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We are given n points distributed randomly in a compact region D of R™. We consider
various optimisation problems associated with partitioning this set of points into k subsets. For
each problem we demonstrate lower bounds which are satisfied with high probability. For the
case where D is a hypercube we use a partitioning technique to give deterministic upper bounds
and to construct algorithms which with high probability can be made arbitrarily accurate in
polynomial time for a given required accuracy.

1. Introduction

We are given n points X ={x‘", ..., x"™} belonging to a given compact region

D < R™. We study in this paper various optimisation problems associated with
such a set:
Problem 1. Find Y={y", ..., y*}<= D such that

z)(X, Y)=max(min(|x® - y?|:j=1,...,k):i=1,...,n)
is minimised.
Problem 2. Find Y={y", ..., y*}< X such that z,(X, Y) is minimised. It will
be convenient to refer to the objective function as z,(X, Y) in this case.
Problem 3. Partition X into k subsets X,,..., X, so that

z3(X,, ..., X)) =max(max(|lx—y||:x, ye X)):j=1,..., k)
is minimised.
Problem 4. Partition X into k subsets X,,..., X, so that

z4(Xl,...,Xk)=max( ) |Jx—y||:j=1,...,k)

xyeX;
is minimised.
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296 A.M. Frieze

The norms considered will be

m 1/2
Iel=( Y. %)

j=1
llx|l. = max(|x;|:j=1,..., m).

Non-euclidean versions of the above problems are known to be NP-hard as are
the corresponding problems of finding e-optimal solutions for arbitrary & > 0.

(For m =1 problems 1, 2, 3 are solvable in polynomial time using dynamic
programming. the status of problem 4 when m =1 is not known.)

It is likely therefore that problems 1-4 are also NP-hard as is the case for
Euclidean versions of other NP-hard problems [2,3]. This paper conducts a
probabilistic analysis of these problems. The n points are assumed to be randomly
and uniformly distributed over the region D which is assumed to have hyper-
volume V.

Results can be obtained for other norms by using the fact that for any two
norms || |l || |l, there exists a constant p such that for xe R™ ||x|, < p ||x||,. For
example if m =2 and k, n grow so that k/n—0 as n— o we show that in problem
1 using || ||. that

z¥=min z,(X, Y)=(V/kw)"?
with probability tending to 1. Now as ||x|l..=||x|l./v/2 this implies that using || [|..
z¥=(V2km)'?

with probability tending to 1. We can however prove in this case that z¥=
2(V/k)'* with probability tending to 1. We have thus analysed these norms
separately.

We follow the approach used in Fisher and Hochbaum [1]. For an instance of
problem t we denote the value of an optimal solution by z¥(n, k). For each
problem we derive lower bounds for z¥ which are valid with probability tending
to 1 assuming that k/n—d <1 in problems, 1, 2, 3 and d <3 for problem 4.

Then restricting our attention to the case where D is a hypercube we derive
simple upper bounds for z¥. We then use a grid technique as in Fisher and
Hochbaum [1] such that given £>0 we derive a solution of value 2, where
3, —z¥<ez¥ with probability tending to 1. The time complexity of these al-
gorithms are O(n"*’) where p(e) naturally depends on e. Fisher and Hochbaum
analysed the k-median problem: find Y={y", ..., y¥*}= X such that

n

Y min(x?-y?|.:i=1,..., k)

)

j=1
is minimised.
They only considered m =2 and || ||, but their analysis would extend easily to
general m.
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The results obtained here can be usefully compared with those of [1], most
importantly for problem 2 with m =2 and || |. we show that for a fixed region the
optimal value (usually) grows like 1/vk whereas for the k-median problem the
optimal value grows like n/vk. The factor n is what one would expect on
comparing objective functions.

2. Analysis of problem 1

We first compute a probabilistic lower bound to problem 1 using || ||.. We shall
use Stirling’s inequalities

(nfe)"2nm)'"?=n'<=(12n/12n— D(n/e)" (2nm)'"?

several times to replace factorials and so we have stated them here for conveni-
ence.

