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PROBABILISTIC ANALYSIS OF A RELAXATION FOR THE
k-MEDIAN PROBLEM**

SANG AHN,* COLIN COOPER,’ GERARD CORNUEJOLS**
AND ALAN FRIEZE**

This paper provides a probabilistic analysis of the so-called “strong” linear programming
relaxation of the k-median problem when the number of points, say #, goes to infinity. The
analysis is performed under four classical models in location theory, the Euclidean, network,
tree and uniform cost models. For example, we show that, for the Euclidean model and
k = o0, k = o(n/log n), the value of the relaxation is almost surely within 0.3 percent of the
optimum k-median value. For the uniform cost model and the same conditions on k, we show
that the value of the relaxation is almost surely 50 percent of the optimum k-median value. We
also show that, under various assumptions, branch and bound algorithms that use the strong
linear programming relaxation as a bound must almost surely expand a nonpolynomial
number of nodes to solve the k-median problem to optimality. Finally, we report extensive
computational experiments. As predicted by the probabilistic analysis, the relaxation was not
as tight for the problem instances drawn from the uniform cost model as for the other models.

1. Introduction. The k-median problem has been widely studied both from the
theoretical point of view and for its applications. An interesting theoretical develop-
ment was the successful probabilistic analysis of several heuristics for this problem (e.g.
Fisher and Hochbaum [8] and Papadimitriou [22]). On the other hand, the literature on
the k-median problem abounds in exact algorithms. Most are based on the solution of
a certain relaxation to be defined later. The computational experience reported in the
literature seems to indicate that this particular relaxation yields impressively tight
bounds compared to what can usually be expected in integer programming. In this
paper we analyze to what extent this relaxation is tight. We perform our analysis under
various probabilistic assumptions and identify conditions under which the relaxation
can be expected to be tight and others under which it can be expected to give a poor
bound. For example, for a classical Fuclidean model in the plane, we show that the
relaxation can be expected to provide a bound within one third of one percent of the
optimum value of the k-median problem. In addition to the probabilistic analysis, we
also report extensive computational experiments, based on the solution of thousands of
medium-size problems. Some of the results predicted for very large problems by our
probabilistic analysis can already be observed on these test problems.

Consider a set X={X,,..., X,} of n points, a positive integer kK < n and let
d;; > 0 be the distance between X, and X; foreach 1 < i< nand1 </ < n (Unless
otherwise specified, it is assumed that d,; = 0, d, j=d;; and d;; < d, + d,, for all
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i, J, k.) The k-median problem consists of finding a set S C X, [S| = k, that minimizes
L/.imin; sd,;. (Here |S| denotes the cardinality of the set S.) The k-median problem
has the following integer programming formulation.

n n
Zpp = man Edijyija (1)
i=1 j=1
n
Yy;=1 fori=1,...,n, ()
j=1
n
ij=k, (3)
j=1
Osyijngsl fori,j=1,...,n, (4)
x;€ {0,1} forj=1,...,n. (5)

In this formulation x;= 1 if X; € S, 0 otherwise and, for 1 < i < n, we can set
y;; = 1 for an index j that achieves min; . ¢d;;.

The formulation (1)-(4) is called the linear programming (LP) relaxation of the
k-median problem. In other words, the LP relaxation is obtained by ignoring the
integrality conditions on x;, 1 <j < n. The optimum value z;p of this relaxation
clearly satisfies z;p < zp. The bound z;p has been used extensively in exact al-
gorithms for the k-median problem. (E.g. Marsten [15), Garfinkel, Neebe and Rao [10],
ReVelle and Swain [23], Diehr [5], Schrage [24], Guignard and Spielberg [11], Narula,
Ogbu and Samuelsson [20], Cornuejols, Fisher and Nemhauser [3], Erlenkotter [6],
Galvdo [9), Magnanti and Wong [14], Nemhauser and Wolsey [21], Mulvey and
Crowder [19], Mavrides [16], Mirchandani, Oudjit and Wong [17], Christofides and
Beasley [2], Beasley [1].)

Most of the computational experience has been reported on test problems with
n < 100. For many of these test problems, zjp = z;p. Recently, Beasley [1] solved 40
larger problems (with 100 < n < 900) and found a small but positive gap zjp — zp for
many of them. The average of (zp — z;p)/z;p Over these problems was 0.0024.

In this paper we analyze the ratio (z;p — zyp)/2;p from a probabilistic point of view
as n goes to infinity, under various assumptions on the probability distribution of
problem instances. We do not address the worst-case analysis of this ratio except to
note that this question was solved by Cornuejols, Fisher and Nemhauser [3], when
d;;<0. The analysis of [3] does not carry over when the d,;’s are nonnegative and
satisfy the distance axioms. In fact, this worst-case analysis is an interesting open
question. It would also be interesting to know the worst-case value of (z;p — 21p)/21p
when the d;;’s are further restricted to represent Euclidean distances. Once again, these
questions are not addressed here as we focus on a probabilistic approach.

We will often write statements like X, < u,, almost surely (a.s.) for a sequence of
random variables (X,) and real sequence (u,). This is a well-defined terminology
of probability theory and details can be found in Stout [25] for example. We
will invariably prove that X%_,Pr(X, > u,) < oo which implies the above statement.
Nonprobabilists will be satisfied that we show Pr(X, > u,) >0 as n - 0. If X, <
u,(1 + o(1)) as. and X, > u,(1 — o(1)) as. then we write X, ~ u, as.

First we study the k-median problem in the plane. When the points X, ..., X, are
uniformly distributed in a unit square and d;; is the Euclidean distance between X;
and Xj, 1 < i, j < n, we show that (z;p — z1p)/21p ~ 0.00284 almost surely, for any k
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such that & < k < n/wlogn where w = w(n) - oo. (In this paper we abbreviate
f(n) > aasn— by f(n)->a)

In a second model, the points X),..., X, are the nodes of a random graph G,(p)
where p is the probability that an edge is in the graph, and d, ; 1s the minimum number
of edges on a path from X; to X;. We assume p > (w log n)/n where w = w(n) - oo
(this guarantees that G,(p) is almost surely connected), and kp? > (w log n)/n. We
prove that (zjp — z;p)/2z;p < 1/(e + 1) almost surely, where e is the base of natural
logarithms. More specifically, if log,n < k < n where b= 1/(1 — p), then Zpp=2Zyp
almost surely. If 2 < k < log,n, kp = « where 0 < @ < o0 and p — B where 0 < B
<1l,define a=eif =0and (1 - B)"'/2if B > 0; then (z;p — z;p)/2;p ~ f(at, B)
almost surely where f(a,8)=(1— (1 — a)*a®)/(1 + a®). (The maximum of this
function is 1/(e + 1) attained when @ = 1 and 8 = 0. When « = 0 or oo the function
takes the value 0.)

We also analyze the k-median problem on random trees and on another model
where it is assumed that the d;’s are independently and uniformly distributed on [0,1].

In §6, we put our probabilistic results in perspective by presenting extensive
computational experiments.

In §7, we show how our results for the k-median problem relate to the simple plant
location problem (SPLP). In the SPLP, the data comprise n points X, X,
distances d;; for 1 <i, j<n, and fixed costs J; associated with each point X,
1 <j<n. The SPLP consists of finding a nonempty set S C X that minimizes
riomin; ed;;+ L jesf; (Note that, in this problem, |S| is not restricted as in the
k-median problem.) An integer programming formulation of SPLP is

n n n
Zjp = min Z E dijyij + Z [/’xj
i=1j=1 j=1

subject to (2), (4) and (5). The LP relaxation is obtained by relaxing the integrality
conditions (5).

In the remainder of this section we state some useful results from the literature. Our
proofs use the following lemma (see Hoeffding [12]).

LemMMA 1. If Y,,...,Y, are independent random variables and 0 < Y, <1 for
i=1,...,n, then, for 0 <e<1,

Pr(Y> (1+e)p) <e™” and Pr(Y < (1 - €)p) < emr2,
where Y = (Z7-\Y;)/n and p is the expected value of Y.

Given a vector x = (x; j=1,..., n), define
n n
zip(x) =min }] )} 4
i=1j=1

n
Yy;=1 fori=1,..n,
j=1

Ogyijsxj fori, j, =1,...,n.

