PROBABILISTIC ANALYSIS OF SOME EUCLIDEAN CLUSTERING PROBLEMS

A.M. FRIEZE

Dept. of Computer Science and Statistics, Queen Mary College, Mile End Road, London, E1 4NS, England

Received 28 May 1979 Revised 2 July 1980

We are given n points distributed randomly in a compact region D of R^m . We consider various optimisation problems associated with partitioning this set of points into k subsets. For each problem we demonstrate lower bounds which are satisfied with high probability. For the case where D is a hypercube we use a partitioning technique to give deterministic upper bounds and to construct algorithms which with high probability can be made arbitrarily accurate in polynomial time for a given required accuracy.

1. Introduction

We are given n points $X = \{x^{(1)}, \dots, x^{(n)}\}$ belonging to a given compact region $D \subseteq R^m$. We study in this paper various optimisation problems associated with such a set:

Problem 1. Find $Y = \{y^{(1)}, \ldots, y^{(k)}\} \subseteq D$ such that

$$z_1(X, Y) = \max(\min(\|\mathbf{x}^{(i)} - \mathbf{y}^{(j)}\| : j = 1, ..., k) : i = 1, ..., n)$$

is minimised.

Problem 2. Find $Y = \{y^{(1)}, \dots, y^{(k)}\} \subseteq X$ such that $z_1(X, Y)$ is minimised. It will be convenient to refer to the objective function as $z_2(X, Y)$ in this case.

Problem 3. Partition X into k subsets X_1, \ldots, X_k so that

$$z_3(X_1, \ldots, X_k) = \max(\max(\|x - y\| : x, y \in X_i) : j = 1, \ldots, k)$$

is minimised.

Problem 4. Partition X into k subsets X_1, \ldots, X_k so that

$$z_4(X_1, \ldots, X_k) = \max \left(\sum_{x, y \in X_i} ||x - y|| : j = 1, \ldots, k \right)$$

is minimised.

The norms considered will be

$$\|\mathbf{x}\|_{e} = \left(\sum_{j=1}^{m} x_{j}^{2}\right)^{1/2},$$

 $\|\mathbf{x}\|_{\infty} = \max(|x_{j}|: j = 1, ..., m).$

Non-euclidean versions of the above problems are known to be NP-hard as are the corresponding problems of finding ε -optimal solutions for arbitrary $\varepsilon > 0$.

(For m = 1 problems 1, 2, 3 are solvable in polynomial time using dynamic programming, the status of problem 4 when m = 1 is not known.)

It is likely therefore that problems 1-4 are also NP-hard as is the case for Euclidean versions of other NP-hard problems [2,3]. This paper conducts a probabilistic analysis of these problems. The n points are assumed to be randomly and uniformly distributed over the region D which is assumed to have hypervolume V.

Results can be obtained for other norms by using the fact that for any two norms $\| \cdot \|_a$, $\| \cdot \|_b$ there exists a constant p such that for $\mathbf{x} \in R^m \|\mathbf{x}\|_a \le p \|\mathbf{x}\|_b$. For example if m = 2 and k, n grow so that $k/n \to 0$ as $n \to \infty$ we show that in problem 1 using $\| \cdot \|_e$ that

$$z_1^* = \min z_1(X, Y) \ge (V/k\pi)^{1/2}$$

with probability tending to 1. Now as $\|\mathbf{x}\|_{\infty} \ge \|\mathbf{x}\|_{c} / \sqrt{2}$ this implies that using $\|\cdot\|_{\infty}$

$$z_1^* \ge (V/2k\pi)^{1/2}$$

with probability tending to 1. We can however prove in this case that $z_1^* \ge \frac{1}{2}(V/k)^{1/2}$ with probability tending to 1. We have thus analysed these norms separately.

We follow the approach used in Fisher and Hochbaum [1]. For an instance of problem t we denote the value of an optimal solution by $z_t^*(n, k)$. For each problem we derive lower bounds for z_t^* which are valid with probability tending to 1 assuming that $k/n \rightarrow d < 1$ in problems, 1, 2, 3 and $d \le \frac{1}{2}$ for problem 4.

Then restricting our attention to the case where D is a hypercube we derive simple upper bounds for z_t^* . We then use a grid technique as in Fisher and Hochbaum [1] such that given $\varepsilon > 0$ we derive a solution of value \hat{z}_t where $\hat{z}_t - z_t^* \le \varepsilon z_t^*$ with probability tending to 1. The time complexity of these algorithms are $O(n^{p(\varepsilon)})$ where $p(\varepsilon)$ naturally depends on ε . Fisher and Hochbaum analysed the k-median problem: find $Y = \{y^{(j)}, \dots, y_t^{(k)}\} \subseteq X$ such that

$$\sum_{j=1}^{n} \min(\|\mathbf{x}^{(j)} - \mathbf{y}^{(i)}\|_{e} : i = 1, \dots, k)$$

is minimised.

They only considered m=2 and $\| \|_{e}$ but their analysis would extend easily to general m.

The results obtained here can be usefully compared with those of [1], most importantly for problem 2 with m = 2 and $\| \cdot \|_{e}$ we show that for a fixed region the optimal value (usually) grows like $1/\sqrt{k}$ whereas for the k-median problem the optimal value grows like n/\sqrt{k} . The factor n is what one would expect on comparing objective functions.

2. Analysis of problem 1

We first compute a probabilistic lower bound to problem 1 using $\|\cdot\|_e$. We shall use Stirling's inequalities

$$(n/e)^n (2n\pi)^{1/2} \le n! \le (12n/12n-1)(n/e)^n (2n\pi)^{1/2}$$

several times to replace factorials and so we have stated them here for convenience.