Notation. For ae R, a=0 and ce R™ the hypersphere is
HS(c, a)={xe R™:||x—¢|.=a}.

It's hypervolume is denoted by ¢,,a™ where the ¢, satisfy

w2
;=2 and ¢, = (2 J cos" "o dﬂ)c," for m=1.
(4]
Note that

2n—1 2n-3 1 =
2n 2n-2 2 2

2n 2n—-2
2n+1 2n-1

/2
J cos™" H do =
0

w2 R 2
J cos™ "t g de = i ey

0 3
Let X< R™ be finite. Let r=r(X) be the radius of the smallest hypersphere
containing X and let ¢ =¢(X) be the centre of this hypersphere.

Lemma 2.1. Let X, r, ¢ be as above and suppose r=a. If ze R™ is such that
r{XU{z}h)=a, then ||z—c|.=a+(a>—r*)">

Proof. Let Y={xe X:|x—c|.=r}#§. Now let C=convex hull of Y. We show
by contradiction that ce C. If ¢¢ C let b be the nearest point of C to ¢. Let
e, =(1—A)c+Ab for 0<A<1.Nowfor A>0and ye Y|y—c|.<|ly—ecll. and so
if A is “small enough™ ¢ can be the centre of a hypersphere of radius r'<r
containing X. Thus ¢ C and so ¢=Y{ Ay where A, >0 for i=1,..., d and
Y&, X\, =1. Now let z be as in the statement of the lemma and let ¢, = ¢(X U{z}).
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Since c € C there exists y, such that (¢, —¢)+ (y,—¢)=<0. Then

P
e

a*= e, -y,

=lley— |2 +ly. — ¢l —2(c;—¢) - (y.—¢)

=|ley—c|f+r%.
Thus |le; —¢|l. <(a*—r*)"* and hence

lz=ell.<llz—eill. +lle: — el < a+(a*~r*)"2 O

Lemma 2.2. Let E(n, ¢, a) be the event that n points x'", ..., x" chosen at

random in D lie in HS(c, a) and let F(n, a)= J.p (1, ¢, a).
Then for n=2 there exists b=b(m)>1 such that

P(n, a) = Prob(F(n, a))<b""v" (2.1)

where v=c,a™lV.

Proof. Let p(n, z) be the density function of the random variable z = radius of the
smallest hypersphere containing n random points in D.
It follows that P(n, a)=[§ p(n, z) dz and it follows from Lemma 2.1 that

m

P+ 1,0) =6/ V) [ b D)@+ (a*= 2" da

Integration by parts gives

Pn+1, a)<(c,a™/ V)P(n, a)

+(me,,/ V) J P(n, za+(a*—zH)Y) " 1 z(a*— 232 dz.

0

(2.2)

Now P(2,a)=2"c,a™/V and if for some n=2 and constant « P(n,z)<
a(c,,z™/ V)" for all z=0 then substitution in (2.2) gives

P(” % I? LI)S a(l + u,l_l)(cma"‘/\/)”

where

/2

i mJ- (1+cos 6)™ Y(sin )™+ dg.
0

We deduce therefore that for n=2

n—2

P(n, a)<2"[] (1 +u)(cna™ V)", (2.3)

t=1

The RHS of (2.3) is bounded by bY"p" ! for some b dependent on m. This can be
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shown as follows:

/2

N 2 ” mn mn—2
u, =m2m 1 -I- (sm 9)””” 1 do=a .

mn+1 mn—1

=]

where « is dependent on m. If

M M-2 2
B M1 m 3 for M even,
M M-2 1
“WEL WAl g MG

we show that B, <2/v'M. For M even

M—I.M—3 3

Bu<l =y M2 7

Thus B3,<2/(M+1)<2/M. For M odd 3,<1/M by a similar argument. Thus
u, <2a/Nmn=p¥n for B=2a/Vm.

Thus for n=2

n—2 n—2

[T a+u) <]l a+p<er 2

as may be shown by induction on n. B
Thus the R.H.S. of (2.3)<2"e?**¥" "' which can be simplified to b*"v" " for
large enough b.