Note that z;, = min z;p(x)
ij=k, 0<x;<1 forj=1,...,n.
J

The following lemma is well known in the k-median literature and is easy to prove.
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LEMMA 2. An optimal solution y = (y,;: i, j=1,...,n) of z;p(x) is obtained as

follows. For each i, sort the values dJ j =1,.. n sothatd;; , <di iy < -0 <
d;; i and let p be such that Tir-)x, <1 < Zi ) )Xk
Then
xj forj:jl(i)""7 jp-l(i)v

Jp-1(0)
yij={1= X x, forj=j,(i),
h=j(i)
0 forj =j,1(i),..., ju(i).

ProoF. The program z,;(x) separates for each i into a linear program with upper
bounded variables and a single constraint. =

Let d; = L}.,d;;y;; where the values of y,; are those defined in Lemma 2 and x
satisfies (3) and 0 < x < 1. Note that x;p < L7.,d, since this bound is derived from a
primal feasible solution. This bound will be used repeatedly in our proofs where it is
computed for the vector x defined by x; = k/n for j=1,...,n

The dual of the LP relaxation is

n n
sz=maXZu,-—Zvj—kw
i=1 j=1

-t

u; = t;

g<d;; foralli, j,

ij
(6)
Yt —v—w<0 forall j,

i=1

v; 20 foralli, j.

1’

For any given vector u = (u;: i = 1,..., n), define

p;(u) = Z‘,(u,.—a',-j)+ forj=1,...,n

i=1

where a* denotes max(0, a). Let zp(u) = Xi. u; — kmax;_,  ,p;(u).

LEMMA 3. z(p = zp(u) for any vector u.
PrROOF. It can be checked that, for any given u, a feasible solution of (6) is
obtained by setting ¢,; = (¥, — d,;)*, v;= 0 and w = max;_ aPj(u). ®

.....

2. The Euclidean model in the plane. This section is concerned with the following
Euclidean model: n points Xj,..., X, are chosen independently and uniformly at
random in the unit square S, = [0, 1] The distance matrix is given by d, = 1X = X
for 1 < i, j < n where || - || denotes the Euclidean norm. We assume that

k= oo and n/(klogn) = . (7)

The following theorem was proved by Papadimitriou [22].

THEOREM 1. Under the above conditions, z;p ~ (0.3771967...)n/ Yk a.s. where
V2/(3V3) (& + Llog3) = 0.3771967..
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This result was obtained by comparing z;p to the value z. of finding & points in
X={X,,..., X,} that minimize the sum of the distances to a continuum of points in
the unit square. Papadimitriou showed that, when (7) holds, z; ~ z. almost surely.
Actually, he used a weaker notion of probabilistic convergence, but Zemel [26] showed
that almost sure convergence holds as well. It should be pointed out, however, that the
continuous problem yielding z is very different from the LP relaxation. In fact, for
the LP relaxation, we prove

THEOREM 2. Under the above conditions,
Zpp~ Ln/\/l? a.s
P~ 3 = -5

where 2/(3Vm) = 0.3761264 ... .

Our method of proof consists of conjecturing a near-optimal solution to the LP
relaxation and a near-optimal solution to its dual. Then we show that, almost surely,
these lower and upper bounds on z;p are the same, up to small order terms. The
probabilistic arguments are based on the estimates of the tails of the binomial
distribution given in Lemma 1.

The proof of Theorem 2 will actually provide a constructive way of obtaining an
upper bound z,p(x) and a lower bound zp(u) on the optimum value of the LP
relaxation of the k-median problem.

COROLLARY 1. Let x;=k/nforj=1,...,nandu,= vk/m fori=1,..., n. Then
zp(u) < z1p < z1p(x) and, under condition (7),

zp(u) ~ zyp  almost surely,
2 p(x) ~ z1p  almost surely.

In addition, in [22], Papadimitriou gives a heuristic which almost surely provides a
solution with value z,, ~ z;,. The complexity of the heuristic is O(n log n). Combining
this result with the fact that z,,(u) can be computed in linear time, we have a very fast
procedure which will almost surely

(1) find a solution with a value close to the optimum,

(ii) prove that the value of this solution is within 0.3% of the optimum.

Finding the exact optimum is much more expensive as will be shown in Theorem 3.
But first we give the proof of Theorem 2.

PROOF OF THEOREM 2. To obtain a probabilistic upper bound on z, p, we are first
going to consider the LP solution x ;=k/n for j=1,...,n and the values of Yij as
defined in Lemma 2. Let d, = Xl d;yfori=1,..., n. We must get a probabilistic
estimate of d; for i = 1,..., n. Let € = ((k log n)/n)'/3, r = (1 /kw(1 — €))'/? and let
S, be the square [r,1 — r]2. We show first

2
pr(d,. > A= (1 +o()Ix, € s,) < 26/ (8)
4 2
Prid. > 1+0(1))|X, &S, | <2e%n/%, 9
(4> Sa= (4 o)X & ) < 27400 ©)

If X, éS,, then a circle C; of radius r centered at X, is entirely contained in So- The
number N of points lying in this circle stochastically dominates the binomial B(n, wr?)
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(since X; € C;). We define independent random variables W), j=1,2,...,n as
follows:
Let

_ {d,.j if X;eC,

J 0 otherwise.

We note that E(W,) = 2ar*/3 (j # i). If N > [n/k] then

ZW

J=l

Now, by Lemma 1,
n 2 —ennrt 2
PiN<|7|)| =P (N<(1-¢)nmr?) <e 2,
k

Furthermore, if W; = W,/r €[0,1], then by Lemma 1,

JZ

n
Pr( Y Wz(+e)(n-1)=3 Cul ) < e~ (E/Nn=Danr?/3)
Jj=1

and (8) follows.

To prove (9), we note that if X, € S, — S,, we can at worst find a quadrant of a
circle centered at X; with radius 2r and contamed entirely within S,. The area of this
quadrant is w(2r)2/4 and we apply the same method as above with E(W) = 4ar3/3.

We are now ready to bound z,p.

zip< Ldi= Y di+ Y d.

i=1 XES, XESH-S,

By Lemma 1,

Pr{|X N Sl < n(1 = 2r)’(1 - €)} < e=(@/AnA=20))
and thus

Prlzae> 1+ o()((1 - 20)ng + (1= (L= 2= )

< (2n + 1)e=@¢/N/0

giving

zip < (1 + 0(1)) 35:—” almost surely. (10)

To obtain a probabilistic lower bound on z; p, we consider the dual problem (6). Let
u;=r fori=1...n Then by Lemma 3

rir> =k £ (1= 4,)"). (1)

i=1 i=1

For fixed j, consider random variables U, = (u; — d;;)™.
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Setting u, = r we find E(U;) = #r®/3 for i + j and X; € §,, whereas these values
decrease for points X; € Sy — S, Rescaling U to [0,1] and applying Lemma 1 to
X; € S, we find

n 3
Pr(z U>(1+e)F

i=1

) < e (€/Nn/k)

and thus for k = o(n/log n) we have

n 3
Max(z U,.) <(1+e)m;r as.
J

i=1
giving

zip2nr— (1 + e)knar’/3 = (1 - o(l))% a.s. (12)
Combining this with (10) yields the theorem. =

One might expect then that an LP-based branch and bound procedure performs
well, since z; , provides a good bound. However, we can prove

THEOREM 3. . Assume k/logn — o0 and n/k?logn - .

Then there exists a constant & > 0 such that a branch and bound procedure that
branches by fixing a variable x ;10 0 or 1 at each node of the search tree which is not
prukned and uses the LP bound to prune the search tree will almost surely explore at least
n*“ nodes.

PROOF. Each node of the branch and bound tree is associated with two sets J, and
Jy where J, = (j: x; is fixed at t in the associated subproblem} for ¢ =0,1. Let
z1p(Jo, Jy) denote the LP bound computed at this node, i.e. the value of z, , when we
make the restriction x =1 for j €J, t =0,1. We prove the theorem by showing that
for some constants 8,y > 0 (to be determined) the following holds almost surely:

ForanyJy, J, € {1,..., n} such that

JoNJy =2, |J)|< Bnsklogn, 1l < vk, we have (13)

2i0(Jp, ) < 0.3769%.