Notation. For $a \in R$, $a \ge 0$ and $c \in R^m$ the hypersphere is

$$HS(c, a) = \{x \in R^m : ||x - c||_e \le a\}.$$

It's hypervolume is denoted by $c_m a^m$ where the c_m satisfy

$$c_1 = 2$$
 and $c_{m+1} = \left(2 \int_0^{\pi/2} \cos^{m+1} \theta \, d\theta\right) c_m$ for $m \ge 1$.

Note that

$$\int_0^{\pi/2} \cos^{2n} \theta \, d\theta = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \cdot \cdot \frac{1}{2} \cdot \frac{\pi}{2},$$

$$\int_0^{\pi/2} \cos^{2n+1} \theta \, d\theta = \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1} \cdot \cdot \cdot \frac{2}{3}.$$

Let $X \subseteq R^m$ be finite. Let r = r(X) be the radius of the smallest hypersphere containing X and let c = c(X) be the centre of this hypersphere.

Lemma 2.1. Let X, r, c be as above and suppose $r \le a$. If $z \in R^m$ is such that $r\{X \cup \{z\}\} \le a$, then $||z - c||_c \le a + (a^2 - r^2)^{1/2}$.

Proof. Let $Y = \{x \in X : ||x - c||_e = r\} \neq \emptyset$. Now let C = convex hull of Y. We show by contradiction that $c \in C$. If $c \notin C$ let b be the nearest point of C to c. Let $c_{\lambda} = (1 - \lambda)c + \lambda b$ for $0 < \lambda < 1$. Now for $\lambda > 0$ and $\mathbf{y} \in Y ||\mathbf{y} - c_{\lambda}||_e < ||\mathbf{y} - c||_e$ and so if λ is "small enough" c can be the centre of a hypersphere of radius $c \in C$ and so $c = \sum_{i=0}^{d} \lambda_i \mathbf{y}_i$ where $k_i > 0$ for $k \in C$ and $k_i = 1$. Now let $k_i = 1$.

Since $c \in C$ there exists y_t such that $(c_1 - c) \cdot (y_t - c) \le 0$. Then

$$a^{2} \ge \|c_{1} - \mathbf{y}_{t}\|_{c}^{2}$$

$$= \|c_{1} - c\|_{c}^{2} + \|\mathbf{y}_{t} - c\|_{c}^{2} - 2(c_{1} - c) \cdot (\mathbf{y}_{t} - c)$$

$$\ge \|c_{1} - c\|_{c}^{2} + r^{2}.$$

Thus $\|\mathbf{c}_1 - \mathbf{c}\|_{\mathbf{c}} \le (a^2 - r^2)^{1/2}$ and hence

$$||z-c||_{e} \le ||z-c_{1}||_{e} + ||c_{1}-c||_{e} \le a + (a^{2}-r^{2})^{1/2}.$$

Lemma 2.2. Let $E(n, \mathbf{c}, a)$ be the event that n points $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ chosen at random in D lie in $HS(\mathbf{c}, a)$ and let $F(n, a) = \bigcup_{\mathbf{c} \in D} (n, \mathbf{c}, a)$.

Then for $n \ge 2$ there exists b = b(m) > 1 such that

$$P(n, a) = \text{Prob}(F(n, a)) \le b^{\sqrt{n}} v^{n-1}$$
 (2.1)

where $v = c_m a^m / V$.

Proof. Let p(n, z) be the density function of the random variable z = radius of the smallest hypersphere containing n random points in D.

It follows that $P(n, a) = \int_0^a p(n, z) dz$ and it follows from Lemma 2.1 that

$$P(n+1, a) \le (c_m/V) \int_0^a p(n, z) (a + (a^2 - z^2)^{1/2})^m dz.$$

Integration by parts gives

$$P(n+1, a) \le (c_m a^m / V) P(n, a)$$

$$+ (mc_m / V) \int_0^a P(n, z) (a + (a^2 - z^2)^{1/2})^{m-1} z (a^2 - z^2)^{-1/2} dz.$$
(2.2)

Now $P(2, a) \le 2^m c_m a^m / V$ and if for some $n \ge 2$ and constant α $P(n, z) \le \alpha (c_m z^m / V)^{n-1}$ for all $z \ge 0$ then substitution in (2.2) gives

$$P(n+1, a) \le \alpha (1 + u_{n-1})(c_m a^m / V)^n$$

where

$$u_{n-1} = m \int_0^{\pi/2} (1 + \cos \theta)^{m-1} (\sin \theta)^{m(n-1)+1} d\theta.$$

We deduce therefore that for $n \ge 2$

$$P(n, a) \leq 2^{m} \prod_{t=1}^{n-2} (1 + u_{t}) (c_{m} a^{m} / V)^{n-1}.$$
(2.3)

The RHS of (2.3) is bounded by $b^{\sqrt{n}}v^{n-1}$ for some b dependent on m. This can be

shown as follows:

$$u_n \le m2^{m-1} \int_0^{\pi/2} (\sin \theta)^{mn+1} d\theta = \alpha \frac{mn}{mn+1} \cdot \frac{mn-2}{mn-1} \cdot \cdots$$

where α is dependent on m. If

$$\beta_{M} = \frac{M}{M+1} \cdot \frac{M-2}{M-1} \cdot \cdot \cdot \frac{2}{3} \quad \text{for } M \text{ even,}$$

$$= \frac{M}{M+1} \cdot \frac{M-2}{M+1} \cdot \cdot \cdot \frac{1}{2} \quad \text{for } M \text{ odd,}$$

we show that $\beta_M < 2/\sqrt{M}$. For M even

$$\beta_M < 1 \cdot \frac{M-1}{M} \cdot \frac{M-3}{M-2} \cdot \cdot \cdot \frac{3}{4}.$$

Thus $\beta_M^2 < 2/(M+1) < 2/M$. For M odd $\beta_M^2 < 1/M$ by a similar argument. Thus $u_n < 2\alpha/\sqrt{mn} = \beta/\sqrt{n}$ for $\beta = 2\alpha/\sqrt{m}$.