Lemma 2.3. Let n points X ={x'", ..., x"} be chosen at random in D. For a =0
and v=c,a™lV
Prob(z¥(n, k)< a)= (kv)" *e*b""*/v2mk (2.4)

if || || is used.

Proof. Let X, ..., X; e PART(n, k) =the set of (unordered) partitions of X into
k subsets. Let n,=|X,| for t=1,..., k and let

Q =Prob((X, =HS(c, a) for some ¢, e D) for t=1,...,k)

k
= 1—[ Prob(X, = HS(c,,a) for some ¢, € D)
=1

::.—

Prob(F(n, a)) as in Lemma 2.2.

t

By Lemma 2.2

k
QS‘U"ik H bvrr:. < vn-kbm_

=1
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Now let S(X)={(X;,...,X,)ePART(n, k):r(X,)=<a for t=1,...,k} (r as in
Lemma 2.1). We note that S(X)=@— z¥(n, k) > a. Thus
Prob(z¥(n, k)= a)=<Prob(S§(X) # )
< E(|S(X)|) (Expectation by the above)
<|PART(n, k)| v"~*p*"*

s(kn/k!)vnfkbm

The result now follows after using Stirlings inequalities. [

Theorem 2.1. For sequence of problems where n—o and k =nd+O(1/n%) with
0=d<1 we have

Prob(z¥(n, k) =< (a, V/ke,)'"™ < 1/¥2mk+O(1/n) (2.5)

where ad A (e—db—\/d)h'(lfd).

Proof. Simply substitute (e, V/kc,,)"'™ for a in (2.4). O

Thus if k— (2.5) provides a lower bound for z¥(n, k) with probability tending
to 1.

For constant k we must clearly have zF=(V/kc,, )™ -note a,=1-else we
cannot cover D with k hyperspheres of radius z§. It is straightforward to show
that for finite k we must do this with probability tending to 1.

We continue by computing lower bounds to z¥ for || |l.. We base our analysis
on a lemma about covering D with hypercubes. It will be used for sets of the form
{xe R™:|x—c|=<a}.

m

Notation. Let a,ce R

HO(c, a)={xe R™:|x,

]

a=(0. The hyperoblong is

—¢|=3zq for j=1,...,m}.

It’s hypervolume is of course a;a, - - a,,.

Lemma 2.5. Let E(n, ¢, a) be the event that n points X ={x'", ..., x"} chosen at

random from D lie in HO(c, a) and let F(n, a)= U .. E(n, ¢, @). Then forn=2
P(n, a)=Prob(F(n, a))<n"v""!

where v=a,a, - - a,,/V.

Proof. Let p(n, z) be the density function of the random vector z€ R™ where

Z1s ..., 2, are the lengths of the sides of the smallest hyperoblong containing the
set X. These lengths are given by

z =maeb P e et = minlxi, Lo 2B
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Thus

L a, o™ .z
J p{n,z)dz, ---dz, and p(rl,z}:fﬁ—).
0 ("ZI Tt Zy

P(rl,a):J

0

We also have

a, m

. J“'"(p(n. z),"V)(H (Zarzi)) dz, - ++dz.  (2.6)

P(n+1, a)s[

0

(n+1)

This is because for given z,---z, the random point x must lie in a
hyperoblong of sides (2a,—z,) - - - (2a,, — z,,) in order that F(n+ 1, a) can occur.

Next let M={1,2,..., m} and for S€ M let Ps denote P(n, h,-- - h,,) where
h;=a; for ieS and h; =z, for i¢S. Let dg =]];4sdz; and as =[];.s a;. Successive
integration of the RHS of (2.6) by parts gives

P(n+1, a)S.( y aSJPS ds)/v. 2.7)

SeM

Now P(2,a)<2"a,---a,/V and if for some n=2 and constant a P(n, z)<
a(([T~, z)/ V)" ! for z=0 then from (2.7) we have

P(n+1, a)S( ¥ aaf&J (1_[ il dzi)/V"

seM ¢S
= ( Z aCI}L,JfS')/V", S=M-5§
SeM

=a(l+1/n)"v".