For then we almost surely have to branch at every node in which |Jy| < Bn/k log n
and |J)| < vk even if we have an optimal solution of the integer program as our
current best solution—by Theorem 1. -

This implies that the algorithm must explore at least

Bn/klogn] + |vk] = n?d-oMk podes. (14)
| vk]

To verify (14) imagine that setting x; = 0 means branching to the left and setting

x; =1 means branching to the right. (13) implies that our tree contains a copy of all

possible paths which make |yk| right branches and Bn/k log n| left branches. The

number of such paths is precisely the left-hand side of (14).
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Let F denote the family of such pairs Jp, J;.
Thus let Jy, J; € {1,..., n} be disjoint, J = {(j € JyUJ,}, i=|J|, and k = k —
|/3]- Consider the following solution to the associated linear program.

0 ifjel,
ks if jel.

The values of y;; are then defined as in Lemma 2, but only using j € J to form the
sequence jy(i), jo(i),..., J;(i). This choice of y;; is feasible although usually not
optimum. However this is sufficient since we only need to compute an upper bound on
21 p(Jy, J1)- We can assume w.l.o.g. that |Jy| = | Bn/k log n| and |J;| = | vk]. Let ¢ > O
be small and r = {/1/(1 — €)7k and proceed as in the proof of Theorem 2, defining
variables W,, W,,... W; for each i. We find that for ¢ < { and n large

2n ) S
Pr| z,0(Jy, ;) > ——=1(1 + 3¢)] < (2n + 1)e~2¢7/%,
(100, 2) > 714 30)) < 2n 4 1)
Since |F| < nfn/klogn+vk we find
Pr(H(Jo, J)eF: zip(Jy, 1) > ﬂ_—(l + 3e)) < (2n + 1)nPr/kiogn+vkg=2¢5/%
3k

Taking 8 = €2/5, ¥ = € and e sufficiently small that 2(1 + 3¢)/3y7(1 — ¢) < 0.3769
yields

max{ zyp(Jp, %) : (S, /1) E F} < 0.3769% almost surely.

Any a < y can be used to give the theorem. =

3. A graphical model. This section is concerned with the following graphical
model. Let G be a random graph with n nodes, where each edge occurs independently
with probability p. Let X,..., X, be the nodes of the graph and 4;; the minimum
number of edges on a path joining X; to X; for 1 < i, j < n, where the minimum is
taken over all paths joining X; to X;. Thus d,; is the shortest distance between X; and
X, assuming that all edges have length one.

Let g=1—p and b=1/q. The main result of this section is the following
theorem.

THEOREM 4. (a) Consider (1 + €) log,n < k < n, where € > 0 is fixed.

(i) If n**®p — oo for all 8 > O fixed, then z,p = z;p almost surely.

(ii) In general, we only have lim,_, Pr(zyp = z;p) = 1.

(b) Consider 2 < k < log,n and p min(1, kp) > (w log n)/n, where w — 0. Then
(21p — z1p)/21p < 1/(1 + ) almost surely. In addition, if we let kp — «, 0 < a < o,
andp = B,0 < B <1, where a and B are fixed, then

Zip—zip _1- (1-a) a
Zp 1+a”

almost surely,

wherea=ceif B=0and 1 - B) 2 if B> 0.
See Figure 1.
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.
1+a

) 1 a:lim kp
n-e0

FIGURE 1. (zjp — 2p)/zjp as a function of kp when 2 < & < log,n.

PROOF OF THEOREM 4(a). This part of the theorem is a careful phrasing of a known
result and is easy to prove. As d,; > 1 for i # j, we must have

Zp2zip2n—k. (15)

(1) follows from (15) if we can show that z;, = n — k almost surely.

But z;p = n — k if and only if there is a set K C X, |K| = k, such that, for any
X; € X — K, there exists X; € K such that X, and X; are joined by an edge of G,( p),
ie., K is a dominating set.

Let m=[2/e] and K;= {X; 11,.... Xy} for i=1,2,...m. If none of
Ky, K5, ..., K,, are dominating then one of the following events occurs:

Eo={31<r+#s<mand X, € K, such that X; is not adjacent in G,( p) to any
vertex of K},

E,= N[ Fwhere F,= (3X,€ X — U jLiK; such that X; is not adjacent in G,( p)
to any vertex of K }.

Now
Pr(E,) < m*(1 - p)*
< mzkn—(1+<)
m?log n log n
n1+<,g,p aslog,n < —=
= 0(n~4*</D) by assumption.
Furthermore,

Pr(E,) = []Pr(F,) since the F, are independent,
i=1

< ((n — km)(1 —p)k)m
<noem

<n?

and (i) follows.
(i) Pr(KX, is not a dominating set) < (n — k)(1 — p)*<n > 0. mw
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Our proof of Theorem 4(b) will use the next two lemmas.

LEMMA 4. Consider 1 < k < log,n. Assume p min(l, kp) > (w log n)/n, where w
— oo. Then

zp=(1+0Q))(n—-k)1+q*) almost surely.
PrOOF. For K C X, let N(K) be the neighbor set of X, i.e.
N(K) = { X; € X — K: there exists an edge joining X;toanodeof K }.
We have

Zip > lg}ifk(lN(Kﬂ +2(n - k= |N(K)))

=2n—-k) - K)|
(n - k) max [N(K)|
We prove the lemma by showing that
Ix’?IaJiW(K)l =(1+0(1))(n-k)1-q*) almostsurely, and (16)

zp=(1+ o(l))I;(nli_Pk(|N(K)| +2(n— k- |N(K)|) almostsurely. (17)

Consider a fixed K C X, |K| = k. The quantity |N(K)| is distributed as B(n — k,
1 — g*). Thus, by Lemma 1, for any small € > 0

Pr[|N(K)| < (1 — €)(n — k)(1 = g*)] < e~ i¢tr=001~4" anq
Pr[IN(K)| > (1 + €)(n — k)(1 — g¥)] < e~ 3'tn-R0-a",

Thus we have
Pr[ max IN(K)| < (1= )(n = k)(1 = ¢)] < e7drmm-a), (18)
- _ gk N\ -i-ka-g%
Pr[lrl?'i)ilN(KH >(1+e)(n-k)1-g¢ )] < (k)e . (19)

To obtain (16) we put € = 2((k log(n/k))/(n — k)1 — g¥)). We can use (7)<
(ne/k)* in (19). Then the right-hand sides in (18) and (19) both go to 0 sufficiently
fast. Thus (16) is proved, provided that ¢ < 1.

We consider two cases. Let 0 < a < 1 be a constant.

When kp < a, ¢¥ = (1 - p)* =[(1 — p)?1* < (1/e)*? < 1 — kp + (kp)?/2. So

[ < klogn N
4 = (n—k)kp(1 — a/2)

0

since (log n)/np — 0.
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When kp > @, g*=(1 - p)* < e * ge @< 1. So

€2 k log%

I<-na-e9 "

since (log x)/x — 0 when x — co.
This completes the proof of (16).
To prove (17) it suffices to show that,

almost surely, every node in X — K, is joined by a path of length
< 2'to at least one node of K, where K, = { X;, X,,... X, }

(20)

The events
A(j) = { X; is joined to K, by an edge},
B(j) = { X; is joined to X, viaanode X, + X,, X, & K, )
are independent for fixed j because they have no edges in common.
Pr(4(j)) =1~ (1-p)*=p,, say
Pr(B(/)) =1- (1~ ppp)" ",
Hence, if N is the number of nodes not within distance 2 of K 1» then
Pr(N > 0) < (n = k)(1 - p)“(1 = pop)" !
< (n= k)1~ pop)"”
< ne="=Dpop_
If kp > 1 then py > 1 - e™! and so Pr(N > 0) < n™*/? using p > (w log n)/n.

If kp <1 then (1-p)*<1~kp+k??%/2 and hence p,> kp/2 and then

Pr(N > 0) < n™“/? using kp® > (wlog n)/n. This proves (20) and therefore (17) and
the lemma. =

LEMMA 5. Consider 2 < k < log,n. Assume p > (w log n)/n and kp? > w/n where
w — o0. Then

zip = max(n — k,2n — nkp(1 + 0(1)))  almost surely.

