, where
Markov chain methods have been applied and developed over the past decade.
(For this application, our positive results correspond to the case where there
are many small districts; in the U.S. context, one might imagine the case
of the state legislative districting of a state, rather than its districting into
US Congressional districts.) While there are rigorous statistical approaches
based on Markov chains which can avoid the sampling problem when the
only goal is outlier detection [7, 6], the benefits of sampling have led to the
development of a large range of Markov chains intended to generate good
samples from partition spaces [9, 12, 14, 3, 5, 1, 2]. The mixing properties
of these Markov chains, however, have only been supported by heuristic ev-
idence, and there is still a dearth of results allowing rigorous approximate
sampling from specified target distributions on such partitions.

The mixing times we prove will depend on the bandwidth of G, which
is the minimum over labelings σ of the vertices of G by distinct numbers
1, . . . , n of the maximum difference σ(u) − σ(v) of any adjacent pair u ∼ v
of vertices:

band(G) = min
σ

max
u∼v
|σ(u)− σ(v)|. (1)

(Throughout, we will use σ to denote a labeling realizing this minimum.) In
particular, when G is a k × ` grid with n = k` vertices we have band(G) =
min(k, `) [8], and will obtain running times of order poly(n)2O(min(k,`)).

In this paper, a contiguous q-partition of G is a partition of the vertex
set into q (not necessarily nonempty) pieces, each inducing a connected
subgraph of G, and a B-bounded contiguous q-partition is a contiguous
q-partition in each every piece has size ≤ B.

In general, it can be NP-hard to determine whether a given graph admits
a partition into connected pieces of prescribed sizes, even for planar graphs
of bounded degree [11]. But things change if we allow some slack in the
size constraints. For example, we will see that one can efficiently partition
any graph of maximum degree ∆ into connected pieces of sizes between
B/(∆− 1) and B, for any B ≥ 1. The Hamiltonicity of grid graphs means
they can be partitioned into connected pieces of any sizes summing to the
total number of vertices; i.e., essentially no slack is needed at all. Moreover,
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in both of these cases, the partitioning can also be done locally, without
global modifications to the graph. The following definition captures these
properties:

Definition 1. A family of graphs G is (B,α)-partitionable if for any ε > 0
and q > (1 + ε)n/(αB), there’s a K sufficiently large and a δ > 0 such for
any sufficiently large G ∈ G:

• There is a polynomial time algorithm to find a B-bounded contiguous
q-partition of G, and

• Given any B-bounded contiguous-q-partition ω of G, there are δ|V (G)|
distinct B-bounded contiguous partitions ωi of G, using fewer than q
partition classes, which each agree with ω except on a connected sub-
graph Hi of G with at most K vertices.

Essentially, the second part of Definition 1 requires that any B-bounded
contiguous partition using sufficiently many nonempty classes can be locally
modified to use fewer nonempty color classes. Note that no infinite family of
graphs can be (B,α)-partitionable for any value α > 1. On the other hand,
we will prove the following result about bounded-degree graphs:

Proposition 2. For any B, connected graphs of maximum degree ∆ are
(B, 1

∆−1
B−1
B )-partitionable.

Proposition 2 cannot be improved in general, but, for example, grids satisfy
a strong version of Definition 1:

Proposition 3. Rectangular grids are (B, 1)-partitionable for all B.

Our main result is the following:

Theorem 4. If G is a (B,α)-partitionable family of graphs of bounded max-
imum degree, then for any

q ≥ (1 + ε)
n

αB
,

Glauber dynamics for the space of B-bounded contiguous q-partitions of G
has mixing time at most

poly(n)2O(band(G)).

We define the Glauber dynamics for this state space in Section 2.1. We can
also accommodate reasonable non-uniformity in the target distribution. For
example, letting κ(ω) denote the number of nonempty classes in a partition
ω of the vertex set of G, one natural case is the following:
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Theorem 5. If G is a (B,α)-partitionable family of graphs of bounded max-
imum degree, then for for any

q ≥ (1 + ε)
n

αB
,

Glauber dynamics for the space of B-bounded contiguous q-partitions of G
has mixing time at most

poly(n)2O(band(G)),

where π(ω) for a partition ω is proportional to q!
(q−κ(ω))! .

Note that this weighting corresponds to the case where we select a q-
partition by selecting a random q-coloring and then ignoring the colors.

The mixing time given by all these results depend exponentially just
on the bandwidth of G; they give algorithms for approximate sampling
that are fixed-parameter-tractable for the bandwidth, and in particular we
have subexponential (i.e., 2o(n)) algorithms any time G is a family of graphs
with sublinear bandwidth. From a result of Böttcher, Pruessmann, Taraz,
and Würfl [4], this is equivalent to requiring graphs in G to have sublinear
treewidth, or requiring that graphs in G have no linear-size subgraphs with
good expansion. Thus our results give subexponential time algorithms in
all these cases (and for all planar graphs, by the planar separator theorem).
Note, for example, that a square grid graph on n vertices has bandwidth√
n, as can be realized by the row-by-row ordering if its vertices.