Thus

Pin+1,a)<[] (1+1/)™" =(n+1)™". O

=1

(8]

Lemma 2.7. Let n points X ={x ... x"% be chosen at random in D. For a=(

and v=a™mlV

Prob(z¥(n, k)<ia)<(kv)" *e*(n/k)"" /N2 k. (2.8)

Proof. Let (X,,..., X, )ePART(n, k) and |X;|=n; for i=1,...,k Let a=
(a,...,a)e R™ and let O=Prob((X;=HO(c,a) for some ¢ eD) for i=
11 el

By Lemma 2.4 with v=a"/V

il

k

Q

H?lU"‘_l = (?‘!/k)kmi)"_k.
1

i
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It follows as in Lemma 2.3 that
Prob(z¥(n, k)< a/2)< (k"/k!)Q.

The result now follows after using Stirlings inequalities. [

Theorem 2.2. For a sequence of problems where n — < and k = nd +O(1/n) with
O0=d<1 we have

Prob(z¥(n, k)< Ge,V/k)"™)=<1/V27k+0O(1/n) (2.9)

wher'e ad X (e—ddmd)l,‘(l—d)‘
Proof. Simply substitute (a, V/k)""™ for a in (2.8). O

Similar comments to those given after Theorem 2.1 apply. We now describe the
calculation of upper bounds and approximate solutions in the case that D is a
hypercube of side L. Let k= [k"™"| and divide D uniformly into k™ hypercubes
of side L/k and let Y consist of the centres of these hypercubes plus k — k™ other
points in D.

| Jl. For xe D there is a point y€ Y such that |x —y|.<m'?L/2k and so for
this norm

z¥(n, k)< m'2Lj2k.

| |l.. For x€ D there is a point y € Y such that [x — y|..< L/2k and so for this
norm

z¥(n, k)< L/2k.

Notice that if k=Kk™ this upper bound coincides closely with the lower bound
derived after Theorem 2.2 when d =0.

We now consider approximate solutions. Let >0 be an integer which deter-
mines the proposed accuracy of the solution. Divide D uniformly into T="
hypercubes Hy, ..., Hy of side L/t. Let C={c,,..., ¢y} be the set of centres of
these hypercubes. Let

2, =min(z,(X, Y):Y< C and |Y|=k).
This can be computed in O(2"nk) time. Let Y™ minimise z,. Assume without loss
of generality that Y*< |Jj_, H;,. Now for xe D and y< H
lle; = xll=<lle; = yll+lly - xI
and hence
2, —z¥<max(|c,—y||:ye Y¥*N H,).
Il .. Thus 2,—zF<m'?L/2t. Now fix 1>e>0 and consider a sequence of

. problems for which k < p log n where p>0. Putting t = [m'?(kc,,)""™/2¢] we see
that Z,— z¥<ez¥ with probability =1—(2xk)™"2.
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For large k 2"=A* where A =2(m" /2"
spPieaa
and so the approximation scheme is polynomial when k is restricted in this

manner.
| |l In this case Z,—zF=<L/2t and we take t=[k'"/¢].

3. Analysis of problem 2
We first compute a probabilistic lower bound for problem 2 using || ..

Lemma 3.1. Let n points X ={x"", ..., x"} be chosen at random in D. For a=0
and v=c,,a™V

Prob(z¥(n, k)< a)=< (12/11)(kv)" *(n"/k*(n — k)" Wn/2mk(n —k).
(3.1)
Proof. Let J={j,,..., i} N={1,2,...,n} and let Y={x"9, .. . xW} If je
N—J, then Prob(there exists i(j) € J such that ||x"”’— x|, < a}= kv. Hence
Prob(for all je N—1J there exists i(j)eJ such that
@ — x|, < a)< (kv)"* (3.2)
Now there are (}) subsets of size k in N and hence Prob(z¥(n, k)= a) = Prob((3.2)

holds for some J)=<(})(kv)" *. the result now follows after using Stirlings ine-
qualities.