J )

PROOF.  Given a node X;, let Ny(i) = {X;: d;; = 1} and N,(i) = {X;:d;;=2}).
First we give probabilistic estimates of |N,(i)| and |N,(i)}. We will show

min|N,(i)| = (1 — o(1))np almost surely, (21)
max|N;(i)| = (1 + o(1))np almost surely, and (22)

miinlNz(i)| > min(%,(l - o(l))nq) almost surely. (23)
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Note that |N,(i)| is distributed as B(n — 1, p). So, by Lemma 1,

Pr(min|N1(i)I <(1-¢€)(n- 1)p) < ne~¢tn=1p
4
Pf( m?XlNl(t)l 2 (l + t)(n - l)p) < ne—st (n—l)p'

Putting e = 3(log n/(n — 1) p)'/? yields (21) and (22).

Now consider |N,(i)]. We will assume p — 0 (otherwise N;(/) is a dominating set by
Theorem 4(a), and (23) follows). Conditional on |N,(i)|, the quantity |N,(i)| is
distributed as B(n,, p,), where n, =n — |[Ny(i)] = 1 and p, =1 — (1 — p)IM®I By
Lemma 1,

Pr{min|N,(i)| < (1 = €)n; p,) < ne™ iz,
!

Set ¢ = 3(log n/n, p,)"/2. We have to show e < 1. Note that n, = (1 — o(1))n and
=1 - (1 — p)d+edimp 5 1 — g=(+oInP* gimost surely.
If np? > 8 > 0 where § is fixed, then

~m

_i log n N
4 = (1+0Q))n(1-e79)

If np? = 0(1), then

()

2 logn 1 (logn)\?
T~ nzpz a logn( np ) - 0.

So we have just shown that, almost surely,
minlNy (1)1 > (1 - () py.

Next we will use the fact that kp? > w/n to show n, p, > n/k almost surely.

If np? > 8,0 < & < 1 fixed, then almost surely n,p, > (1 + o())n(1 — e™%) > n/k
for k > 2 and 8 close enough to 1.

If np2 < 8 <1, then 1 — e~ Ao 5 pp2(1 — pp?/2). So

n,p, > (1 +0(1))n?p (1 - —) 1+ o(l)) T (1 - 8) % almost surely.

This completes the proof of (23).
Now we are ready to get a probabilistic estimate of z,_p First we obtain an upper
bound by considering the solution

x;= - forj=1,...,n and y, defined in Lemma 2. (29)

Let 8 = min,|N,(7)| be the minimum degree of G,(p). Note that, if § > n/k — 1,
then 2z, = n — k. For, using the solution (24), we have d;, = ¥7_,d,;y,, = 1 — k/n for
i=1,..., n. On the other hand, if § < n/k — 1, then

d < a+2k(z-1—s)
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(;; only takes positive values for points X; at distance one or two of X; since, by (23),
the number of points at distance 2 is at least min(n/k, (1 — o(1))ng) which is more
than the n/k — 1 — § points needed.) Therefore z;, < nXl_,d; < 2n — ké, almost
surely.

To obtain a probabilistic lower bound for z,, we consider the dual bound given by
Lemma 3. We put u;,=2—1/n for i=1,...,n and let A denote the maximum
degree of G,(p). Then

Zip > n(2 - %) - kA(l - %) =2n— (1 + o(1))nkp almost surely.

This completes the proof of Lemma 5. =
PROOF OF THEOREM 4(b). It follows from Lemmas 4 and 5 that

Zip T Zip _ (1 +¢*) — max(1,2 - kp)
Zip 1+ 4*

_ ¢ - -kp)”
gc+1 ’

almost surely

Setting a = (1 — p)~'/? and kp = a, we get

Zp 1+ a*

almost surely.

It is easy to check that the maximum of this function is achieved when p—0and
a =1.Thenits valueis 1/(1 + ¢). =

An interesting range of parameters which is not considered in Theorem 4 is the case
2<k<log,n and p > (wlogn)/n > kp* where w — . In this range, the expres-
sions for z;p and z;, are more complicated than those found in Lemmas 4 and 5.
However we conjecture that (z;p — z;p)/z;p = 0 almost surely.

In the range covered by Theorem 4(b), it is easy to identify conditions under which
the ratio (zp — zp)/z}p is almost surely bounded away from 0. For example, consider

e<kp<l/e, k>2 and (25)

((wlogn)/n)*<p<1—-e (26)

where w > o0 and 0 < ¢ < 1 is fixed.
Then

k 1
klogb=klog(1+ lfp)g lfp <=

€2’

So, for n large enough, k < log n/log b = log,n. Therefore, by Theorem 4(b), there is
a fixed value f(e) > 0 such that
Zip

Z—TZLP > f(e) almost surely. (27)

In addition, we can show that, under these conditions, a branch and bound
algorithm based on the LP bound z;, almost surely requires close to complete
enumeration.
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THEOREM 5. Assume (25) and (26). A branch and bound procedure that branches by
fixing a variable x; to 0 or 1 at each node of the search tree which is not pruned, and uses
the LP bound to prune the search tree, will almost surely expand at least n®—°W)Xk-2)

nodes. (The number of feasible solutions of the k-median problem is (:) = p=ok)

Proor. We first note that, under the above assumptions, ¢ < k logb < 1/¢2 and
therefore

e Vi< qgkge. (28)
In addition, the assumptions of Lemma 4 hold and k = o(n!/2) so that
zip> (1 —0(1))n(1 + ¢*) almost surely. (29)

Let z;p(Jp, J;) be the LP value of the subproblem where J, = {j: x; is fixed to 0}
and J; = {j: x; is fixed to 1}.

Let « < 1 and B > 0 be fixed. We prove the theorem by showing that, for 8 chosen
small enough, the following property holds almost surely.

(30) For any J,, J; € {1,2,...,n} such that JynJ, = @, |Jy| <[Bn] and |J}| <
[ak],

z21p(Jo, 1) < 2pp. (31)
This implies that the algorithm must explore at least
[B"] + [ak] Bn ok — . (l-o())ak
( [ak] > (E) =n nodes. (32)

To verify (32), imagine that setting x; = 0 means branching to the left and setting
x; = 1 means branching to the right. (30)-(31) imply that any tree contains all possible
paths which make [ak] right branches and [Bn] left branches. The number of such
paths is precisely the left hand side of (32).

We now turn to the proof of (31). As increasing J, or J; only serves to increase z;p
we can restrict our attention to |Jy| = [Bn] and |J;| = [ak].

Using Lemma 1 we can easily prove that the following holds almost surely for

G,(p):
(») Jc {1,2,...,n} and |J| = [ak] implies

(33)
IN(J)| > (1 - 0(1))n(1 - g%) (see (18)).
Furthermore, it is easy to see that
diam(G,(p)) =2 almost surely, (34)

where diam refers to the diameter of G,( p).
Indeed

Pr(there exists i, j € {1,2,..., n} such that i, j are not joined by a path of length 2)
n n-2
< (2)(1 -p?)
< nZe~(-2F

< nZe—(ulogn)(n—Z)/n - 0.
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Thus (34) is proved (Pr{diam(G,(p)) = 1} = p(z)—> 0). To obtain an upper bound
on zyp(Jy, J;) let

0 ifjed,
y if j&eJUlJ,

where y = (k — [ak])/(n — [Bn] — [ak]).
The values for y,; are then chosen as follows:
i€Ji:  y;=land y;=0, j+i
i€ N(Jy):y,=1and y; =0, j+#t, where ¢ is a node of J; N N(i).
i € J, U N(J,): the values are as defined in Lemma 2.
With this solution we find, using (34) that

d;=0 ifieJ,
=1 if i € N(J,),

<y(8-s)+201-v(6-5)) ifies, UN(),

where s; = |N(i) N Jy|, 8 is the minimum node degree and A is the maximum node
degree in G,( p).

To compute an upper bound on z;p, we will distinguish between the cases y6 < 1
and yé > 1.

First assume that y§ > 1. We use the bound d; < y(8 —5,) + 2(1 — (8 — 5;))
<1+vs,.

zip < IN(J)|+ Y (Q+vs)
i€JUN(J)

< IN(I)I+ n = IN(J)| + YAl

=n+ %])—pn%—o(rz).

Since kp is bounded above by a constant as a consequence of (25), we simply choose 8
small enough to get our bound on z; . Then (31) follows from (28) and (29).