Najt, Deford, and Solomon analyzed the worst-case complexity of sam-
pling connected q-partitions in the case where q is bounded and thus the
typical piece-size is linear [19]. They show, for example that it is NP-hard to
sample connected 2-partitions for planar graphs. They also show that sam-
pling connected q-partitions (for bounded q) is fixed-parameter tractable in
the treewidth, although with a tower function dependence on the treewidth.
On Markov Chains, they show that there are families of graphs (even among,
say, 3-connected planar graphs of bounded degree) for which Glauber dy-
namics is torpidly mixing for the case of connected 2-partitions. In Section
3, we will show that Glauber dynamics can even be torpidly mixing for q = 2
on bounded-bandwidth subgraphs of the grid. In particular, we will give an
example of a family of graphs which are simply the union of two overlapping
grid graphs of bounded bandwidth, with exponential mixing time.
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2 Proofs of positive results

2.1 Markov chains for partitions

In this section we define the Glauber dynamics for connected partitions.
For a fixed connected graph G on n vertices, we let Ωq,B,G consist of all
B-bounded contiguous-q-partitions of G.

We consider a Markov Chain M on Ωq,B,G defined by the following
transition procedure from a state ω ∈ Ωq,B,G:

(a) Choose a uniformly random vertex v ∈ G;

(b) Choose a uniformly random set among all sets in the partition ω;

(c) Remove v from its current set and make it a member of the randomly
chosen set, if this move would result in a partition belonging to the
state space Ωq,B,G.

When step (b) is carried out, there is a question of how one handles sets
which occur multiple times in a fixed partition class ω—do we consider ω
to be a set of partition classes or a multiset? The only set which can occur
multiple times as a partition class is the empty set, which will appear q− κ
times, where κ is the number of nonempty color classes in ω. In the case
where we include the empty-set with multiplicity in the uniform random
selection in Step (b), the stationary distribution of M is not uniform on
partitions but on colorings; e.g., partitions with more nonempty classes are
more likely. In the case where we include the empty-set without multiplicity,
the uniform distribution on partitions is stationary. Our methods are not
sensitive to the differences between these two choices of the chain. The first
chain is the subject of Theorem 5, while the second is the subject of Theorem
4. Note that in the first case, we can consider Ω to be the set of q-colorings
instead of q-partitions, so that we have π(ω) = 1

|Ω| in all cases.
In fact, M can fail to be irreducible on the state space Ωq,B,G, even

when q = Cn and B is large and G is a grid graph, as can be seen from the
example in Figure 1. But we will define ΩK

q,B,G to be those q-partitions ω of
G which agree with some ω′ in Ωq,B,G on all but at most K vertices. This
is the chain we will show is rapidly mixing using the method of canonical
paths. Note that that |ΩK

q,B,G| = O(nK |Ωq,B,G|) and so we can use ΩK
q,B,G

to obtain near uniform samples from Ωq,B,G in polynomial time.
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Figure 1: When tiled, this configuration has maximum partition class size 13,
average class size 32/5 = 6.4, but is rigid (no Glauber dynamics transitions
are possible) if B = 13 unless there are unused colors. Any change to existing
pieces which preserves continuity either disconnects one of the large pieces,
or increases the size of a large piece beyond the threshold B = 13.

2.2 Three Lemmas

A crucial ingredient of our proof is the so-called mountain-climbing prob-
lem [15, 13]. Roughly speaking, this problem asserts that two mountain
climbers, each beginning at sea level, can traverse a 2-dimensional moun-
tain range in such a way that they meet at the summit, and at all times
are at equal altitudes (Figure 2). Note that, in general, this requires the
mountain climbers to change directions (and sometimes walk away from the
summit), and that quadratically many such changes can be needed, in the
number of local of extrema of the mountain range.

To state the version we will use, define, for any integrable function f :
S1 → R whose integral on the whole circle is 0, the set of intervals If to
be those intervals of the circle on which the integral of f is 0. We include
singletons and the whole circle in If as degenerate cases. We then have the
following:

Theorem 6. Let f : S1 → {−1,+1} be any function on the circle with
finitely many discontinuities, and

∫
S1 f(x)dx = 0. Then there is a continuous

function I : [0, T ]→ If with I(0) a singleton and I(T ) = S1.

The connection between this and the version of the mountain climbing
lemma depicted in Figure 2 is made by defining a function F on the circle
by F (x) =

∫ x
t=0 f(x), where integration is done, say, in the counterclockwise

direction. Note that F is continuous and in our setup, is piecewise linear with
finitely many linear pieces. Taking x0 to be the location of a minimum of this
function, the mountain climbing lemma ensures that there are continuous
paths α : [0, 1] → S1 and β : [0, 1] → S1 from x0 which never cross x0,
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Figure 2: The mountain climbing lemma: two mountain climbers starting
at the same height, which is a global minimum for the mountain range, can
coordinate their movements so that they are at all times at equal heights,
and at some point reach a common summit.

which eventually meet, and which have F (α(t)) = F (β(t)) at all times.
These functions give the endpoints of the intervals defined by the function
I(t).

