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Let r=1 be a fixed positive integer. We give the limiting distribution for the probability that
the vertices of a random graph can be partitioned equitably into r cycles.

1. Introduction

The question of the existence of large cycles in random graphs is one of the
basic problems of the subject. The threshold for the existence of hamilton cycles
has been established by Komlés and Szemerédi [11]. There are now several
alternative proofs and generalisations of this result—see for example Bollobds
(1], Bollobds and Frieze [2], Fenner and Frieze [5, 6], Frieze [7, 8] and Luczak
[12].

As usual, let G, ,, denote a random graph chosen uniformly from the set of
graphs with vertex set V, ={1,2, ..., n} and having m edges.

Let

m = inlogn + inloglogn + c,n. (1.1)

(In what follows when naming a cycle C, we also allow C to represent the set of

vertices.) Now let r=1 be a fixed positive integer. Let a graph (V), E) have

property A, if it contains r cycles C,, C,, ..., C, which partition V, and
|Ci| = |n/r] or [n/r].

Clearly property A; is the same as Hamiltonicity. A simple necessary condition

for property A, is minimum degree at least 2, and in this paper we show that this
is almost always sufficient.

Theorem 1.1.

lim Pr(G, ., €A,)

n—so=
01 If Cr=2i %
= lim Pr((G,, ,,,) has minimum degree at least 2) = et ifie, =0
(et 1; if c,— +.
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Recently Bollobds, Fenner and Frieze [3] have designed a polynomial time
algorithm which gives a constructive proof of Komlds and Szemerédi’s result.
(See also Frieze [9, 10]). It could be applied here to give a constructive proof of
Theorem 1.1. The paper is made simpler by giving a non-constructive version.

We note the following Corollary of Theorem 1.1. It follows directly from
McDiarmids percolation theorem [13].

Corollary 1.2. Let ¢c,— > in (1.1). Then
hm Pr(Dn,'.’_m € Ar) = 1!

n—wx
where D, ,,, is a random digraph with vertices V,, and 2m arcs.

Since the results for » =1 are already known we shall assume r =2 from now
on.

2. Notation

For convenience, we gather together in this section some notation that is used
throughout the paper.

G = Gn,m L (V:n E)

For §, TcV, let N(S, T)={weT—S:3veS such that (v, w)e E}, and let
N(S)=N(S, V,), Nlv, T)=N({v}, T), N(v)=N({v}) forv e V,.

mi=|rir] and ni=\[pt Mo

Let 8 =n —rn, and
S_{Kr—nm+1wu,mg, PR )
e B R SR s s SR

For v € V, define a(v) by v € §,(,).
Define Y;c §;, |Yi|=n,,i=1,2,...,rby

_{{(i—l)n,+1,...,(i—l)n1+nz},

o {(—-Dnmy+i—r+6,...,(—-Dny+i—-r+6+n,—1},
F=A0 8 s g
HE A B 91 LS

and let Y=J_, Y.

Xo={veV,:INv)|<a,logn} and
Xo={veV,:IN(v)|<a,logn+1},
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where a, log(e/a,) = 1/(2r%).

X,={v eV, 3i=<rsuchthat |N(v, §;)| = (a,/r)logn}
and
Xi={v eV, 3i=rsuchthat [N(v, ;)| < (a,/r)logn + 1}

and note that X, c X,.
For v, w e V, d(v, w) = the minimum number of edges in a path from v to w.
For ScV, G[S]=(S, Es) is the subgraph of G induced by S. Here Es=
{eeE:ecS}.
6(G) = the minimum vertex degree of G.
We say that an event E, occurs almost surely (a.s.) if lim,_.. Pr(E,) = 1.

3. Typical structure of G, ,

The following lemma describes the a.s. properties of G, ,, that are needed in
what follows:

Lemma 3.1. If ¢,—c in (1.1), then G = G,,,, a.s. satisfies the following:
(X =n'® gnd |X3|sntVraen) (3.1a)
v e Xy, weX,UY implies d(v, w)>loglogn, (3.1b)

XeXjuy, |X|=r + 1 implies there exists v, w e X
such that d(v, w) >loglogn, (3.1c)

If Cisacycle of G, |C|<loglogn and ve X,UY, then d(v, C)
>loglogn, (3.1d)
IN(v)|<4logn, forvelV,, (3.1e)
l=sisrand Xc S —-X,, |X| =n/logn, implies
IN(X, S)| = (a,/3r) | X|logn, (3.1f)
S, TcV, SNT=4, |S|, |T| = n/loglog n implies
{e=(v,w)eE:veS, weT}=Vn (3.1g)
The proof of this lemma follows standard lines. Similar results with different
constants have been proved in related papers—see for example [3, 7 or 8]—an

outline proof is given in an appendix.
Let Iy ={G, ,.: (3.1) is satisfied}.
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4. Partitioning the vertex set

We first describe how to partition V, into sets T}, T, ..., 7, such that the
graphs G; = G[T] are a.s. Hamiltonian fori=1,2,...,r.