Thus for $n \ge 2$

$$\prod_{t=1}^{n-2} (1+u_t) < \prod_{t=1}^{n-2} (1+\beta/\sqrt{t}) < e^{2\beta\sqrt{n-2}}$$

as may be shown by induction on n.

Thus the R.H.S. of $(2.3) < 2^m e^{2\beta\sqrt{n-2}} v^{n-1}$ which can be simplified to $b^{\sqrt{n}} v^{n-1}$ for large enough b.

Lemma 2.3. Let n points $X = \{x^{(1)}, \dots, x^{(n)}\}$ be chosen at random in D. For $a \ge 0$ and $v = c_m a^m / V$

$$\operatorname{Prob}(z_1^*(n,k) \leq a) \leq (kv)^{n-k} e^k b^{\sqrt{nk}} / \sqrt{2\pi k}$$
(2.4)

if $\| \cdot \|_{e}$ is used.

Proof. Let $X_1, \ldots, X_k \in PART(n, k)$ = the set of (unordered) partitions of X into k subsets. Let $n_t = |X_t|$ for $t = 1, \ldots, k$ and let

$$Q = \operatorname{Prob}((X_t \subseteq \operatorname{HS}(\boldsymbol{c}_t, a) \text{ for some } \boldsymbol{c}_t \in D) \text{ for } t = 1, \dots, k)$$

$$= \prod_{t=1}^k \operatorname{Prob}(X_t \subseteq \operatorname{HS}(\boldsymbol{c}_t, a) \text{ for some } \boldsymbol{c}_t \in D)$$

$$= \prod_{t=1}^k \operatorname{Prob}(F(n_t, a)) \text{ as in Lemma 2.2.}$$

By Lemma 2.2

$$Q \leq v^{n-k} \prod_{t=1}^k b^{\sqrt{n_t}} \leq v^{n-k} b^{\sqrt{nk}}.$$

Now let $S(X) = \{(X_1, \dots, X_k) \in PART(n, k) : r(X_t) \le a \text{ for } t = 1, \dots, k\}$ (r as in Lemma 2.1). We note that $S(X) = \emptyset \rightarrow z_1^*(n, k) > a$. Thus

$$\begin{aligned} \operatorname{Prob}(z_1^*(n, k) &\leq a) \leq \operatorname{Prob}(S(X) \neq \emptyset) \\ &\leq E(|S(X)|) \quad \text{(Expectation by the above)} \\ &\leq |\operatorname{PART}(n, k)| \ v^{n-k} b^{\sqrt{nk}} \\ &\leq (k^n/k!) v^{n-k} b^{\sqrt{nk}} \end{aligned}$$

The result now follows after using Stirlings inequalities.

Theorem 2.1. For sequence of problems where $n \to \infty$ and $k = nd + O(1/n^3)$ with $0 \le d < 1$ we have

$$\operatorname{Prob}(z_1^*(n,k) \leq (\alpha_d V/kc_m)^{1/m} \leq 1/\sqrt{2\pi k} + O(1/n)$$
where $\alpha_d = (e^{-d}b^{-\sqrt{d}})^{1/(1-d)}$. (2.5)

Proof. Simply substitute $(\alpha_d V/kc_m)^{1/m}$ for a in (2.4). \square

Thus if $k \to \infty$ (2.5) provides a lower bound for $z_1^*(n, k)$ with probability tending to 1.

For constant k we must clearly have $z_1^* \ge (V/kc_m)^{1/m}$ - note $\alpha_0 = 1$ - else we cannot cover D with k hyperspheres of radius z_1^* . It is straightforward to show that for finite k we must do this with probability tending to 1.

We continue by computing lower bounds to z_1^* for $\|\cdot\|_{\infty}$. We base our analysis on a lemma about covering D with hypercubes. It will be used for sets of the form $\{x \in R^m : \|x - c\| \le a\}$.

Notation. Let $a, c \in R^m a \ge 0$. The hyperoblong is

$$HO(c, a) = \{x \in \mathbb{R}^m : |x_i - c_j| \le \frac{1}{2}a_j \text{ for } j = 1, ..., m\}.$$

It's hypervolume is of course $a_1 a_2 \cdots a_m$.

Lemma 2.5. Let $E(n, \mathbf{c}, \mathbf{a})$ be the event that n points $X = \{x^{(1)}, \dots, x^{(n)}\}$ chosen at random from D lie in $HO(\mathbf{c}, \mathbf{a})$ and let $F(n, \mathbf{a}) = \bigcup_{\mathbf{c} \in D} E(n, \mathbf{c}, \mathbf{a})$. Then for $n \ge 2$

$$P(n, \boldsymbol{a}) = \operatorname{Prob}(F(n, \boldsymbol{a})) \leq n^m v^{n-1}$$

where $v = a_1 a_2 \cdots a_m / V$.

Proof. Let p(n, z) be the density function of the random vector $z \in \mathbb{R}^m$ where z_1, \ldots, z_m are the lengths of the sides of the smallest hyperoblong containing the set X. These lengths are given by

$$z_i = \max(x_i^{(1)}, \dots, x_i^{(n)}) - \min(x_i^{(1)}, \dots, x_i^{(n)}),$$

Thus

$$P(n, \boldsymbol{a}) = \int_0^{a_1} \cdots \int_0^{a_m} p(n, \boldsymbol{z}) \, dz_m \cdots dz_1 \quad \text{and} \quad p(n, \boldsymbol{z}) = \frac{\partial^m p(n, \boldsymbol{z})}{\partial z_1 \cdots z_m}.$$

We also have

$$P(n+1, \boldsymbol{a}) \le \int_0^{a_1} \cdots \int_0^{a_m} (p(n, \boldsymbol{z})/V) \left(\prod_{i=1}^m (2a_i - z_i) \right) dz_m \cdots dz_1.$$
 (2.6)

This is because for given $z_1 \cdots z_m$ the random point $\mathbf{x}^{(n+1)}$ must lie in a hyperoblong of sides $(2a_1 - z_1) \cdots (2a_m - z_m)$ in order that $F(n+1, \mathbf{a})$ can occur.