Our analysis in this paper will make use of the following discrete version
of Theorem 6:

Lemma 7. Let the vertices v1, v2, . . . , vn of the n cycle Cn (indexed in cyclic
order) be assigned labels `(vi) ∈ [−K,K], such that

n∑
i=1

`(vi) = r.

Then there is a sequence of subsets

∅ = X0, X1, X2, . . . , XT = V (Cn)

of V (Cn), such that each Xi, 0 < i < T is a path, such the symmetric
difference of Xi and Xi+1 is single vertex for all 0 ≤ i < T , and such that

∀0 ≤ i ≤ T,

∣∣∣∣∣∣
∑
v∈Xi

`(v)− |Xi|
n
r

∣∣∣∣∣∣ ≤ 2K.

Proof. It suffices to prove the lemma in the case when r = 0; the general
case reduces to this case, by replacing each `(vi) with `(vi)− r/n.

Let L =
∑

i |`(vi)|, and, with the aim of applying Theorem 6, recursively
define intervals I0, I1, . . . , In corresponding to each vertex vi of Cn, each of
the form [xi, xi+1), where the length xi+1 − xi of Ii is given by

xi+1 − xi =
1

L
|`(vi)|.

We then define f on S1 to be 1 on intervals Ii whose corresponding vertex
vi has a positive label `(vi), and −1 otherwise. Theorem 6 gives us the
continuous interval function I : [0, T ]→ If ; let the corresponding left- and
right-endpoint functions be a(t) and b(t).
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Now define X (t) to be the cyclically ordered list of intervals of Ii in-
tersecting I(t). We define a graph whose vertex set Y ⊆ V (Cn) × V (Cn)
consisting of all the pairs (vi, vj) for which there exists a t such that X (t) =
(Ii, Ii+1, Ii+2, . . . , Ij). Define two vertices (vi, vj) and (vs, vt) in this graph
to be adjacent if there is a t0 such that for all δ > 0, X

(
(t0 − δ, t0 + δ)

)
in-

cludes both (Ii, . . . , Ij) and (Is, . . . , It). By continuity of I(t), we have that
s ∈ {i− 1, i, i+ 1} and t ∈ {j − 1, j, j + 1}. Viewing the points on the edges
and vertices of this graph as a topological space, I(t) induces a continuous
path in this topological space from a pair (vi, vi) whose corresponding list of
intervals is a singleton, to a pair (vi, vi−1) whose corresponding list includes
every interval. In particular, these two vertices lie in the same connected
component of this graph and there is a (discrete) path in the graph from
one to the other. To obtain the statement of the theorem, we replace any
edges of the path (vi, vj) ∼ (vs, vt) for which s = i± 1 and t = j ± 1 with a
path of length 2 of the form (vi, vj) ∼ (vi, vt) ∼ (vs, vt).

Since the integral of
∫
I(t) f(x)dx = 0 for any t, and the sum of the lengths

of the intervals in X (t) differs from this integral by at most 2K for any t,
this path gives the sequence of subsets claimed by the theorem.

The next lemma will be used to control the congestion near the endpoints
of our canonical paths.

Lemma 8. For any bipartite graph on the bipartition A ∪̇B, where the
maximum degree of vertices in B is D and the minimum degree of vertices
in A is εD, there is a mapping θ : A → B such (a, θ(a)) is an edge for all
a ∈ A, and every preimage θ−1(b) has size at most d1/εe.

Proof. We can modify the bipartite graph by replacing each vertex b ∈ B
with k = d1/εe copies, each joined to the same neighbors in A. The resulting
graph has the property that the minimum degree on the left is at least
the maximum degree on the right; by Hall’s theorem, there is a complete
matching of A, which induces the desired function θ.

The final lemma in this section simply captures the balance we can en-
sure when partitioning arbitrary connected graphs of bounded degree into
connected pieces.

Lemma 9. If T is a tree on n ≥ 2 vertices and of maximum degree at most
∆ with root v0 of degree ≤ ∆ − 1, then for any B < n, we can partition T
into subtrees T ′′ and T ′ so that B−1

∆−1 < |V (T ′′)| ≤ B and v0 ∈ T ′.
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Proof. Consider the trees T1, T2, . . . , Td (d ≤ ∆− 1) that are the connected
components of T \v0, and let vi be the neighbor of v0 in Ti. Since n−1

∆−1 >
B−1
∆−1 ,

there is some i such that |V (Ti)| > B−1
∆−1 . If |V (Ti)| ≤ B as well, we’re done;

otherwise, we apply induction to the tree Ti rooted at vi.

2.3 Partionable graphs

In this section we revisit Definition 1. We begin by proving Proposition 2,
showing that graphs of maximum degree ∆ are (B, 1

∆−1
B−1
B )-partitionable.

Proof of Proposition 2. Applying Lemma 9 recursively shows that we can
partition G into pieces of size greater than B−1

∆−1 and at most B. Moreover
this can be done in polynomial time since at each application, there are only
linearly many choices for the division claimed to exist by the Lemma. This
proves the first part of the definition holds as claimed.

We will show the second part of the definition is satisfied for any

K = d2/εeB∆ + 1. (2)

Let G be any connected graph and c any B-bounded contiguous-κ-coloring
of G with

κ ≥ (1 + ε)n(∆− 1)

B − 1
.