We start with the partition Sy, S,, . . ., S,. Some vertices in X,;-X, will have too
few (<a, log n/r) neighbours within their prescribed subset. We move these (Step
(a)) to subsets where they have enough neighbours. We deal with the vertices of
low degree (X,) by moving their neighbours into the same subset (Step (b)). The
subsets will now have got slightly out of balance and their sizes are re-adjusted by
moving elements of Y (Step (c)). At the end of this process the sets
T,, T, . . ., T, produced a.s. induce subgraphs in which all sets of vertices having
s <(a,/9r)n vertices have at least 25 neighbours (Lemma 4.1). Posa’s theorem
implies that if one of these subgraphs is not hamiltonian then it contains a large
number of maximal paths which cannot be closed by an edge. The edge colouring
argument of [5] can be used to finish the proof.

Suppose c,— ¢ and 6(G,,,,) =2.

begin
Step (a)
T;:=8, fori=1,2,...,r;
A:={veX,—Xy: IN(v, S;y))| < @, logn/r};
for v € A define b(v) by
IN(v, Spy)l = max{|N(v, $)|:i=1,2,...,r};
forveA do
begin
Tay'= Tawy = {v}; Towy:=Towy U {v};
end

Step (b)
fori=1tordo
forve ;N X, do

begin
forj=1to rdo T;:=T, — N(v);
T,:=T,UN()
end;

Remark. If G € I, then v, w € X, implies N(v) N N(w) =8, by (3.1b).

Step (c)
I'={i=r:|T| >|SI}
for i e I choose a subset B,c Y, — (X, UN(X,)) of size k;=|T;| —|S;| and let
T;:=T; — B;. To be specific choose the k; smallest elements.

r——_—_n

e,
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Let B =, B;. Partition B into sets W,, j ¢ I, where |W|=1S;| —|T}|. To be
specific ensure that j <j' implies max W; < min w;.,
forj¢ldo T;:=T,UW,

end

Remark. If G, ,, € Iy, then at the start of Step (c)
k,<|1’,-(X]UN(X|)I foriEI.

To see this note that T; — §; = X, U N(X,) at this stage. Now use (3.1a) and (3.1¢)
and X, X,.
A set K ¢ E is said to be good if
(i) KX is a matching,
(ii) no e € K is incident with a vertex of X,U X;,
(iii) |K| = [logn].

Lemma 4.1. Let G =G, ,, €I, 6(G)=2 and K be good. Let H;=(T;, Er — K)
fori=1,2,...,r Then, forlarge n,
@) ScT;, |SI<(a,/9)n implies |N(S)|=2|S| for i=1,2,...,r, where
N(S)={veT,—S:3weS such that (v, w)e E— K}.
(b) H; is connected fori=1,2,...,r.

Proof. (a) We note first that (T, - S;) U (S;— T}) c X, UN(X,)U Y and so (3.1)
implies that

IN(w, D|=INQ, S)|—r, forveT,. 4.1)
Now let ZcT;, |Z|<(e,/9r)n and let Zy=ZNX,, Z,=ZN(X,—-X,) and
Zz=Z—X1.

Case 1. |Z,) <n/logn. Now
N(2)| = IN(Zy, T)| + IN(Zy, T)| + IN(Z,, T)| — IN(Zy, T) N Z,
= IN(Z,, T)NZ| - IN(Z,, T) N (Z,V Zy)|
—N(Zy, T)NN(Z, T)| = IN(Z,, T)NN(Z, T)| - 1Zy). (4.2)

(The term —|Z,| allows for the deletion of K.) Now, using (3.1)

IN(Zo, T)| =220, (4.3a)
IN(Zo, T) N Zy| +IN(Zy, T) N Zy| <22, (4.3b)
IN(Zz, T) N (Zo U Z))| + IN(Zo, T)NN(Z,, T