Next let $M = \{1, 2, ..., m\}$ and for $S \subseteq M$ let P_S denote $P(n, h_1 \cdot \cdot \cdot h_m)$ where $h_i = a_i$ for $i \in S$ and $h_i = z_i$ for $i \notin S$. Let $d_S = \prod_{i \notin S} dz_i$ and $a_S = \prod_{i \in S} a_i$. Successive integration of the RHS of (2.6) by parts gives

$$P(n+1, \mathbf{a}) \leq \left(\sum_{S \subset M} a_S \int P_S \, d_S\right) / V. \tag{2.7}$$

Now $P(2, \mathbf{a}) \leq 2^m a_1 \cdots a_m / V$ and if for some $n \geq 2$ and constant $\alpha P(n, z) \leq \alpha ((\prod_{i=1}^m z_i) / V)^{n-1}$ for $z \geq 0$ then from (2.7) we have

$$P(n+1, a) \leq \left(\sum_{s \leq M} \alpha a_s^n \int \left(\prod_{i \neq S} z_i^{n-1} dz_i\right) / V^n \right)$$
$$= \left(\sum_{S \leq M} \alpha a_M^n n^{-|\overline{S}|} \right) / V^n, \quad \overline{S} = M - S$$
$$= \alpha (1 + 1/n)^m v^n.$$

Thus

$$P(n+1, \mathbf{a}) \le \prod_{t=1}^{n} (1+1/t)^{m} v^{n} = (n+1)^{m} v^{n}.$$

Lemma 2.7. Let n points $X = \{x^{(1)}, \dots, x^{(n)}\}$ be chosen at random in D. For $a \ge 0$ and $v = a^m/V$

$$\text{Prob}(z_1^*(n,k) \leq \frac{1}{2}a) \leq (kv)^{n-k} e^k (n/k)^{km} / \sqrt{2\pi k}.$$
 (2.8)

Proof. Let $(X_1, \ldots, X_k) \in PART(n, k)$ and $|X_i| = n_i$ for $i = 1, \ldots, k$. Let $\mathbf{a} = (a, \ldots, a) \in \mathbb{R}^m$ and let $Q = Prob((X_i \subseteq HO(\mathbf{c}_i, \mathbf{a}) \text{ for some } \mathbf{c}_i \in D)$ for $i = 1, \ldots, k$.

By Lemma 2.4 with $v = a^m/V$

$$Q \leq \prod_{i=1}^{k} n_{i}^{m} v^{n_{i}-1} \leq (n/k)^{km} v^{n-k}.$$

It follows as in Lemma 2.3 that

$$\operatorname{Prob}(z_1^*(n,k) \leq a/2) \leq (k^n/k!)Q.$$

The result now follows after using Stirlings inequalities.

Theorem 2.2. For a sequence of problems where $n \to \infty$ and k = nd + O(1/n) with $0 \le d < 1$ we have

$$Prob(z_1^*(n,k) \le (\frac{1}{2}\alpha_d V/k)^{1/m}) \le 1/\sqrt{2\pi k} + O(1/n)$$
(2.9)

where $\alpha_d = (e^{-d} d^{md})^{1/(1-d)}$.

Proof. Simply substitute $(\alpha_d V/k)^{1/m}$ for a in (2.8).

Similar comments to those given after Theorem 2.1 apply. We now describe the calculation of upper bounds and approximate solutions in the case that D is a hypercube of side L. Let $\hat{k} = \lfloor k^{1/m} \rfloor$ and divide D uniformly into \hat{k}^m hypercubes of side L/\hat{k} and let Y consist of the centres of these hypercubes plus $k - \hat{k}^m$ other points in D.

 $\|\cdot\|_{e}$. For $\mathbf{x} \in D$ there is a point $\mathbf{y} \in Y$ such that $\|\mathbf{x} - \mathbf{y}\|_{e} \le m^{1/2} L/2\hat{k}$ and so for this norm

$$z_1^*(n, k) \le m^{1/2} L/2\hat{k}$$
.

 $\|\cdot\|_{\infty}$. For $x \in D$ there is a point $y \in Y$ such that $\|x - y\|_{\infty} \le L/2\hat{k}$ and so for this norm

$$z_1^*(n,k) \leq L/2\hat{k}.$$

Notice that if $k = \hat{k}^m$ this upper bound coincides closely with the lower bound derived after Theorem 2.2 when d = 0.

We now consider approximate solutions. Let t>0 be an integer which determines the proposed accuracy of the solution. Divide D uniformly into $T=t^m$ hypercubes H_1, \ldots, H_T of side L/t. Let $C=\{c_1, \ldots, c_T\}$ be the set of centres of these hypercubes. Let

$$\hat{z}_1 = \min(z_1(X, Y) : Y \subseteq C \text{ and } |Y| = k).$$

This can be computed in $O(2^T nk)$ time. Let Y^* minimise z_1 . Assume without loss of generality that $Y^* \subseteq \bigcup_{j=1}^k H_j$. Now for $x \in D$ and $y \in H_j$

$$||c_{j}-x|| \leq ||c_{j}-y|| + ||y-x||$$

and hence

$$\hat{z}_1 - z_1^* \le \max(\|c_1 - y\| : y \in Y^* \cap H_1).$$

 $\|\cdot\|_{\epsilon}$. Thus $\hat{z}_1 - z_1^* \le m^{1/2} L/2t$. Now fix $1 > \epsilon > 0$ and consider a sequence of problems for which $k \le p \log n$ where p > 0. Putting $t = \lceil m^{1/2} (kc_m)^{1/m} / 2\epsilon \rceil$ we see that $\hat{z}_1 - z_1^* \le \epsilon z_1^*$ with probability $\ge 1 - (2\pi k)^{-1/2}$.