Define the graph H whose vertex-set is the color classes of c, with two color
classes being adjacent in H if they are joined by any edge in G. Note that
the maximum degree of H is at most B ·∆. Letting k = d2

εe, we see from
Lemma 9 that we can partition H into connected pieces H1, . . . ,Hs each
of whose size satisfies k < |V (Hi)| ≤ k(B∆ − 1) + 1, except for one piece
that may have smaller size. In particular, by merging the small piece with
another, we may assume that each piece satisfies

k < |V (Hi)| ≤ kB∆ + 1.

Each Hi corresponds to a subgraph G(Hi) of G whose vertex set is the union
of some color classes of c. Since the average size of a color class of c is less
than 1

1+ε
B−1
∆−1 , there is a δ > 0 (depending on B, ∆, ε) and δ|V (G)| indices

i1, i2, . . . such that each G(Hij ) is the union of color classes of c which have

average size less than 1
1+ε/2

B−1
∆−1 , for all j.

By Lemma 9, this time applied to a G(Hij ), there is a partition of G(Hij )

into pieces of size at most B and size at least B−1
∆−1 , except for one piece that

may have smaller size; if the partition of G(Hij ) has ≤ k classes then we’re
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done, as this partition can be used to give an alternative coloring c′ which
agrees with c except on G(Hij ), which satisfies |G(Hij )| ≤ K by (2). But
the partition cannot have more than k classes, since then the average size
of a piece in our partition would be at least

k

k + 1

B − 1

∆− 1
≥ 1

1 + ε/2

B − 1

∆− 1
.

Thus for each of the δ|V (G)| indices ij , we obtain a distinct contiguous
coloring using fewer than κ colors, and differing from c on a connected
subgraph of most K vertices.

Next we prove Proposition 3, asserting that grids are (B, 1)-partitionable
for all B.

Proof of Proposition 3. The first part of the definition follows from the fact
that grid graphs have Hamilton paths, and paths can be partitioned as
claimed.

Next, let G be a k × ` grid on n = k` vertices and assume k ≤ `. We
define parameters in two cases:
Case 1: If k ≤ 400B2/ε2, we set L = k, and M = d20B

ε e.
Case 2: If k, ` > 400B2/ε2, we set L = M = d20B

ε e.

By the choice of L, there is a k′ × `′ subgrid G′ of G with k′ and `′

multiples of L and M , respectively, and for which n′ := k′`′ ≥ n − 40B/ε.
In particular, for n sufficiently large, given any B-bounded contiguous-κ-
coloring c of G for κ ≥ (1 + ε)n/B, at least (1 + ε/2)n/B of its color classes
intersect G′. We can then partition G′ into L ×M grid subgraphs Hi. In
Case 1 the area of each such grid subgraph is ≥ 20kB/ε and for each Hi,
the set B(Hi) of boundary vertices—i.e., vertices that have neighbors in
other Hj ’s—has size at most 2k for all i. In Case 2, the area of each Hi is
≥ 400B2/ε2 and each boundary B(Hi) has size at most 80B/ε+ 4. In both
cases, we have

|B(Hi)|
|V (Hi)|

≤ ε

4B
. (3)

Thus, fixing a B-bounded contiguous-κ-coloring, at most εn/4B color classes
can intersect a boundary vertex of an Hi. Subtracting from the ≥ (1 +
ε/2)n/B color classes that intersect G′, we are left with at least

(1 + ε/4)n/B ≥ (1 + ε/4)n′/B
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color classes that are subsets of V (G′) and intersect exactly one Hi. Since
no Hi can contain more than L ·M color classes, we have for

δ =
ε

8BLM

that there are δn indices i such that there are at least (1 + ε/8)LM/B >
LM/B color classes which are subsets of Hi. Each of these can be used to
provide a contiguous-κ′-coloring for κ′ < κ satisfying the definition. Indeed,
as each such Hi is Hamiltonian, each can be partitioned into contiguous
pieces of arbitrary sizes summing to |V (Hi)|; in particular, each can be
partitioned into color classes of size exactly B, which in each case requires
just LM/B color classes per Hi.

The first part of Definition 1 ensures that we can efficiently find an
element of Ωq,B,G as a starting point for our algorithm. Theorems 4 and
5 will then follow from bounds on the mixing times of the Markov chain,
which we achieve using the method of canonical paths.

2.4 Outline of the proof strategy

We bound the mixing time of M using the method of canonical paths [10,
16, 20], which requires us to define a path between any pair of states so that
no edge is used by too many paths.

The basic idea of our approach to defining canonical paths is simple.
Given the graph G, we use the bandwidth ordering σ and divide the vertex
set G into intervals of length 2Bband(G) in the ordering σ; this ensures that
any piece of a B-bounded contiguous q-partition intersects at most two of
these intervals.

Next, given two valid partitions ω and ω′ of G, the basic idea is that we
would like to, one interval at a time, replace the classes of ω in one interval
with the classes of ω′. First (in Phase 0 below), we must reduce the number
of nonempty partition classes so that we have enough room, e.g., to break
classes into singletons.