+IN(Z, T)NN(Z,, T)|<(r+1+1)|Z;.  (4.3¢)
IN(Z,, T)| = ((e,/r*)log n) |Zy] (4.3d)
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as v € Z, implies [N(v, T;)| = («,/r)logn and no vertex can be adjacent to more
than r members of Z;,. We deduce from (3.1) and (4.1) that

IN(Z,, T)| = ((./3r)log n — 1) | Z,). (4.4)
(4.2)—(4.4) then imply
IN(Z)| =21Z| + (e, /r*)log 1) |Z,] + (e, /3r)log n — (3r +4)) | Z,|
=2|Z). (4.5)

Case 2. n/logn <|2Z,| <(a,/9r)n. Choose Z;c Z, with |Z,| = |n/logn]| and we
obtain
IN(Z)| = IN(Z,, S)| = |Si — Tl — 12U Zy] - | K]
=|N(Z3, §)) — (122l — |1Z3]) — o(n/log n)
= ((a,/3r)logn + 1) |n/logn] — |Z,| — o(n/log n)
=2|2|.

(b) If H; is not connected then T; can be partitioned into 2 non-empty sets Z,,
Z, with |Z,] <|Z,| such that N;(Z,) =@. Part (a) shows that |Z,| = («,/9r)n. But
then (3.1g) implies that there are at at least Vn — [log n] edges joining Z, and Z,:
contradiction. O

Lemma 4.2. Let G=G, ,, €I, and 6(G)=2. Let H; be as in Lemma 4.1 for
i=1,2,...,r. If H; is not Hamiltonian, then T, contains a set Z=
{z1, 22, .- ., 2.}, p = (e,/9r)n and subsets Z,, Z,, . . . , Z, with | Z;| = (a,/9r)n for
i=1,2,...,psuch that
weZ; and e=(z, w) implies (4.6)
(a) e¢ E(H),
(b) if H; =(T;, E(H;)U {e}), then either H; is Hamiltonian or A(H{)= A(H,)
+1.

Here A(H) = the length of a longest path of a graph H.

Proof. Posa [14] shows that if a graph H is non-hamiltonian then there exists a
set Z={z,, 2, ..., z,} of vertices and sets of vertices Z,, Z,, . . ., Z, such that
H contains longest paths with endpoints z;, w for each we Z, i=1,2,...,r.
Furthermore

INW(Z)1<2|Z] and |Ny(Z)|<2|Z]|, i=1,2,...,r,
where for S ¢ V(H),
Ny(S)={we V(H)—S:3v e S such that (v, w) e E(H)}.
The lower bounds for the sizes of Z, Z,, Z,, ..., Z, follow from Lemma 4.1. To

t\

19—
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see (4.6) let P be a longest path of H with endpoints z;,, we Z,. If P is a
Hamilton path, then (a), (b) are immediate, otherwise by connectivity H contains
x ¢ P which is a neighbour of a vertex of P and so adding e creates a path with
endpoint x which is longer than P.

5. Finishing the proof

To finish this proof we use the edge colouring argument of Fenner and Frieze

(5]
Let w = [logn], N=(%) and assume once again that ¢,—c. Let I;= {Ge
Iy: 6(G) =2 but G; is not Hamiltonian} fori=1,2, ..., r. Since

PH(Gy €4, a0 8(G) =) <Pi(Gym e 1)+ 3 111 /()
i=1 m

it suffices to show that

|| =0((;:r)) fori=1,2,...,r (5.1)

Let now i be fixed and for G e I}, K ¢ E(G) with |K|=w let Gx = (V,, E(G) —
K), Hyx =(T;, E(H;) — K) and
1, if (a) K is good, with respect to G,
a(G, K) = (b) A(Hix) = A(H),
0, otherwise.
Let
S= > a(G, K).

Gel; KcE(G)

We prove 2 inequalities.

m 2o
S=|I; ( )(l ——) St A :
|| ® e or n large (5.2a)
N N—m+w
5 — ) -
S (m Hw)( © )(l B)“, forn large, (5.2b)

where 8 = a?/163r°.

(5.1) follows immediately from (5.2), and we have the theorem for ¢, — c. For
¢,— — there are almost always vertices of degree <1 and for ¢, — = we can use
the monotonicity of A,.