Now assume that y§ < 1. We use the bound d; < y(6 — 5;) + 21 — y(8§ — 5,)) = 2
- v8 + vs,.

z2ip < IN(H)| + Y @-vs+7ys)
i€JLUN()

= N()|+ 2 = ¥8)(n = IN(J})]) + YAl

= (2-v8)n — (1 - ¥8)IN(J})| + yA| Sl

< [1 + ql""l(l - kl__Iaé‘]p + B(kl__[gk])p n + o(n)
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where the last inequality follows from the relations
IN(DI > (1= o(1))n(1 - g'*4),

v = (1 +om) il

= (1 + o(1))np.
Therefore
m,
Zip— Zp 2 [‘Ilakl((l -p) -1+ mp) - _pB (1 - q[akl)]" + o(n)
where m = k — [ak]. Note that y§ ~ mp/(1 — B) < 1 implies mp < 1.
Next we show that S, =(1 —p)" -1+ mp is bounded below by a positive

constant. This will imply that z;; — z;p > 0 by choosing B small enough.
We assume that « is chosen so that &« < 1 — 2/k. This implies m > 2. Now

Sp=S,1+p(1-Q-p)"")

> S,y +p(1—e7tmmV7)
m—1

285 +p Y (1-e¢-0p)
i=3

> p*+p(m— |m/2])(1 - etm/217Dp),

If k is fixed, then p is bounded below by a constant as a consequence of (25).
Therefore S, is bounded below by a constant.

If Kk > oo, then m ~ (1 — a)k. Thus mp and hence S,, is bounded below by a
constant using (25).

This completes the proof of (31). Note that (32) and the condition a < 1 — 2/k
imply the bound n®~°®*=2) announced in the statement of the theorem. m

In [4], a different graphical model is associated with the variation of the k-median
problem known as the k-plant location problem. The k-pIant location problem is
defined using two sets X = {X),..., X,} and Y = (Y,,..., Y, }. The quantity d;;
defined for each 1 < i< m and l < Jj<n. The problem consists of finding a set
S € X, |S| = k, that minimizes 2,_1m1njesd

A k-plant location problem arises from a graph G by defining X as its node set, Y as
its edge set and d,; = 0 if X; is incident with Y, 1 otherwise. (The problem is to find k&
nodes that cover the maximum number of edges of G.) It is shown in [4] that z;p = z,p
almost surely when G = G,(p) is a random graph with 0 < e < p < 1 — ¢, € fixed, and
k < n® a <1/6 fixed.

4. A tree model. This section is concerned with the following tree based model:
we are given a random tree 7, with node set X = { X,,..., X, } where each of the n"~2
different trees is equally likely to occur. The distance d, ; is the number of edges in the
unique path from X; to X; in T,. This section contains a probabilistic result (Theorem
7) and a deterministic one (Theorem 6).

Kolen [13] proved that z = z;, for every SPLP defined on a tree. For the
k-median problem, this equality does not always hold as shown in Theorem 6. In fact

-

T
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we show in Theorem 7 that, for random trees on n nodes, the number of values of &
such that z;p # zpp is almost surely at least cn, for some constant ¢ > 0.

THEOREM 6. (a) For k =1or k > |(n — 1)/2|, z;p = zyp for every tree on n nodes.

(b) For 2< k<|(n—1)/2), and n + 8, there is a tree on n nodes such that
Zp # Zyp.

(c) There is an infinite family of trees such that (z;p — z;p)/2;p = (kK — 1)/2k.

It would be interesting to perform a worst-case analysis of the k-median problem
and its LP relaxation on trees. We conjecture that the ratio (k — 1)/2k found in (c) is
the worst-case bound.

PROOF OF THEOREM 6 For the 1-median problem, it is well known that z;p = z,p
for every choice of d;;, 1 < i, j < n. For example, this result appears in Mukendi [18].

When k > |n/2), z;p = zu, =n — k follows from the fact that every tree on n
nodes has a dominating set of cardinality at most [n/2]. (A tree is bipartite and a color
class dominates it.)

To complete the proof of Theorem 6(a), 1t suffices to consider the case where n is
even and k = n/2 — 1. By induction, one can show that the only trees which do not
have a dominating set of size k are constructed inductively from a path with 4 nodes
* by adding paths P, = (v}, v, v3) where v} is one of the nonleaf nodes of the current
tree and v}, v} are two new nodes. (See Figure 2(a).) From the construction z;p = n —
k +1=n/2 + 2. Using the dual values u; = 2 if X; is a leaf, 1 if not, Lemma 3 yields
zyp > n/2 + 2. Therefore zp = z; 5.

To prove Theorem 6(b) when n is odd, consider the tree of Figure 2(b). Let
p=(n—1)/2. An optimal solution of the k-median problem is to take S =
{ X1 X5, Xy, X5 -5 Xyk—1y}- Then zpp = 3p — 2(k — 1). We get a feasible solution
of the LP relaxation by setting x; = (p — k)/(p — 1) and x,, = (k = 1)/(p — 1) for
i=1,..., p. This yields z;p < (3p> — 2pk — p + k — 1)/(p — 1). Therefore z;p —
z1p > (k= 1)/(p = 1) > 0.

To prove Theorem 6(b) when n is even, n # 8, we first consider the case k& > 3. Add
anode X,,,, adjacent to X;, to the tree of Figure 2(b). Then it is optimum to choose
X,, in S and we can also choose x,, = 1 in the LP solution. Removing X,,, X,,,,
and X342, We are back to the case where n is odd and k > 2. Now consider the case
n > 10 even and k = 2. Add three nodes to the graph of Flgure 2(b), namely X, ,.;
adjacent to X,; for i = 1,2,3. Then z;p = 3p + 3 but there is a better LP solunon
namely x, = 1 and x, = x, = xs = 1/3. This yields z;, = 3p + 1.

—

@) (b} {c)
FIGURE 2
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Finally, to prove Theorem 6(c), consider the tree of Figure 2(c). The node X, has
degree k + 1 in the tree. Each branch incident with X, contains b nonleaf nodes and /
leaf nodes where b — oo, { = oo and [/ grows much faster than b. We denote by
X,, ..., Xi4 the (k + 1) nodes of the tree which are incident with leaves. Then, an
optimal solution of the k-median problem is { X;, X5, X;,..., X, }.

z2ip = (k = 1)1+ 2(b + 1)I + O(kb?)

where the last term accounts for all the nonleaf nodes. Ignoring the lower order terms,
r4 1P -~ 2b1.

To get an optimal LP solution, set x, = 1/k and x; = (k — 1)/k for j=2,...,
k+ 2.

2p = (k+ DEEZL + (k4 Dix(b + D + 0(k7), i,
zLP -~ i-;c-_l_bl.
Therefore
Zip = Z1p 2-(k+1)/k k-1
Zip 2 =2 - "

In the next theorem we consider all the k-median problems defined on a tree, namely
all 1 < k < n where n is the number of nodes in the tree.

THEOREM 7. Let T, be a random tree. There exists a positive constant ¢ such that,
almost surely, zp # zyp for at least cn different values of k.

 To prave this theorem we need a lemma (Lemma 6 below). Consider a random tree

T, = (V,, E,) and a fixed tree T = (V, E). Let v € V. We say that T, contains a copy
of T suspended at v if there exists ¥’ € ¥, such that

(35) The subgraph of T, induced by ¥’ is isomorphic to T under a mapping
o V-V

(36) There is a unique edge of 7, with exactly one end, say ¢/, in V" and, in
addition, v’ = ¢(v).

Let m = |V| and a = the number of automorphisms of 7. Then m!/a is the number
of distinct labeled graphs on m nodes which are isomorphic copies of T.

LEMMA 6. Almost surely T, contains at least (1 — o(l))(n/e"'a) copies of T sus-
pended at v.

ProOF. Let N be the number of copies of T suspended at v contained in 7,,. Now
for a fixed copy of T on a set of m nodes, there are (n — m)"~m~1 ways of choosing a
tree on the remaining n — m nodes and then joining it to v. Thus

E(N) = (":l)(ml/a)(n _ m)n—m—l/nn—z
~n/e"a.