But when carrying out these copy operations, the crucial thing we need
to maintain is that all intermediate states use few enough partition classes
that they are valid members of the state space, but also sufficiently many
partition classes that they are not a high-congestion node (note that we
should expect there to be few partitions which use few classes; thus it is not
surprising that canonical paths cannot make heavy use of such partitions
as intermediate states). This is where the mountain climbing problem en-
ters. Lemma 7 ensures that there is some order in which we can copy (and
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uncopy!) the partition ω′ into the partition ω so that we eventually have
entirely replaced ω with ω′, but at all intermediate states have a “just right”
number of nonempty partition classes.

2.5 Defining Valid Canonical Paths

For G an (α,B)-partionable graph, and any ε > 0, let K be as given in
Definition 1. We now define canonical paths between any states ω, ω′ of
Ω = ΩK

q,B,G, for q > (1 + ε)n/(αB). Define κ(ω) to be the number of
non-null color classes ω. We let

t = 2Bband(G).

Phase 0

From the definition of (B,α)-partionable and our choice of q > (1+ε)n/(αB),
we can define paths

ω = ω0, ω1, . . . , ωs0 (4)

and
ω′ = ω′0, ω

′
1, . . . , ω

′
t0 (5)

in Ω such that ωs0 and ωt0 both have fewer than q − 10t nonempty color
classes, and where s0, t0 ≤ 10Kt. For example, applying the definition of
(B,α)-partitionable to ω gives us a sequence ω = ω0, . . . , ωk, for k < K,
where ωk ∈ Ωq−1,B,G and for all 0 < i < k we have ωi ∈ ΩK

q−1,B,G. Applying
this repeatedly, we eventually obtain a sequence ending in the state ωs0 ∈
Ωq−10t,B,G, with all intermediate states in ΩK

q−1,B,G.

To reduce congestion, we choose the sequences (4),(5) carefully, as fol-
lows. For each κ with q − 10t ≤ κ ≤ q, we define Ωκ ⊆ Ω to be those
colorings with exactly κ nonempty color classes. We define a bipartite graph
on A ∪̇B for A = Ωκ, B = Ωκ−1 by letting ω be adjacent to ω′ in this graph
for ω ∈ Ωκ, ω

′ ∈ Ωκ−1 if ω′ differs from ω only on a connected subgraph of
at most K vertices. From Definition 1, there is δ > 0 such that the degree
of a vertex ω ∈ A is least δn. On other hand, very crudely, the number
of subsets of V (G) of size K inducing connected subgraphs of G is at most
n∆K ; this gives an upper bound on the maximum degree of the bipartite
graph. Thus by Lemma 8, there is a mapping θκ : Ωκ → Ωκ−1 such that
θκ(ω) differs from ω only on a connected subgraph of at most K vertices,
and such that for all ω′ ∈ Ωκ−1, the preimage θ−1

κ (ω′) has size at most

∆K

δ
. (6)
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We fix choices of the maps θκ for each κ, and use these maps when choosing
sequences in (4) and (5).
For notational convenience, we write ω̄ = ωs0 and ω̄′ = ω′t0 .

Setting up the next step

It remains to define a path from ω̄ to ω̄′.
We let Φ(ω) be the set of nonempty color classes of ω and let Φi(ω)

denote the set of color classes C ∈ Φ(ω) for which

min
v∈C

⌊
σ(v)

t

⌋
= i.

Observe that for i = 0, . . . ,m−1 (m = bn/tc+1) the Φi(ω) form a partition
of Φ(ω). We let V (Φi(ω)) denote the underlying vertex set of Φi(ω); that
is, the union of its elements. Observe that by our choice of t, we have

(∀ω ∈ Ω) V (Φi(ω)) ⊆ Vi ∪ Vi+1. (7)

(∀ω, ω′ ∈ Ω) V (Φi(ω
′)) ⊆ V (Φi−1(ω)) ∪ V (Φi(ω)) ∪ V (Φi+1(ω)), (8)

We write φi(ω) for the size of Φi(ω); i.e., the number of color classes it
contains, and similarly write φ(ω) for the size of Φ(ω).

Now we label the vertices v0, v1, . . . , vm = v0 of the cycle Cm (indexed
in cyclic order) with the labels

`(vi) = φi(ω̄
′)− φi(ω̄),

which satisfy
|`(vi)| ≤ t

and let
X0, X1, . . . , XT (9)

be the sequence of subsets of the vertices of the cycle guaranteed to exist by
Lemma 7, with T ≤ m2/2.

Recall that each Xi in X1, . . . , XT−1 induces a subgraph of Cm that is
a path, whose vertex set we call Ii. Its complement is also a path, and
we denote the interior of this complementary path by Oi. Finally, we let
Bi = Cm \ (Ii ∪ Oi); so, for all i = 1, . . . , T − 1, |Bi| = 2, and in this case
we write b+k and b−k for the vertices in Bk which are adjacent to the greatest
and least vertices of Ik, respectively, in cyclic order.