Proof of (5.2). (a) It suffices to prove that G e I implies

2y w
> alG. K)= (m)(l —;) , for n large. (5.3)

KeE(G) w log n
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It is however, easily verified, that for n large the right-hand side of (5.3) is a
lower bound for the number of ‘good’ choices of K that avoid a particular longest
path P of H; (to make a (G, K) =1 we need only choose a matching that avoids
|P| + 0(|X;| log ) edges).

(b) Let A be a graph with vertex set V, and m — w edges. Let

Q, = {G: 3K such that Gx = A and a(G, K) =1}.
Clearly S = ¥, |€2| and (5.2) will follow from

N-m+ow
w

2= Ja-pe. 549

Fix A such that 2, #0 and let G € £,. If we apply the partitioning algorithm of
Section 4 to A, then we obtain exactly the same partition T}, T, ..., T, of V, as
for G, using the definitions of X,, X, as applied to A. Let A,=A[T}]. GeI
implies that the conclusions of Lemma 4.2 hold for 4,, where Z, Z,, Z,, .. ., Z,
are determined by A and not G. Since A(4;) = A(H;) we deduce that £, =9 or

Q. c{A+K:|K|=wand KN(E(A)U {(z;, z):1<i<p and z € Z;}) =0}
and (5.4) follows. (Here A + K denotes the graph obtained by adding the edges K
to A.) To obtain a constructive proof we would have to show that the algorithm

HAM of [3] a.s. succeeds on each G;. Such a proof can easily be constructed from
that given in [3].

Appendix

Let p =m/(3). It is not difficult to see that for any graph property A:
Pr(G,, € A) =D, P(G, . € A)PI(IE(G, )| = m"),

as G, p, given m’ edges is G, .. We deduce from this that

If G,, € A a.s. and A is monotone, then G, ,, € A a.s. (A1)
If G, ,€Aa.s., then3Im’', m — Vnlogn <m'<m such that Gum

€Aa.s. (A2)
Pr(G, . € A)<3Vnlogn Pr(G,,€A) forn large. (A3)

(@) E,(1Xol) =nS(n—1, a,logn + 1) =o(n'?),

P
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where E, is the expectation in the G, , model and

s, = 35 (Mt -y

k=1

Now use the Markov inequality plus (A1). Similarly
E,(IXi) <mS([n/r], (a, logn)/r +1)

= o(nl—llr+2/(3r3)).

(b)
Pr((3.10) in G,,) < 3 (n),+.Bp"S(n -2, , log n)

=o(1),

where A = |loglogn| and B =r(S([n/r], (a,/r)logn) + n,/n), by treating Y as a
random rn,-subset of V, in these calculations. Thus, using (A2), 3m' such that

Pr((3.1b) in G, ,,-) = 0o(1).

Given (3.1a), and assuming (3.1e), we see that the addition of m —m’' random
edges to a ‘typical’ G, ,,- satisfying (3.1b) is ‘unlikely’ to upset (3.1b).

(c) If (3.1c) fails, then there is a tree with t<t,= [(r + 1)loglogn + 1]
vertices containing =r + 1 members of X, U Y. Thus

Pr((3.1¢)in G,,) < (':)t"zp'_'y’“

t=r+1

=o(1),
where y = r(S([n/r] —to, (a,/r)log n) + ny/n). Now proceed as in (b)

@ PG1)inG <3 > (7)(")ie - rapep

s=3 =0
=0(1).
() Pr(IN(1)|>4logninG,,)=1-S(n—1, 4logn)

Hence Pr((3.1e) in G, ,) = o(n~"**). Now use (A3).

(f) Failure of (3.1f) for |X|<n/(logn)® implies the existence of a set S
(=X UNC(X, $))) of size s, (a,/r)logn =s,<s <s,=n/(logn)* containing at least
3s5/2 edges. The probability of this in G, , is no more that

3 (Y G-t

s=sq \S
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For |X| = n/(log n)*, the probability of (3.1f) in G, , is no more than
nllogn n/r (as/3r)logn n/r -5
G () R (T

t )(1 - (1 _p)s)l(l _p)s([,,/,] —s=1)

s=5) s =0

—any constam)

=o(n

(An almost identical calculation is done in [3]—see [3, Lemma 3.1(d)].) Now use
(A3).

@ PGlpinGs S S —  ses Vi

r=nlloglog n s=nfloglogn rls! (n -r-= S)!
- 0(" —any eons!ant).

Now use (A3).
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