Using the Markov inequality Pr(Y > a) < E(Y)/a with Y = (N — E(N))*, E(Y)=
p, and a = X%, we get the Pearson extension of the Chebychev inequality:

: 1
Pr{|N — E(N)| > M{*} < ik
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In terms of factorial moments p, is given by
Ba= B = 4rmbp + OBk — 3phy
+6pp) — 120k + 60y
+Tuy — 4y
i

where p; is the ith factorial moment:

= e (2 S -y
U (m) (n—imy\ @) a2 '
We find
_ 2 - 2 - 2
P‘[Z] = P‘%l]e 2m/n+0(Q1/n ), #[3] = I"‘?l]e 6m/n+0(1/n )’ Ba= #?l]e 12m/n+0Q1/n ),

In the expression for p, above, the first row is the powers of n*. When we evaluate this
row we find that terms in 1 and 1/n of the exponentials disappear simultaneously,
leaving a term in pf,,0(1/n?), i.e. O(n?). Similarly in the next row (powers of n*) the
terms in 1 of the exponentials disappear simultaneously leaving ;:.:[‘1]0(1 /n), i.e. O(n?).
The last two rows are O(n?).

Thus g, = O(n?) and setting A = n<** gives

w0+ 05| 0) = of ).

This completes the proof of Lemma 6. =

PROOF OF THEOREM 7. Consider the fixed tree T given in Figure 3. Let S, be an
optimal k-median solution in T,. We will let k increase from 1 to n. Consider any
copy of T suspended at v contained in 7, say (V’, E’). Note that, if [V' N S,|> 1,
then v’ = ¢(v) € §,. This implies that there exists a K such that for k > K, V' N S|
is a nondecreasing function of & which goes from 1 to 15 (= m).

Let zpp(V') =L, cpmin;c5d;;. When [V’ N S| =3, an optimal set V' N S, is
{v, X}, X,} with z;p(V’) = 14. However, consider the fractional solution x, = x, = x;

FIGURE 3
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=x,=13, X; = 1 for the variable associated with node v, and x; = 0 for the other
nodes of V”. Let y,; be defined as in Lemma 2 and z;p(V’) = L, ¢ y-d;;y;;- The above
fractional solution yields z; ,(¥*) = 13.5 and therefore, when |V’ N S;| = 3, zjp > z{p.

Since 7, contains almost surely at least (1 — 0(1))n/e™a copies of T suspended at v,
there are at least as many values of k for which z;p > z;p. =

5. The uniform cost model. In this section, we look briefly at the model where the
d;;’s are drawn independently from the [0, 1] uniform distribution, 1 < i, j < n.

Here we do not assume d;; =0, d;; =d;; ord;; < d;;, + d;;, as we did in the other
models. The quantity d,; is interpreted as the cost of assigning X; to X,.

The main result of this section states that, when k > n(e — 1)/e, then zp = zp
almost surely, and when k = o(n/log n), then (z;p — z,p)/21p ~ (k — 1)/2k almost
surely. The analysis is made possible by the fact that, in those ranges, the k-median
problem is almost surely trivial to solve exactly or approximately. (When & >
n(e — 1)/e there is an obvious optimal solution, and when k = o(nlogn) every
solution is close to optimum.)

THEOREM 8. (a) Suppose k = o(n/log n). Then
zip~ n/(k + 1) almost surely,
zyp ~ n/2k almost surely.
(b) Suppose k = (1 + o())n(e — 1)/e. Then
zip = zyp almost surely.

PrROOF. Let S be a fixed set of size k. If we take x; = 1 for j € S as our solution
to the integer program, then the d; = min; . cd;; are independently distributed as the
minimum of & uniform [0,1] random variables, i.e. Pr(d; > a) =a* for 0 < a< 1,
and hence E(d;))=1/(k+ 1) fori=1,...,n.

We first consider k = O(n'/%). Applying Lemma 1 to D =d, + --- +d,, we have

Pr(|D — n/(k + 1)| > en/(k + 1)) < 2e~<n/30+D),

Now put € = n~!/ In addition, (Z)e“‘z"/“"“) =o(e™""), 50 z;p ~ n/k + 1 almost
surely.
We now consider k/n/% — co. Then w = (n/k log n)1/* - o0. Set

8'={d,. if d, < w/k,
! 0 otherwise,

and note that

E(8,) = ﬁ(l -(1- i;c’-)k(w - 1)) = —1%(11)

We rescale the §; to [0,1] and apply Lemma 1.

Pr( i 8/ (w/k) < (1 - %)nE(eSi/(w/k))) < e~ (172)1-0()

i=1
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As 8§, < d; we deduce

1—0(1 N\ _n263N1-0
PI(ZIP< n—kTTl) < (k)e (n/2 ’)(1 (1))

and hence if k = o(n/log n)

S I almost surely.

Now we prove the second part of Theorem 8(a). We put x; = k/n as usual. Then d,

is dominated probabilistically by k/n times the sum of the [n/k] smallest out of n
independent [0, 1] uniform random variables. Thus

[n/k)
E(d) < (k/n) ¥ t/(n+1)=(1 + o(1))/2k.

t=1
Applying Lemma 1 in the usual way shows that
2;p < (1 +0(1))n/2k almost surely.

On the other hand, consider the dual solution u; = 1/k for i = 1,..., n. Then, by
Lemma 3,

Z1p > Eui‘k,“llax (Z(ui_dij)+)'
j=1,...n

i=1 i=1

As in Theorem 2, for fixed j, we consider random variables U, = (u; — d, ;). Setting
u, = 1/k we find E(U;) = 1/2k?. Rescaling the U, to [0, 1] and applying Lemma 1

n
Prl X kU > (1+ 6);7) < e (@/Nn/2k),

i=1
Hence, if n/k = 6%log n where 6 — oo, then taking € = 1/8 yields

n

n

almost surely

= (1-0(1) 5.

This completes the proof of Theorem 8(a).

Now consider the case where k is sufficiently large so that each point X, can be
assigned to the cheapest point X, defined by d,;;) = min;_;  ,d;;. Then clearly
Z1p = ZLp-

For j=1,...,n,let NJ be the number of points X, assigned to X; according to the
above scheme. N, is asymptotically distributed according to a Poisson process with
mean 1; in particular Pr(N; = 0) ~ 1/e. Therefore E(|{ j: N, = 0}|) ~ n/e. To show
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={j:N;=0}] < (1 +o(l))n/e almost surely we use the generalized Markov
mequahty Pr(Z 2 a) < E(¢(Z))/¢(a) for any nonnegative monotone increasing ¢.
We let k=[n'?], a=(1+¢)n/e where e=n"'/% and ¢(a)= max{0, a(a —
1)...(a =k + 1)}/k! and note that ¢(Z) = the number of k-sets S for which
N; =0, j € S. This gives

") - k/n)"
P(Z>(1+a7)< a(a—l)) (a—k+ 1)/K!

=0((1 +¢)7%).

This completes the proof of Theorem 8. =
As for the Euclidean and graphical models, we can show

THEOREM 9. Suppose k = o((n/log n)/?) and k — co. Then an LP based branch
and bound algorithm almost surely explores at least n®~°M* nodes of the search tree.

PrROOF. Let z;p(Jp, J;) be the LP value of the subproblem where J, = { j: x; is
fixed to 0} and J, = {j: x; is fixed to 1}. Assume that & < 1 is close to 1, that B is
large and that « and B have been chosen so that ak and Bk are integer. To prove the
theorem, it suffices to show that, almost surely,

(37) for any J,, J; € {1,2,..., n) such that JyNJ, # @, |J}| < ak and |Jy| <
n — (B — a)k, we have z;p(Jy, J}) < zyp.

As increasing J,, or J; only serves to increase z;p, We can restrict our attention to
|yl = ak and |Jy] = n — (B — a)k. Let L = ak, K = Bk and

l-a)k 1-a k-L

Yo u=1-~- B T 7K

To obtain an upper bound on z; p(Jy, J;), let
0 if jeJ,
x;=(1 ifjel,
y ifj&Jul,.

Consider a fixed i and suppose ¢;; <¢;;, < -+ <¢;. Let t = min{s: j, € J;}. Let

¥, be given by Lemma 2 and d; = ¥}_,d;;y,,. The expected value of d;, conditional on
knowing the value of ¢, is

' ,
] t
Exp(d,|t) =72 T+1 +(1_'Yt)K+ 1
i=1

= X¥1 - ;((;<_+11))’ ifr< |y, (38)

and
b i -1 lY IJ +1
Exp(d,|t) = YZ =7+ - ) e

~ & = (T + )

2K+ 1) if 1> |y7Y. (39)
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Now

1)

= g

Pr(t) = (K) . (40)
L

Using (38)-(40), we get the expected value of d,.

S IR tr’ -
Bole) o] ST e B

vy =y )yl +1) > (K—t).