For large
$$k \ 2^T \approx A^k$$
 where $A = 2^{(m^{m/2}c_m/2^m \epsilon^m)}$
 $\leq n^{p \log A}$

and so the approximation scheme is polynomial when k is restricted in this manner.

 $\|\cdot\|_{\infty}$. In this case $\hat{z}_1 - z_1^* \le L/2t$ and we take $t = \lceil k^{1/m}/\varepsilon \rceil$.

3. Analysis of problem 2

We first compute a probabilistic lower bound for problem 2 using $\| \|_{e}$.

Lemma 3.1. Let n points $X = \{x^{(1)}, \dots, x^{(n)}\}$ be chosen at random in D. For $a \ge 0$ and $v = c_m a^m / V$

$$\operatorname{Prob}(z_2^*(n,k) \leq a) \leq (12/11)(kv)^{n-k} (n^n/k^k (n-k)^{n-k}) \sqrt{n/2\pi k (n-k)}.$$
(3.1)

Proof. Let $J = \{j_1, \ldots, j_k\} \subseteq N = \{1, 2, \ldots, n\}$ and let $Y = \{x^{(j_1)}, \ldots, x^{(j_k)}\}$. If $j \in N - J$, then Prob(there exists $i(j) \in J$ such that $\|x^{(j)} - x^{(i(j))}\|_{e} \le a\} \le kv$. Hence

Prob(for all
$$j \in N - J$$
 there exists $i(j) \in J$ such that

$$\|\mathbf{x}^{(i)} - \mathbf{x}^{(i(j))}\|_{c} \le a \le (kv)^{n-k}$$
 (3.2)

Now there are $\binom{n}{k}$ subsets of size k in N and hence $\operatorname{Prob}(z_2^*(n, k) \leq a) = \operatorname{Prob}((3.2))$ holds for some $J \leq \binom{n}{k}(kv)^{n-k}$. the result now follows after using Stirlings inequalities.

Theorem 3.1. For a sequence of problems where $n \to \infty$ and k = nd + O(1/n) with $0 \le d < 1$ we have

$$\operatorname{Prob}(z_2^*(n,k) \leq (\alpha_d V/kc_m)^{1/m}) \leq (12/11)\sqrt{n/2\pi k(n-k)} + O(1/n)$$
where $\alpha_d = (1-d)d^{d/(1-d)}$. (3.3)

Proof. Use Lemma 3.1.

Thus if $k \to \infty$ (3.3) provides a lower bound for $z_2^*(n, k)$ with probability tending to 1.

For constant k the problem can be solved exactly in $O(n^{k+1})$ time by examining each k-subset of X.

In the case of $\| \|_{\infty}$ a similar proof gives

Theorem 3.2. For a sequence of problems where $n \to \infty$ and k = nd + O(1/n) with $0 \le d < 1$ we have

$$\operatorname{Prob}(z_2^*(n,k) \leq \frac{1}{2} (\alpha_d V/k)^{1/m}) \leq (12/11) \sqrt{n/2\pi k(n-k)} + \operatorname{O}(1/n)$$
where $\alpha_d = (1-d) d^{d/(1-d)}$. (3.3)

We once again describe the calculation of upper bounds and approximate solutions in the case that D is a hypercube of side L. We again divide D uniformly into \hat{k}^m hypercubes of side L/\hat{k} and this time to produce Y we select one point of X from each hypercube that contains points of X and then make up Y to size k be arbitrary addition of points in X not used so far. This gives

$$z_2^* \le m^{1/2} L/\hat{k}$$
 for $\| \cdot \|_e$,
 $z_2^* \le L/\hat{k}$ for $\| \cdot \|_{\infty}$.

To obtain approximate solutions we proceed in much the same manner as in Section 2. We choose t>0 as before and divide D into H_1,\ldots,H_T . For each $J\subseteq SJ=\{J\subseteq \{1,\ldots,T\}:|J|=k\}$ we proceed as follows: for each $j\in J$ such that $H_j\cap X\neq\emptyset$ choose $\mathbf{x}^{(j)}\in H_j\cap X$. This produces $k_1\leqslant k$ points to which we arbitrarily add $k-k_1$ other points from X to form a set Y(J). Then let $\hat{z}_2=\min(z_2(X,Y(J)):J\subseteq SJ)$ which can be computed in $O(2^Tnk)$ time.

Now let Y^* minimize z_2 and assume without loss of generality that $Y^* \subseteq \bigcup_{i=1}^k H_i$. A use of the triangular inequality as in Section 2 shows that

$$\hat{z}_2 - z_2^* \le L_t$$
 where $L_t = \max(\|x - y\| : x, y \in H_1)$.

Assuming $k \le d \log n$ and given $\varepsilon > 0$ and taking

$$t = \lceil m^{1/2} (kc_m)^{1/m} / \varepsilon \rceil \quad \text{for } \| \|_{e},$$

$$t = \lceil 2k^{1/m} / \varepsilon \rceil \qquad \text{for } \| \|_{\infty},$$
(3.4)

we have $\hat{z}_2 - z_2^* \le \varepsilon z_2^*$ with high probability and the time taken is polynomial in n.

4. Analysis of problem 3

Our lower bounds for | | | e are based on

Lemma 4.1. Let $X \subseteq \mathbb{R}^m$ be a finite set and suppose that \mathbf{x} , $\mathbf{y} \in X$ implies $\|\mathbf{x} - \mathbf{y}\|_e \le a$. Then $r = r(X) \le a(m/2(m+1))^{1/2}$ where r is the radius of the smallest hypersphere containing X.