Theorem 3.1. For a sequence of problems where n—« and k =nd +Q(1/n) with
0=d<1 we have
Prob(z¥(n, k) < (a,Vike, )™ )< (12/11)Vn/27k(n — k) + O(1/n) (3.3)

where a, = (1—d)d¥~,
Proof. Use Lemma 3.1. [

Thus if k— < (3.3) provides a lower bound for z¥(n, k) with probability tending
to 1.

For constant k the problem can be solved exactly in O(n
each k-subset of X.

In the case of || |l.. a similar proof gives

1) time by examining

Theorem 3.2. For a sequence of problems where n—« and k =nd+0O(1/n) with
0=d<1 we have

Prob(z¥(n, k) <o, V/k)"'™)<(12/11)¥n/2wk(n— k) +O(1/n) (3.3)

where o, =(1—d)d¥* 9,
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We once again describe the calculation of upper bounds and approximate
solutions in the case that D is a hypercube of side L. We again divide D
uniformly into k™ hypercubes of side L/k and this time to produce Y we select
one point of X from each hypercube that contains points of X and then make up
Y to size k be arbitrary addition of points in X not used so far. This gives

E<mPLik for |

zZ¥E<Lik for| |..

[}

To obtain approximate solutions we proceed in much the same manner as in
Section 2. We choose >0 as before and divide D into H,,..., H;. For each
JeSI={Ic{l,..., T}:|J|=k} we proceed as follows: for each jeJ such that
H,N X#§ choose x% € H; N X. This produces k,= k points to which we arbitrar-
ily add k—k, other points from X to form a set Y(J). Then let Z,=
min(z,(X, Y(J)):J < SJ) which can be computed in O(2"nk) time.
Now let Y* minimize z, and assume without loss of generality that Y*c
i1 H;. A use of the triangular inequality as in Section 2 shows that
3,—z¥<L, where L,=max(|x—y|:x,yeH,).
Assuming k=d log n and given € >0 and taking
t=[m"(kc,,)"™f¢] for| |,
3.4
t=[2kY™/e] for || |, EE

we have 7, — z¥ =< gz¥ with high probability and the time taken is polynomial in n.

4. Analysis of problem 3
Our lower bounds for | ||, are based on

Lemma 4.1. Let X< R™ be a finite set and suppose that x, y € X implies ||x — y|. <
a. Then r=r(X)< a(m/2(m+1))""* where r is the radius of the smallest hypersphere
containing X.

Proof. Let ¢ =¢(X) be the centre of this hypersphere and as in Lemma 2.1
c=Y% | Ay, where ||y, —¢|l.=r. We can assume by Caratheodory’s theorem that
d=m+1.If z;=(y,—c)/r for 1=i=<d then

We show that there exists k, [ such that z, - zy=< —1/(d —1). (If d =1 then X ={c}
and the result is trivial.) For if not we have

0> A2=(2/d-1) ¥ A =2 (= A)Dd—1)=0.

-
=L AZ+42 E Aidz; * z;

[
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Thus
a’=|y, -yl
2
=r? |z, — 22
=r¥(z2+zi-2z.z)

=r2+2/(d-1)=r*Q2+2/m). O
Using this result in conjunction with Theorem 2.1 gives

Theorem 4.1. For a sequence of problems where n—= and k = nd +0O(1/n) with
0=d<1 we have

Prob(z¥(n, k)< ay(V/ke,)"™) < 1/N27k+O(1/n) (4.1)

where a, = (2(m + 1)/m)"*(e~9p ) 1ma-d)

The result for || [l. depends on the fact that if X< R™ is such that x, ye X
implies [|x — y||..< a then X can be contained in a hypercube of side a. This gives
using Theorem 2.2.