+y
2K + 1)(’2) A Sl

Now, as may be inductively verified,

(L2 ) (2y) = (127)

(K21 oK 2) o ea(K - 4)

L-1 L-1 L-1
-(Li)-a(*z4) - (*1137)
{52+ 2w (£ )
=2(fi;)—A(A+l)(KZA)
24+ (K7 4) oK),
Therefore
Exp(d,) = W[(fi :) - lY'IJ(K—ll‘Y-lJ) - (K+11,; P—l])]
AL
Sl (< ) o[ )]
L = (] +1) e )
L

2AK + 1)(?)
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Now

(fi%) _ 1 Y(fié) _(k-L)K-L)
(K+1)(’If) L+1° (K“)(sz) K(L+1)(L+2)

(K— [Y'll) < e-lv"lL/K(K)'
L L
Hence, for a and B fixed, where a is close to 1 and B is large, and for k — oo,
| _(1+0(y) | K-y ( l))
Exp(d;) = [ak ( 1- a)k )( L 1+ O(k

(A -a)(B-a) _(1+0(7) L 1toly) | l—a)
Ba*k 2(1 - a)k ak azk

<[+ o)

e of7)

[1+o(z)
)

— l[% _ (1- alg‘(xﬁ - “) (ﬁe—a/(l—a))

= %[1 - (% - 1)2 + la_ﬁ"‘ + "(1 1 ae“"’“"”)](l + 0(
Let 8 = 2a/(1 — a). Then

Exp(d;) = %[1 - %(% - 1)2 + o(l i ae“"/(""))](l + o(%))

Now (1/a — 1)2/(1/(1 — @))e"*/1~® - o as a — 1. Thus, by choosing a close to
1, we get

x| =

1 1/(1 2
Exp(d,) < E(l - 3(; - 1) )
Applying Lemma 1 with € = (1/log n)'/2, we get

z1p(Jos ) < %(1 - %(% - 1)2)(1 + o(1))

with probability at least 1 — e~"8/3k18" where B =1 — 4(1/a — 1)2. We have to
branch for all |/ < ek and |Jj| < n — (B — a)k with probability at least

1 —(;k)(a"k)e‘”"/”‘"’“” -1 since (ﬁ"k)( )< n@*Pk and n/klogn — oo. This
proves that, almost surely, (37) holds. As a consequence, the number of branches in the



PROBABILISTIC ANALYSIS OF RELAXATION FOR K-MEDIAN PROBLEM 25

search tree is at least (" 'k’”‘)= n—ok g
a

6. Computational experience. The previous sections provide asymptotic results as
n — oo. In this section, we report our computational experience with medium-size
k-median problems for the four probabilistic models introduced earlier. This computa-
tional experience is based on the solution of about 3300 random problems with n = 50
points and an additional 950 random problems with n = 100 points. The description
of these problems is given later.

For each problem we computed z;, and z;,. The value of z;, was obtained by
solving a Lagrangian dual by subgradient optimization as explained in [3]. In the
process of computing z; p, this algorithm generates a feasible solution at each subgradi-
ent iteration. Of course, if it happens that the value of the best feasible solution
generated equals z p, the algorithm terminates since, then, z;p = z; p. For most of the
test problems with no gap zp — z\p, the algorithm terminated in less than 100
subgradient iterations, due to the above stopping criterion. If, after 100 subgradient
iterations, there was still a gap between the best feasible solution (an upper bound on
2;p) and the best Lagrangian relaxation (a lower bound on z; ), we resorted to branch
and bound to find z;,. When the subgradient algorithm clearly converged to a value
different from z,p, we accepted it as showing that z;p # z;p. In the cases where the
subgradient algorithm converged to a value close to z;, we used the simplex algorithm
to compute z;p. This allowed us to settle cases where there was a very small but
positive gap z;p — Z;p.

Among the 4250 test problems that we generated we found about 3700 such that
zp = z1p and about 550 with a gap z;p — z;p. Now we give a detailed description of
these results.

The first set of experiments involves Euclidean problems. We decided to test whether
approximating the Euclidean distances had an influence on the gap z;p — z, p, since we
suspected that data accuracy might be partly responsible for the discrepancy between
the computational experience previously reported in the literature, namely few test
problems were found to have gaps ([2],[3],[6],[10],[11],[19],[20],[23],[24]), and the
results of §2 stating that asymptotically most instances should have small but positive
gaps. To our surprise, data accuracy had little influence except maybe for the
possibility that a very coarse approximation produces harder k-median problems.
(These problems are more combinatorial, often have alternate optimal solutions and, in
our experience, optimality was harder to prove.) We generated 10 problems, each with
50 points occurring at random in the unit square. Then, for i =1, 2, 3, 4 and 5, we
multiplied each point coordinate by 10’ and rounded it to the closest integer value. The
Euclidean distances were then computed and rounded to the closest integer. The
k-median problem and its LP relaxation were solved for each 2 < k < 10 and
1 < i < 5. For each such pair i, k, Table 1 reports the number of problems (out of 10)
with a gap z;p — zyp.

The same two problems were responsible for all the gaps. The average value of
(z1p — zLp)/2p Over the instances that had a gap was approximately 1.5% for i = 1,
0.4% for i = 2 and 0.1% for i = 3, 4, and 5. Overall, the fraction of instances with a
gap was about 5%. This is consistent with the computational experience reported in the
literature. Clearly, the asymptotic behavior described in §2 is not felt for problems with
n = 50 points. It would be interesting to repeat the computational experiment for
Euclidean k-median problems with about n = 1000 points. Unfortunately our com-
puter budget did not allow to do this.

The second set of experiments involves random trees. We generated 100 random
trees, 50 of them with n = 50 nodes and the other 50 with n = 100 nodes, using the
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TABLE 1

Euclidean model with n = 50. Number of instances with a gap.

ki i Total
i 12 3 4 5 6 7 8 9 10| (outof90)
1 P00 2 0 2 2 1 0 ©0 0 | 7
2 fo 1.0 0 o0 2 o0 o0 1| 4
3 !0 1.0 1 0 0 2 0 O 4
4 ro 1.0 0 1 0 2 0 0] 4
5 10 1 0 0 1 0 2 0 0, 4
Total o 6 0 3 4 3 6 0 11! 23
(out of 50) ! ! (out of 450)
TABLE 2
Tree model with unit edge lengths. Number of instances with a gap.
k | Total
n 12 3 4 5 6 7 8 9 10 11 | (outof500)
50 0 2 2 0 7 1 1 1 2 21 18
100 i1 2 1 4 0 2 2 2 2 1| 17
Total ; 1 4 3 4 7 3 3 3 4 3| 35
(out of 100) ! ! (out of 1000)

method described in Even [7, p. 28). First we assumed that all edge lengths were equal
to 1 in the trees, and we solved the k-median problem and the LP relaxation for
2 < k <11 in each tree. For each pair n, k, Table 2 reports the number of problems
(out of 50) with a gap z;p — zyp.

We also computed zyp and z;, for the same 100 trees assuming nonunit edge
lengths. In this experiment, the nodes of the tree were random points in the unit square
and the length of an edge in the tree was the Euclidean distance between its endpoints
rounded using the scheme explained earlier with i = 1. The distance between two
nodes of the tree was the length of the unique path joining them. Table 3 reports these
results.

We did not find a significant difference in difficulty between the two tree models.
Overall, the fraction of instances with a gap was about 4%.

Our third set of experiments involves random graphs. First we report the results
when the edge lengths are equal to 1. Starting from a random tree on 50 nodes, we
generated a sequence of graphs, adding 50 random edges at a time to the previous
graph. Table 4 contains the value of z;p and z; for each graph and 2 < k < 10. Only
one figure means that z;p, = z; . Note that when z;p = z;, = n — k for some graph, it
contains a dominating set and therefore every subsequent graph in the sequence also
does.