Now with Phase 1 beginning from the state ω̄0 = ω̄, we will define Phases
1, . . . , T so each Phase k ends at a state ω̄k such that:
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(a) For each vi ∈ Ik, every color class C ′ ∈ Φi(ω̄
′) is a color class of ω̄k.

(b) For each vi ∈ Ok, every color class C ∈ Φi(ω̄) is a color class of ω̄k.

(c) For vi = b+k , every vertex in
(
V (Φi(ω̄)) ∪ V (Φi−1(ω̄))

)
\ V (Φi−1(ω̄′))

is a singleton color class in ω̄k, while for vi = b−k , every vertex in(
V (Φi(ω̄))∪V (Φi+1(ω̄))

)
\V (Φi+1(ω̄′)) is a singleton color class in ω̄k.

In particular, these conditions imply that

φ(ω̄k) =
∑
vi∈Ok

φi(ω̄) +
∑
vi∈Ik

φi(ω̄
′) + Ek =

∑
vi∈Ik∪Ok

φi(ω̄) +
∑
vi∈Ik

`(vi) + Ek,

(10)
for

|Ek| ≤ 2t.

In particular, we have with r = φ(ω̄′)− φ(ω̄) in the statement of Lemma 7

φ(ω̄k) ≤ φ(ω̄) +
|Ik|
m

(φ(ω̄′)− φ(ω̄)) + 4t ≤ max
(
φ(ω̄), φ(ω̄′)

)
+ 4t ≤ q − 6t.

(11)

Phase k

Inductively, having completed Phase k − 1 (or, for k = 1, beginning from
ω̄0 = ω̄, we proceed as follows.

Recall the Xi from (9) which we use to define our phases, and the asso-
ciated sets Ii, Oi, Bi. Xk differs from Xk−1 in a single vertex, in the sense
that there is vik ∈ Bk−1 and an i′k = ik ± 1, so that either i′k ∈ Ok−1 and

Bk = (Bk \ {vik}) ∪ {vi′k} Ik = Ik−1 ∪ {vik} Ok = Ok−1 \ {vi′k} (12)

or else i′k ∈ Ik−1 and

Bk = (Bk \ {vik}) ∪ {vi′k} Ik = Ik−1 \ {vik} Ok = Ok−1 ∪ {vi′k}. (13)

Consider the first case. Here, we proceed as follows.

(i) By (b), ω̄k−1 agrees with ω̄ on Φi′k
(ω̄). One by one, for each color class

in Φi′k
(ω̄), color each of the vertices of the color class with a distinct

unused color (this can be done recursively, beginning with the leaves
of a spanning tree of the color class, as to not disconnect it) so that
all vertices in these color classes become singleton color classes. This
increases the number of colors used by less than 2t, so we will never
use more than q colors. Call the result ω̄′k−1.
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(ii) By (c) and (8), after completing Step (i), every vertex in V (Φik(ω̄′))
is a singleton color class in ω̄′k−1. Now, one by one, we merge these
singletons (by assigning them identical colors) so that the resulting
coloring agrees with ω̄′ on all color classes in Φik(ω̄). This step only
decreases the number of colors used, so we will not exceed q colors.

The resulting coloring is ω̄k, and by construction satisfies (a), (b), and (c).
In the second case, the analogous steps are:

(i) By (a), ω̄k−1 agrees with ω̄ on Φi′k
(ω̄′). One by one, for each color class

in Φi′k
(ω̄), color each of the vertices of the color class with a distinct

unused color, increasing the number of colors used by less than 2t. The
result ω̄′k−1.

(ii) By (c), after completing Step (i), every vertex in V (Φik(ω̄′)) is a single-
ton color class in ω̄′k−1. Now, one by one, we merge these singletons (by
assigning them identical colors) so that the resulting coloring agrees
with ω̄′ on all color classes in Φik(ω̄).

The steps between phases never increase the number of non-null color
classes by more than 2t, and at the boundaries ω̄k we have φ(ω̄k) ≤ q − 6t
as given in (11), which followed from our use of Lemma 7.

2.6 Bounding the congestion

In the previous section we defined paths Γω,ω′ between any states ω, ω′ ∈ Ω,
with the length |Γω,ω′ | satisfying

|Γω,ω′ | ≤ 2tm2 + 20t ≤ 2n2,

as Phase 0 consumes at most 20t steps, and each of the T =
(
m
2

)
Phases

1,. . . ,T consumes at most 4t steps.
Now, letting E denote the graph of transitions of the Markov ChainM,

we aim to bound the congestion

B = max
e∈E

2|E|
|Ω|2

∑
ω,ω′∈Ω
Γω,ω′3e

|Γω,ω′ | ≤
4n2|E|
|Ω|2

·max
e∈E

#
{
{ω, ω′} | Γω,ω′ 3 e

}
. (14)

Since |E|/|Ω| is polynomial in n, we are particularly interested in bounding
the ratio

maxe∈E #
{
{ω, ω′} | Γω,ω′ 3 e

}
|Ω|

, (15)
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which we bound by the vertex-congestion

maxω1∈Ω #
{
{ω, ω′} | Γω,ω′ visits ω1

}
|Ω|

. (16)