Theorem 4.2. For a sequence of problems for which n—« and kin—d<1 we
have

Prob(z¥(n, k)< (e, V/k)"'™) < 1/N2mk+O(1/n) (4.2)
where ay = (e 4d™)-9),

Once again assuming that D is a hypercube of side L we obtain upper bounds
by dividing D into k=Kk" hypercubes of side L/K. Let these hypercubes be
H,, ..., Hg. We then partition X into XN H,,..., XN H plus k— k empty sets.
If there are points of X on the boundaries of several hypercubes we assign these
points arbitrarily to one of them. This partition gives

zE<=m"L/k  for || |.
X<k for || |l...
To obtain approximate solutions we again choose (>0 and divide D into

T=1t" hypercubes H,,...,Hy. For J={1,2,..., T} let H,=J,.; H, and let
P(T) = the set of partitions of {1,..., T} into k subsets. For (J,, ..., J.)e P(T) let

Zi(Jy, .., S ) =max(max(|x—y|:x,ye H, N X):i=1,..., k)

and let Z;=min(Z;(J,,...,J.):(J\,..., J,)eP(T)). Z; can be computed in
O((k™/k!yn?) time. Now let (XT,..., X¥) be the optimal partition for z;. The
partitions generated in computing Z, are all those that satisfy

Xi N H, # § for some i, r implies X; N H, =@ for i#j. (4.3)
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If X¥,..., X7 does not satisfy (4.3) then we can find ()A(], s )2',;) satisfying (4.3)
and

2N by R e (. L XBADY (4.4)

(X,,...,X,) is obtained by starting with (X%, ..., X¥) and while there are
o ji,. .., J, contravening (4.3) amending the current partition (X, ..., X;) by
X=X, UUi_, (X;,NH,) and X, :=X, —H, for s=1,...,p. We observe that
throughout the above process

x € X, implies there exists y, r such that ye X* and x, ye H, (4.5)

(either y = x or prior to some change of partition x € X; N H, and it is then moved
to X; while ye X; N H, is never moved).

Let z5(X,, . .., X;) =||# — §|| where £ )"ef{p. From (4.5) there exist x*, y*, r, s
such that x*, y*e X* &£ x*eH, and ¥, y*< H,. Thus

fJ’
1% — Fll <[l — x|+ [lx* = y*][+[ly* - 5
<L +z¥+L,
and thus 2,<z¥+2L,.

Il ll.- Here 25— z¥<2m'?L/t. Now fix 1<e<0 and take

t=[m(kc,,)"™/((m+1)/2)"¢].

This gives z;—z¥=<gz¥ with high probability. The dominant term in k"/k! is,

using Stirling’s formulae A* for some constant A and for polynomial time we
again assume k<d log n.
| |l Here we take t=[2k'™/e].

5. Analysis of problem 4

We first compute a probabilistic lower bound to problem 4 using || |..

Lemma 5.1. Let X={x'", ..., x"} be chosen at random in D. Let z(X)=
2 et® =D, Then

Prob(z(X)=a)=n(m!c, (a/n)"{ V)" /(m(n— 1) (5.1)
Proof. We first consider the following: ¢ is an arbitrary point of D and Y=

{y'", ..., y'¥} are chosen at random in D. Let d; =|l¢—y"||. and d(e, Y)=Y,d.
Then

Prob(b; < d, < b, + 8b;) < mc,,b" " 8b;(1+0O(8b,))/V

as mc,,b"""' b, is the approximate hypervolume of a “thin hyperannulus” of
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radius b; and thickness 8b,. Consequently

bI

by=a pb,=a-b, bq:ﬂ_l‘_.;—l
Prob(d(c, Y)= a)sj j 5 8 J [T (me,.bi*~" dby V)
b b, i

by=0

=(m!c,a™V)i(gm)!

2=0 =0

which is easily proved by induction. Putting X; = X/{x""} we see that
Prob(d(x"”, X;)< a)<(m!c,a™/ V)" '/((n—1)m)\. (5.2)

Now

Prob (Z d(x", X)) < na)s Prob(d(x", X;)< a for at least one j=1,...,n)

ji=1

< n Prob(d(x", X,)=<a). (5.3)

We obtain (5.1) by replacing a in (5.3) by a/n and using (5.2). O
Lemma 5.2. Let X ={x",...,x"} be chosen at random in D. For a=0 and
assuming n =2k, then

Prob(z¥(n, k)<a)=< A/B (5.4)
where

A s em(n—{)+kk[2m+])n—2(m+l]knk(”]! Cm(lm/ v)ufk!