TABLE 3
Tree model with nonunit edge lengths. Number of instances with a gap.
P i Total
n 12 3 4 5 6 71 8 9 10| (outofds0)
50 i0 2 5 6 3 3 0 3 1 i 23
100 P00 2 1 6 1 3 2 5 1| 21
Total 10 4 6 12 4 6 2 8 2 ! 44
(out of 100) ! ! (out of 900)
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TABLE 4

Graphical model with unit edge lengths. Value of z( p and z;p.

ko
number :
of edges b2 3 4 5 6 7 8 9 10

49 | 139 114 98 88 80 72 65 59 54
99 I 89 77 685/69 62 57T 52 48 44.5/46 42
149 T 69 62 555/57 50 46 43 41 40
199 ) 63 55 43 45 43 4 . .
249 Lon 61 52 46  44/45
299 i 69 56 48 46 44
349 | 65 525/54 48  45/46
399 lo62 50 47748 45
449 16l 49 46/47
499 | 58 475/48 46,47
549 L 56 48 46
599 I 54  47/48
649 ) 47
699 i 51 .
749 T
799 1 48.5/49
849 L 48/49
. to
| .
I
. ] .
1199 | 48
. -
]
]
|
]

Among the instances where a dominating set did not exist, about 28% had a gap.

Next we turn to the graphical model with nonunit edge lengths. We started from 10
random trees on n = 50 nodes. We then added random edges, 50 at a time, until the
graphs contained 849 edges. The edge lengths were computed using the same scheme as
earlier. Namely, the nodes were assigned random integer coordinates in a square of size
10 X 10 and the length of an edge was the Euclidean distance between its two
endpoints, rounded to the closest integer. The distance between two nodes of the graph
was taken to be the length of the shortest path joining them in the graph. Table 5
reports the number of instances with a gap (out of 10), as a function of the number of
edges in the graph and «.

For this model, the fraction of instances with a gap was about 12%. The average of
(z1p — z1p)/z1p taken over the instances with a gap was less than 1%. Note that the
first line of Table 1 corresponds to the case of the graphical model where the number
of edges is (49 X 50)/2 = 1250 and, as such, could be added as a line of Table 5.

Finally, the fourth set of experiments deals with the uniform cost model. We
generated 30 problems with random integer costs. In the first 10 problems the costs
were in the range {1, 10], in the next 10 in the range [1,100] and in the last 10 in the
range [1,1000]. For each problem the values of z;p and z;, were computed for
2 < k < 10. For each range and value of k, Table 6 contains the number of instances
with a gap (out of 10).

For this model, the fraction of instances with a gap was about 92% overall, 100% for
k < 8. This fits well with the results of §5. The value of the ratio (z;p — z,p)/z;p Was
much larger than in the other models. It reached 18% for one of the problems with
costs taken in the range [1,1000] and k = 3. Note, however, that this is still far below
the asymptotic value of 33% predicted by Theorem 8 when k = 3.
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TABLE 5

Graphical model with nonunit edge lengths. Number of instances with a gap.

1
| |
| : Total
of edges r 2 3 4 5 6 7 8 9 10 : (out of 90)
49 (0 1 1 0 o0 o0 o0 o 1 3
99 o1 o1 2 3 1 o 11 11
149 12 1 2 2 1 ¢ o o o | 8
199 2 1 0 1 90 2 2 ! 10
249 r1To2 2 1 1 0 1 3 1 12
299 21 2 2 1 o 1 1 1| 13
349 12 2 4 1 5 1 o 3 2 ! 20
399 P32 0 2 1 o9 1 11
449 13 2 2 1 1 3 4 o | 14
499 Vo0 11 2 1 1 1 g 0 ! 8
549 11 4 0 o 1 2 1 11
599 P11 0 2 2 3 0 2 I' 12
649 ! 2 0 1 2 o0 o 3 1 I 10
699 102 2 1 0 2 2 1 10
749 P01 1 0 1 2 1 1 1 8
799 L1 0 1 1 1 o9 3 10
849 10 0 2 0o 2 1 ¢ 2 301 10
Total 18 2 28 17 2 17 17 19 21 181
(out of 170) (out of 1530)
TABLE 6
Uniform cost model with n = 50, Number of instances with a gap.
ko | Total
range ) 3 4 5 ¢ 7 8 9 10 | (outof 90)
10 110 10 10 10 10 10 0 6 4. 80
100 10010 10 10 10 10 10 8 51 83
1000 11010 10 10 10 10 10 19 6 | 86
Total 13030 30 30 30 30 30 24 15 ! 249
(out of 30) ! ! (out of 270)

7. The simple plant location problem. Although we proved our probabilistic
results for the k-median problem, they can also be useful for the SPLP. To define an
instance of SPLP, we need fixed costs j}, J=1,..., n, in addition to the distances d; o
1<i, j<n. For simplicity, we assume in this section that the fixed costs f; are all
identical, say L=1

THEOREM 10. Consider the Euclidean model in the plane and assume that n<-1/2 <f
< n'7 for some fixed ¢ > 0. Then, for the SPLP,

e ELP _ 0.00189255...  almost surely.
P

PROOF. In this proof, zip and z;p denote the optimum values of SPLP and its
linear programming relaxation respectively. The solutions of the corresponding k-
median problem (with same d;;’s) and its relaxation are denoted by z;p(k) and zyp(k)
respectively.
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By definition z;p = min (z p(k) + kf) = min(z,, z,, z,;), where

5 = f‘jl‘:(zw(k) + kf),

z, = min  (z;p(k) + kf), and
wgkg<n/wlogn

= i k) + kf).
23 k>'f%f}os"(zu() f)

First we compute z,. From the proof of Theorem 2,
Pr{ir @ [ 570 - o), 371+ 0(1)]) = 0= m07)
L2 3vkn Wkn

and so

2, < (1+0(1) + kf} almost surely.

usk»sn/w Iogn{ 3‘//;

Let a = 2/3yr. The minimum of the function an/ vk + kf is attained when k =
(an/2f)*>. Note that, given our assumptions on f, this value is in the range
(w, n/wlog n) for a suitable w, say w = log n. The minimum value of the function is
((27/4)a*n?f)'/3, Therefore

z,= (—a nzf) (1 + o(1)) almost surely.

Now consider z;. With our choice of w = log n, we have k > n/(log n)?2. Therefore,
almost surely,

n
2, 2
*> gy

1/3f2/3
(log n)? ((27/4) 2)1/3

(1+0(1)) >
Finally consider z;,. For all k <logn, we have z; p(k) > z,p(log n). Therefore
z, > z;p(log n). This implies that, almost surely,

2n

I e
2 > TM—JB—( o(1)) c )1/222(1 +0(1)) > z,,

where c is a constant.

We have just proved that z,p, ~ ((27/4)a?n?f)!/? almost surely.

Similarly, z;p = min,(z;p(k) + kf). Following the proof of Papadimitriou [22], we
can show that

Zp = nim(%(l + 0(1)) +jk) almost surely, (41)

where 8 = 0.3771967 ... . The minimum in (41) is achieved when k = (8n/2f)?/ and
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its value is ((27/4)B82n%f)'*(1 + o(1)). So

_ BZ/3 — a2/3

Zip — Z1p
327 almost surely. ®

Z1p

Similarly, the next result can be shown using the proof of Theorem 8.

THEOREM 11.  Consider the uniform cost model and assume that n*~! < f < n'~¢ for
some fixed € > 0. Then

2 | s § g almost surely.
Z1p

8. Conclusion. The LP relaxation (1)-(4) has been widely used in branch and
bound algorithms for the k-median problem and has been reported to provide a tight
bound in practice. Our analysis shows that such good results can indeed be expected in
a probabilistic sense for some problem instances, but we also identify other instances
where the LP relaxation is almost surely not tight. The probabilistic analysis is
performed under four classical models in location theory, namely the Euclidean,
network, tree and uniform cost models. For example, let w = w(n) = co. When
w < k < n/wlog n in the Euclidean model, z; p/z;p = 0.99716. .. +0(1) almost surely,
and when w < k < n/wlog n in the uniform cost model, z;p/z;p = 0.5 + o(1) almost
surely.

Our computational experience confirms that large gaps occur frequently in the
uniform cost model whereas only small gaps were observed with the other models.

Another aspect of the probabilistic analysis performed in §§2, 3 and 5 is that, under
various assumptions, branch and bound algorithms must almost surely expand a
nonpolynomial number of nodes to solve k-median problems to optimality.

Finally, we mention as open problems the questions of describing the asymptotic
behavior of z;p/z;p as n = oo when (i) k > n/log n in the Euclidean model, (ii) each
edge of the graph has a random length d,; (drawn uniformly in the interval [0, 1], say)
in the network and tree models, (iii) n/logn < k < n(e — 1)/e in the uniform cost
model.
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