Proof. Let c = c(X) be the centre of this hypersphere and as in Lemma 2.1 $c = \sum_{i=1}^{d} \lambda_i \mathbf{y}_i$ where $\|\mathbf{y}_i - c\|_e = r$. We can assume by Caratheodory's theorem that $d \le m+1$. If $z_i = (\mathbf{y}_i - c)/r$ for $1 \le i \le d$ then

$$0 = \left\| \sum_{i=1}^{d} \lambda_i z_i \right\|_{c}^{2} = \sum_{i=1}^{d} \lambda_i^{2} + 2 \sum_{i=1}^{d} \lambda_i \lambda_i z_i \cdot z_i$$

We show that there exists k, l such that $z_k \cdot z_l \le -1/(d-1)$. (If d=1 then $X = \{c\}$ and the result is trivial.) For if not we have

$$0 > \sum_{i} \lambda_{i}^{2} - (2/(d-1)) \sum_{i} \lambda_{i} \lambda_{j} = (\sum_{i} (\lambda_{i} - \lambda_{j})^{2})/(d-1) \ge 0.$$

Thus

$$a^{2} \ge \|\mathbf{y}_{k} - \mathbf{y}_{l}\|_{c}^{2}$$

$$= r^{2} \|\mathbf{z}_{k} - \mathbf{z}_{l}\|_{c}^{2}$$

$$= r^{2} (\mathbf{z}_{k}^{2} + \mathbf{z}_{l}^{2} - 2\mathbf{z}_{k} \cdot \mathbf{z}_{l})$$

$$\ge r^{2} (2 + 2/(d - 1)) \ge r^{2} (2 + 2/m). \quad \Box$$

Using this result in conjunction with Theorem 2.1 gives

Theorem 4.1. For a sequence of problems where $n \to \infty$ and k = nd + O(1/n) with $0 \le d < 1$ we have

$$\operatorname{Prob}(z_3^*(n,k) \leq \alpha_d (V/kc_m)^{1/m}) \leq 1/\sqrt{2\pi k} + O(1/n)$$
where $\alpha_d = (2(m+1)/m)^{1/2} (e^{-d}b^{-\sqrt{d}})^{1/m(1-d)}$. (4.1)

The result for $\| \|_{\infty}$ depends on the fact that if $X \subseteq R^m$ is such that $x, y \in X$ implies $\|x - y\|_{\infty} \le a$ then X can be contained in a hypercube of side a. This gives using Theorem 2.2.

Theorem 4.2. For a sequence of problems for which $n \rightarrow \infty$ and $k/n \rightarrow d < 1$ we have

$$\operatorname{Prob}(z_3^*(n,k) \leq (\alpha_d V/k)^{1/m}) \leq 1/\sqrt{2\pi k} + O(1/n)$$
where $\alpha_d = (e^{-d} d^{md})^{1/(1-d)}$. (4.2)

Once again assuming that D is a hypercube of side L we obtain upper bounds by dividing D into $\tilde{k} = \hat{k}^m$ hypercubes of side L/\hat{k} . Let these hypercubes be $H_1, \ldots, H_{\tilde{k}}$. We then partition X into $X \cap H_1, \ldots, X \cap H_{\tilde{k}}$ plus $k - \tilde{k}$ empty sets. If there are points of X on the boundaries of several hypercubes we assign these points arbitrarily to one of them. This partition gives

$$z_3^* \le m^{1/2} L/\hat{k}$$
 for $\|\cdot\|_{c}$
 $z_3^* \le L/\hat{k}$ for $\|\cdot\|_{c}$.

To obtain approximate solutions we again choose t>0 and divide D into $T=t^m$ hypercubes H_1, \ldots, H_T . For $J\subseteq\{1, 2, \ldots, T\}$ let $H_J=\bigcup_{i\in J}H_i$ and let P(T) = the set of partitions of $\{1, \ldots, T\}$ into k subsets. For $(J_1, \ldots, J_k)\in P(T)$ let

$$Z_3(J_1, \ldots, J_k) = \max(\max(\|\mathbf{x} - \mathbf{y}\| : \mathbf{x}, \, \mathbf{y} \in H_{J_i} \cap X) : i = 1, \ldots, k)$$

and let $\hat{z}_3 = \min(Z_3(J_1, \ldots, J_k) : (J_1, \ldots, J_k) \in P(T))$. \hat{z}_3 can be computed in $O((k^T/k!)n^2)$ time. Now let (X_1^*, \ldots, X_k^*) be the optimal partition for z_3 . The partitions generated in computing \hat{z}_3 are all those that satisfy

$$X_i \cap H_r \neq \emptyset$$
 for some i , r implies $X_j \cap H_r = \emptyset$ for $i \neq j$. (4.3)

If X_1^*, \ldots, X_k^* does not satisfy (4.3) then we can find $(\hat{X}_1, \ldots, \hat{X}_k)$ satisfying (4.3) and

$$z_3(\hat{X}_1, \dots, \hat{X}_k) \le z_3(X_1^*, \dots, X_k^*) + 2L_t.$$
 (4.4)

 $(\hat{X}_1, \ldots, \hat{X}_k)$ is obtained by starting with (X_1^*, \ldots, X_k^*) and while there are r, i, j_1, \ldots, j_p contravening (4.3) amending the current partition (X_1, \ldots, X_k) by $X_i := X_i \cup \bigcup_{s=1}^p (X_{j_s} \cap H_r)$ and $X_{j_s} := X_{j_s} - H_r$ for $s = 1, \ldots, p$. We observe that throughout the above process

$$x \in X_i$$
 implies there exists y , r such that $y \in X_i^*$ and x , $y \in H_r$ (4.5)

(either y = x or prior to some change of partition $x \in X_{j_t} \cap H_r$ and it is then moved to X_i while $y \in X_i \cap H_r$ is never moved).