B =(m(n—Kk)»""O2amk(n— k)"
Proof. Let (X,,..., X,)ePART(n, k) and let n,=|X,| for t=1,...,k and let

Q=Prob(z(X,)=<a for t=1,...,k) where z is as defined in the statement of
Lemma 4.1. From this lemma

Q

I

k
[1 n(m! @™ vy~ e =(m(n, - 1))

1

. (f]fk)k(rn ! Cmam/ V}”ikflp

where

P= 1[I (mn,(n,— 1)) OQ2am(n,—1))2e- "D

n=2

=m ru(nfk]((” i k)/k)?‘n:(n*k](zﬂ_,n(n — k))lfze—nl(nf'l)

where n=2k is used in one of the reductions.
As there are at most k"/k! partitions we have our result in the usual way after
using Stirling’s inequalities. [J

Theorem 5.1. For a sequence of problems where n— and k = nd + O(1/n), and
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() 0<d<i:
Prob(z¥(n, k)< a,(V/ke,)""™) < 1/v2amk(n — k) +O(1/n)
where ay = ((1—d)/d)*m((d*e ™ VI tim,
(ii) d =0;
Prob(z¥(n, k)< B,,(n/k)*n ™" (V/ke,)"™) < 1/N2mamk(n — k) + O(1/n)

where (8, = m/e(m "™,
Proof. Use Lemma 5.2. O
For | |l.. we have

Theorem 5.2. For a sequence of problems where n—= and k =nd+O(1/n) and
(i) 0<d=1:
Prob(z¥(n, k)< a,(VIK)'™2)< 1/N2amk(n— k) +O(1/n).
(i) d=0:
Prob(z¥(n, k)< B,.(n/k)*n~*"(V/k)"""2) < 1/vV27mk(n—k)+O(1/n)

where ay, 3,, are as in Theorem 5.1.

Once again assuming that D is a hypercube of side L we obtain an upper bound
by using the partition defined in Section 4. This gives

z¥<m'"Ln?lk  for | ||,

z¥<Ln?fk for || |l
Note that these upper bounds are larger than the lower bounds by a factor of
order of magnitude k. This can be explained by the possibility that all the points
of X lie in the same small hypercube. To obtain approximate solutions we
proceed as in Section 4 to compute

24 =W Z( Ty o s B} h500 50y P(TY)
where

Z4(J,,...,Jk)=max( % llesslzt=ays., k)

x,yeH;, NX

assuming the usual uniform division of D into ™ hypercubes. Once again let
(XT, ..., X¥) minimise z,. If this partition satisfies (4.3) then %, = z¥ otherwise
we can compute from it a partition (X, ..., X}) satisfying (4.3) and

(X =2 L, (5.5)

We start from (XT, ..., X¥) and a general stage of the construction suppose we
have the partition (X, ..., X,) and for some r [I|=2 where I={i: X, N H,# (}}.
Let ¢ be the centre of H and for ieI'let d; =}, .y |x ¢/ and let d, = min(d;). We
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amend the current partition as follows:
X=X, U(H N X)),
X:=X,—H, iel—{p}
The change A in the value of z; is
Y Y (X e-yl- ¥ lx-yl).
icl—{p} xeH,NX, ‘yeX, yeX,—H,
Now

Y X lx—yl=n(d,+|X,| L/2)

xeH,NX; yr:'X,,

where n; =|H, N X;| and

YL Ix—yl=nld—|X|L/2)

xeH,NX; yeX;—H,

and so

A< ) n(d,—d+(X,|+|X|L/2)

iel—{p}

= Z mnl,.
iel—{p}
Continuing this process until (4.3) is satisfied we find that the total change is
=n’L,
| |l.. Here 2,—z¥<2m'?n*L/t. Now fix 1<e <0 and take

t=[2m'"2k*(kC,)" "™ epm].

This gives 2,—z¥=<ez¥ with high probability. The time for computing z, is

O(n?k™"'/k!) and the dominant term in k'/k! is one of k*"" and to get a
polynomial time algorithm we assume k = (b log n/log log n)"/<*1™)
| |l.. Here we take t = [2k*"V™/eBm].
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