To this end, fix an ω1 ∈ Ω. By the definition of the canonical paths, if ω1 is
visited by Γω,ω′ then

(A) There are ω̄ and ω̄′ which can be reached from ω and ω′, respectively,
from a sequence of at most 10t applications of the maps θκ defined in
Phase 0, such that φ(ω̄), φ(ω̄′) ≤ q − 10t, and such that:

(B) There are sets I,O ⊆ Cm inducing connected subgraphs of Cm with
|I|+ |O| = m−3, such I and O are separated by at least one vertex on
each side, and such that ω1 agrees with ω̄′ on all color classes in Φi(ω̄

′)
for all vi ∈ I, and with ω̄ on all color classes in Φi(ω̄) for vi ∈ O.
(Note that we have |I|+|O| = m−3 instead of |I|+|O| = m−2 because
ω1 can come from the middle of a phase rather than an endpoint.)

(C) From our application of Lemma 7 in our construction of the canonical
paths, these sets satisfy∑

vi∈I
(φi(ω̄

′)− φi(ω̄)) =
|I|
m

(
φ(ω̄′)− φ(ω̄)

)
± E for |E| ≤ 4t,

and thus, by subtracting both sides from φ(ω̄′)− φ(ω̄), also satisfy∑
vi∈O

(φi(ω̄
′)− φi(ω̄)) =

|O|
m

(
φ(ω̄′)− φ(ω̄)

)
± F for |F | ≤ 8t.

(D) We thus have that∑
vi∈I

φi(ω1)− φi(ω̄) =
|I|
m

(
φ(ω1)− φ(ω̄)

)
± E, (17)

∑
vi∈O

φi(ω̄
′)− φi(ω1) =

|O|
m

(
φ(ω̄′)− φ(ω1)

)
± F. (18)

Our immediate task is to bound the number of choices for ω̄ and ω̄′

given ω1. There are less than m2 choices for the sets I and O as in (B).
Then, given I and O, all color classes of ω̄′ in sets Φi(ω̄

′) for vi ∈ I appear
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as color classes of ω1; all that is unknown is the color classes in Φi(ω̄
′) for

vi ∈ Cm \ I. Similarly, all color classes of ω̄ in sets Φi(ω̄) for vi ∈ O appear
as color classes of ω1; all that is unknown is the color classes in Φi(ω̄) for
vi ∈ Cm \O.

Thus we will bound the number of choices for ω̄, ω̄′ by bounding the
choices for the sets

Φi(ω̄
′) for vi ∈ Cm \ I, Φi(ω̄) for vi ∈ Cm \O. (19)

We will do this by first bounding the choices for the slightly smaller collection
of sets

Φi(ω̄
′) for vi ∈ O, Φi(ω̄) for vi ∈ I. (20)

By (8), these sets satisfy the property that no C ∈ Φi(ω̄) for vi ∈ I can
intersect any C ′ ∈ Φj(ω̄

′) for vj ∈ O, and by (7) that the only vertices not
assigned a color class in either collection of sets belong to Vb+∪Vb++1∪Vb−∪
Vb−+1 where {b+, b−} = Cm \ I \O. Thus, after fixing a choice for the color
classes in the sets in (20), the result can be extended to a partition of the
whole graph G by letting the unassigned vertices of Vb+∪Vb++1∪Vb−∪Vb−+1

be singleton classes. Doing so actually gives a valid q-partition of of G, since
this requires at most 4t singleton classes, and by (D), the total number of
color classes in the sets in (20) must satisfy∑

vi∈I
φi(ω̄) +

∑
vi∈O

φi(ω̄
′) ≤ |I|

m
φ(ω̄) +

|O|
m
φ(ω̄′) ≤ max(φ(ω̄), φ(ω̄′))

≤ q − 10t. (21)

This implies that the number of choices for the sets in (20) is at most |Ω|.
∆n gives a crude upper bound on the number of forests in a graph on n

vertices with maximum degree ≤ ∆. In turn this lets us bound the number
of choices for the four sets

Φi(ω̄
′) for vi ∈ Cm \ I \O, Φi(ω̄) for vi ∈ Cm \O \ I. (22)

by ∆2t each, for a total of at most ∆8t choices. Thus in total we’ve bounded
the number of choices for ω̄ and ω̄′ by

m2∆8t|Ω|.

Finally, accounting for Phase 0, the bound in (6) implies that there at most

(∆K/δ)20tm2∆8t|Ω|

choices for the states ω, ω′.
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Figure 3: Partitions of G = G3×` (for ` = 21) into two connected color
classes. There are many more colorings which agree on the boundary vertices
of G with the first and third shown coloring than with the middle shown
coloring, which forms a bottleneck in the chain. In our discussion of this
example, blue is color 1, and red is color 2.

3 Torpid mixing for q = 2

In this section we give an example of a graph G which is a subgraph of the
grid with bounded bandwidth for which the Markov chainM is ergodic, but
for which the mixing time of M is exponential in the number of vertices of
G.

It is simpler to give an example of torpid mixing for the chain operating
on colors rather than partitions, so we do this first. (In particular, for this
example, we will give a bottleneck which separates the set of colorings into
two classes, which are equivalent under interchange of colors; thus this is
not a bottleneck in the partition chain). For this we let G = G3×n be a
3× n grid graph, which has bandwidth 3.