Let $z_3(\hat{X}_1, \dots, \hat{X}_k) = \|\hat{x} - \hat{y}\|$ where \hat{x} , $\hat{y} \in \hat{X}_p$. From (4.5) there exist x^* , y^* , r, s such that x^* , $y^* \in X_p^*$, \hat{x} , $x^* \in H_r$ and \hat{y} , $y^* \in H_s$. Thus

$$\|\hat{x} - \hat{y}\| \le \|\hat{x} - x^*\| + \|x^* - y^*\| + \|y^* - \hat{y}\|$$

 $\le L_t + z_3^* + L_t$

and thus $\hat{z}_3 \leq z_3^* + 2L_t$.

 $\| \|_{e}$. Here $\hat{z}_{3} - z_{3}^{*} \le 2m^{1/2}L/t$. Now fix $1 < \varepsilon < 0$ and take

$$t = \lceil m(kc_m)^{1/m} / ((m+1)/2)^{1/2} \varepsilon \rceil.$$

This gives $z_3 - z_3^* \le \varepsilon z_3^*$ with high probability. The dominant term in $k^T/k!$ is, using Stirling's formulae A^k for some constant A and for polynomial time we again assume $k \le d \log n$.

 $\| \|_{\infty}$. Here we take $t = \lceil 2k^{1/m}/\varepsilon \rceil$.

5. Analysis of problem 4

We first compute a probabilistic lower bound to problem 4 using | | ||e.

Lemma 5.1. Let $X = \{x^{(1)}, \dots, x^{(n)}\}$ be chosen at random in D. Let $z(X) = \sum_{i} \sum_{j} ||x^{(i)} - x^{(j)}||_{e}$. Then

$$Prob(z(X) \le a) \le n(m! c_m (a/n)^m / V)^{n-1} / (m(n-1))!.$$
(5.1)

Proof. We first consider the following: c is an arbitrary point of D and $Y = \{y^{(1)}, \ldots, y^{(q)}\}$ are chosen at random in D. Let $d_i = ||c - y^{(i)}||_e$ and $d(c, Y) = \sum_i d_i$. Then

$$\operatorname{Prob}(b_i \leq d_i \leq b_i + \delta b_i) \leq m c_m b_i^{m-1} \delta b_i (1 + \operatorname{O}(\delta b_i)) / V$$

as $mc_mb_i^{m-1}\delta b_i$ is the approximate hypervolume of a "thin hyperannulus" of

radius b_i and thickness δb_i . Consequently

$$Prob(d(c, Y) \le a) \le \int_{b_1=0}^{b_1=a} \int_{b_2=0}^{b_2=a-b_1} \cdots \int_{b_q=0}^{b_q=a-\sum_1^{q-1}b_i} \prod_i (mc_m b_i^{m-1} db_i/V)$$
$$= (m! c_m a^m/V)^q/(qm)!$$

which is easily proved by induction. Putting $X_i = X/\{x^{(i)}\}$ we see that

$$Prob(d(\mathbf{x}^{(j)}, X_j) \le a) \le (m! \ c_m a^m / V)^{n-1} / ((n-1)m)!. \tag{5.2}$$

Now

$$\operatorname{Prob}\left(\sum_{j=1}^{n} d(\mathbf{x}^{(j)}, X_{j}) \leq na\right) \leq \operatorname{Prob}(d(\mathbf{x}^{(j)}, X_{j}) \leq a \text{ for at least one } j = 1, \dots, n)$$

$$\leq n \operatorname{Prob}(d(\mathbf{x}^{(1)}, X_{1}) \leq a). \tag{5.3}$$

We obtain (5.1) by replacing a in (5.3) by a/n and using (5.2). \square

Lemma 5.2. Let $X = \{x^{(1)}, \dots, x^{(n)}\}$ be chosen at random in D. For $a \ge 0$ and assuming $n \ge 2k$, then

$$\operatorname{Prob}(z_4^*(n,k) \le a) \le A/B \tag{5.4}$$

where

$$A = e^{m(n-1)+k} k^{(2m+1)n-2(m+1)k} n^k (m! c_m a^m / V)^{n-k},$$

$$B = (m(n-k)^2)^{m(n-k)} (2\pi mk(n-k))^{1/2}.$$

Proof. Let $(X_1, \ldots, X_k) \in PART(n, k)$ and let $n_t = |X_t|$ for $t = 1, \ldots, k$ and let $Q = Prob(z(X_t) \le a$ for $t = 1, \ldots, k)$ where z is as defined in the statement of Lemma 4.1. From this lemma

$$Q \leq \prod_{t=1}^{k} n_{t}(m! c_{m} a^{m}/V)^{n_{t}-1}/n_{t}^{m(n_{t}-1)}(m(n_{t}-1))!$$

$$\leq (n/k)^{k} (m! c_{m} a^{m}/V)^{n-k}/P$$

where

$$P = \prod_{n_t \ge 2} (mn_t(n_t - 1))^{m(n_t - 1)} (2\pi m(n_t - 1))^{1/2} e^{-m(n_t - 1)}$$

$$\ge m^{m(n - k)} ((n - k)/k)^{2m(n - k)} (2\pi m(n - k))^{1/2} e^{-m(n - 1)}$$

where $n \ge 2k$ is used in one of the reductions.

As there are at most $k^n/k!$ partitions we have our result in the usual way after using Stirling's inequalities. \square

Theorem 5.1. For a sequence of problems where $n \to \infty$ and k = nd + O(1/n), and

(i)
$$0 < d \le \frac{1}{2}$$
:

$$\text{Prob}(z_4^*(n, k) \le \alpha_d (V/kc_m)^{1/m}) \le 1/\sqrt{2\pi mk(n-k)} + O(1/n)$$

where $\alpha_d = ((1-d)/d)^2 m ((d^d e^{-m-d})^{1/(1-d)}/m!)^{1/m}$.