When drawn in the plane in the natural way, the outer face of the k× `
grid graph Gk×` is a 2k + 2` − 4 cycle which we denote by Bk×`. The
connectivity of the color classes implies that the intersection of each color
class ω−1(i) with Bk×` is a path, which we denote by Pi = Pi(ω). In our
examples there will be only polynomially many colorings for which one of
these paths is empty, thus we focus on the colorings where both paths are
nonempty.

We fix a cyclic orientation of the cycle Bk×` (when referring to Figure
3, we will use counterclockwise) so that we can refer to the first and last
vertex of each path Pi in a consistent way.

Focusing now on the case k = 3, let define S to be those states ω ∈ Ω3×`
for which coordinate of the first vertex of P1(ω) is less than the second
coordinate of the last vertex of P1(ω). A representative element of S is
illustrated at left in Figure 3 (note that we show the subgraph of the dual
of the grid corresponding to G, and color its faces).

By symmetry we have that π(S) = 1
2(1 − ρ) where ρ is the probability

that the second coordinates of the first and last vertex of Pi(ω) are actually
equal. In particular, we have that π(S) ≈ 1

2 .
The vertex-boundary ∂(S) of S consists of states for which the second

18



Figure 4: Partitions of G = G4
3×` (for ` = 21) into two connected color

classes. There are many more colorings which agree on the boundary vertices
of G with the first and third shown coloring than with the middle shown
coloring, which forms part of a bottleneck in the chain.

coordinates of the first and last vertex of P1 differ by at most 1 (or: where one
of the paths is empty: a linear-sized set). For these states, the intersection
of each color class with the ‘middle set’ {2} × [`] must also be a path; see
Figure 3, middle. There are only O(`2) such states, while the total number
of states in Ω is greater than 2` (when the top and bottom rows are constant
with different colors, each of the middle vertices can be colored arbitrarily).

Thus π(∂S) = O( `
2

2`
), and the chain has exponential mixing time. (It is not

hard to extend this argument to show that G4×` has exponential mixing
time, although understanding the general Gc×` for constant c already seems
like a challenge.)

The bottleneck we have identified for the color chain separates the chain
into two regions, which are inverted by changing the labels of the two color
classes; thus it does not show a bottleneck for the partition chain.

To show a bottleneck for the partition chain, we define G4
3×`, for ` odd,

to be the subgraph of the ` × ` grid graph induced by the set of vertices
at graph distance ≤ 1 from the middle horizontal or middle vertical. Some
divisions of this graph (for ` = 21) into two color classes are shown in Figure
4. Note that the bandwidth of G4

3×` is at most 12, which can be realized by
a σ which orders the vertices in, say, increasing distance from the central
vertex of G4

3×` (the unique vertex of the graph which is fixed by all of its
symmetries).

We again consider the outer face of the natural plane drawing of G,
which is a 4`− 2 cycle, which we denote by B4

3×`. This cycle has 4 vertices
which have degree 4 in G (the corner vertices of the central 3× 3 square of
the graph); we denote these vertices by b1, b2, b3, b4. They divide B4

3×` into
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four paths; Q1 from b4 to b1,, Q2 from b1 to b2, Q3 from b2 to b3, and Q4

from b3 to b4.
Now for a coloring ω, we let β(ω) be the set of i ∈ {1, 2, 3, 4}, for which

the interior of the path Qi includes vertices of both color. In particular,
letting Pi = Pi(ω) (i = 1, 2) denote the intersection of color class i with
B4

3×` (which is necessarily a path),

β(ω) = {i | Q̊i ∩ P1 6= ∅ AND Q̊i ∩ P2 6= ∅}.

For example, if in Figure 3, Q1 is the “North” boundary segment, Q2 the
“East” boundary segment, andQ3 andQ4 “South” and “West”, respectively,
then the coloring shown at left belongs has β(ω) = {2, 4}, the middle coloring
has β(ω) = {2}, and the coloring at right has β(ω) = {2, 3}.

Observation 10. For all ω, we have |β(ω)| ≤ 2.

Proof. If i ∈ β(ω), then the interior of Qi intersects both P1 and P2. Since
each of P1 and P2 has just two endpoints, and the interiors of the Qi are
pairwise disjoint, there can be at most two such i.

The key point now is that for any distinct i, j ∈ {1, 2, 3, 4}, there are
Ω(2`) colorings in β−1({i, j}); indeed, for the case where half of P1 belongs
to one color class and half to the other, we can freely choose the colors of
the ≈ `/2 “middle vertices”—those that are adjacent to two vertices of this
path. Thus the cases where this is true for both P1 and P2 already gives
Ω(2`) members ω ∈ β−1({i, j}). On the other hand, letting β0 be the set of
colorings for which one of the paths Pi is empty, the set

β−1(i) ∪ β−1(j) ∪ β0

forms a cut set separating β−1({i, j}) from the rest of the Markov chain.
But this set has size O(poly(`)2`/2), showing that the mixing time of the
chain is exponential in `.
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