(ii) d = 0;

$$\operatorname{Prob}(z_4^*(n, k) \leq \beta_m (n/k)^2 n^{-k/n} (V/kc_m)^{1/m}) \leq 1/\sqrt{2\pi mk(n-k)} + O(1/n)$$
where $\beta_m = m/e(m!)^{1/m}$.

Proof. Use Lemma 5.2.

For | | we have

Theorem 5.2. For a sequence of problems where $n \to \infty$ and k = nd + O(1/n) and (i) $0 < d \le \frac{1}{2}$:

$$\text{Prob}(z_4^*(n, k) \le \alpha_d (V/k)^{1/m}/2) \le 1/\sqrt{2\pi mk(n-k)} + O(1/n).$$

(ii) d = 0:

$$Prob(z_4^*(n, k) \le \beta_m (n/k)^2 n^{-k/n} (V/k)^{1/m}/2) \le 1/\sqrt{2\pi mk(n-k)} + O(1/n)$$

where α_d , β_m are as in Theorem 5.1.

Once again assuming that D is a hypercube of side L we obtain an upper bound by using the partition defined in Section 4. This gives

$$z_4^* \le m^{1/2} L n^2 / \hat{k} \quad \text{for } \| \|_{\text{e}},$$

$$z_4^* \le L n^2 / \hat{k} \quad \text{for } \| \|_{\infty}.$$

Note that these upper bounds are larger than the lower bounds by a factor of order of magnitude k^2 . This can be explained by the possibility that all the points of X lie in the same small hypercube. To obtain approximate solutions we proceed as in Section 4 to compute

$$\hat{z}_4 = \min(Z_4(J_1, \dots, J_k) : (J_1, \dots, J_k) \in P(T))$$

where

$$Z_4(J_1, \ldots, J_k) = \max \left(\sum_{x,y \in H_{J_i} \cap X} ||x - y|| : i = 1, \ldots, k \right)$$

assuming the usual uniform division of D into t^m hypercubes. Once again let (X_1^*, \ldots, X_k^*) minimise z_4 . If this partition satisfies (4.3) then $\hat{z}_4 = z_4^*$ otherwise we can compute from it a partition $(\hat{X}_1, \ldots, \hat{X}_k)$ satisfying (4.3) and

$$z_4(\hat{X}_1, \dots, \hat{X}_k) \le z_4^* + n^2 L_r.$$
 (5.5)

We start from (X_1^*, \ldots, X_k^*) and a general stage of the construction suppose we have the partition (X_1, \ldots, X_k) and for some $r |I| \ge 2$ where $I = \{i : X_i \cap H_r \ne \emptyset\}$. Let c be the centre of H and for $i \in I$ let $d_i = \sum_{x \in X_i} ||x - c||$ and let $d_p = \min(d_i)$. We

amend the current partition as follows:

$$X_p := X_p \cup (H_r \cap X),$$

$$X_i := X_i - H_r, \quad i \in I - \{p\}.$$

The change Δ in the value of z_4 is

$$\sum_{i \in I - \{p\}} \sum_{x \in H_r \cap X_i} \left(\sum_{y \in X_p} \|x - y\| - \sum_{y \in X_i - H_r} \|x - y\| \right).$$

Now

$$\sum_{\mathbf{x} \in H_r \cap X_i} \sum_{\mathbf{y} \in X_p} \|\mathbf{x} - \mathbf{y}\| \le n_i (d_p + |X_p| L_i/2)$$

where $n_i = |H_r \cap X_i|$ and

$$\sum_{\mathbf{x} \in H_i \cap X_i} \sum_{\mathbf{y} \in X_i - H_i} \|\mathbf{x} - \mathbf{y}\| \ge n_i (d_i - |X_i| L_i/2)$$

and so

$$\begin{split} \Delta & \leq \sum_{i \in I - \{p\}} n_i (d_p - d_i + (\left| X_p \right| + \left| X_i \right|) L_i / 2) \\ & \leq \sum_{i \in I - \{p\}} n_i n L_i. \end{split}$$

Continuing this process until (4.3) is satisfied we find that the total change is $\leq n^2 L_r$.

|| ||_e. Here
$$\hat{z}_4 - z_4^* \le 2m^{1/2}n^2L/t$$
. Now fix $1 < \varepsilon < 0$ and take $t = [2m^{1/2}k^2(kC_m)^{1/m}/\varepsilon\beta m]$.

This gives $\hat{z}_4 - z_4^* \le \varepsilon z_4^*$ with high probability. The time for computing z_4 is $O(n^2 k^{T+1}/k!)$ and the dominant term in $k^T/k!$ is one of $k^{k^{2+1/m}}$ and to get a polynomial time algorithm we assume $k \le (b \log n/\log \log n)^{1/(2+1/m)}$.

$$\| \|_{\infty}$$
. Here we take $t = \lceil 2k^{2+1/m}/\varepsilon\beta m \rceil$.

Acknowledgement

I am grateful to Colin McDiarmid for his valuable comments.

References

- [1] M.L. Fisher and D.S. Hochbaum, Probabilistic analysis of the euclidean k-median problem, Research Report 78-06-03, University of Pennsylvania (1978).
- [2] M.R. Garey, R.L. Graham and D.S. Johnson, Some NP-complete geometric problems, Proceedings 8th ACM Symposium on Theory of Computing (1976) 10–29.
- [3] C.H. Papadimitriou, The euclidean travelling salesman problem is NP-complete, Theoretical Computer Science 4 (1977) 237-244.