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Abstract

We call a coloring of the edge set of a graph G a b-bounded coloring if no color is used more
than b times. We say that a subset of the edges of G is rainbow if each edge is of a different
color. A graph has property A(b,H) if every b-bounded coloring of its edges has a rainbow
copy of H. We estimate the threshold for the random graph Gn,p to have property A(b,H).

1 Introduction

We call a coloring of the edge set of a graph G a b-bounded coloring if no color is used more
than b times. We say that a subset of the edges of G is rainbow (or polychromatic) if each
edge is of a different color. We consider the following question: What relationship between b,G
and H implies that every b-bounded coloring of the graph G contains a rainbow copy of the
graph H (i.e. a copy of H in which E(H) is rainbow colored)? Note that this can be viewed as a
variation on classical Ramsey theory, but here instead of a homogeneous (i.e. monochromatic)
copy of H we are interested in a heterogeneous (i.e. rainbow) copy of H. Questions of this form
have been studied in a number of contexts. Erdős, Simonovits and Sós considered the minimum
number of colors needed to ensure a rainbow copy of H in every coloring of the edge set of
Kn where we require that every color is used at least once [6]. Lefmann, Rödl and Wysocka
considered some variations on this question where the restriction that each color is used at least
once is replaced by other natural restrictions, including b-bounded coloring [15]. The existence
of rainbow Hamilton cycles in edge colored copies of complete graphs was studied in [1], [5],
[9], [12]. The existence of rainbow stars was studied in Hahn [10], [11] and Fraisse, Hahn and
Sotteau [8]. The complexity of finding rainbow sub-graphs was studied by Fenner and Frieze
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[7]. Cooper and Frieze [4] studied the existence of polychromatic Hamilton cycles in random
graphs. In this paper we study the existence of rainbow copies of a fixed graph H in b-bounded
colorings of the random graph Gn,p.

Let H be a fixed graph. Let vH and eH denote the number of vertices and edges of H
respectively. For a positive integer b let A(b,H) denote the following graph property: G ∈
A(b,H) iff every b-bounded coloring of E(G) has a rainbow copy of H. Define

mH =
eH − 1
vH − 2

,

m∗H = max
{
mH′ : H ′ ⊆ H, vH′ ≥ 3

}
,

p∗ =
1

n1/m∗H
.

One can show that, unless maximum degree ∆H = 1, it is enough to consider only connected
sub-graphs H ′.

Note that, when p is not too small, whp the number of copies of H in Gn,p is Θ(nvHpeH )
while the number of edges in Gn,p is Θ(np2). (Whp stands for with high probability, that
is, with probability 1 − o(1) as n → ∞.) Thus if p � p∗ then the number of copies of H in
Gn,p is much fewer than the number of edges in Gn,p and so it should be the case that whp
it is easy to color the edges so that there is no rainbow copy of H. On the other hand, when
p � p∗ there are so many copies of H relative to the number of edges that whp a rainbow
copy of H should be unavoidable. So, at first glance, it is natural to expect p∗ to be the
threshold for the anti-Ramsey property A(b,H). Of course, this reasoning can also be applied
to the classical Ramsey property, and p∗ is (with a few exceptions) indeed the threshold for the
Ramsey property that every coloring of Gn,p with a set of r colors has a monochromatic copy
of H as shown by Rödl and Ruciński [17]. See also Ruciński and Truszczyński [18] for a version
where there are restrictions on the number of colors used locally.

There is one immediate exception to this general framework for the anti-Ramsey property
A(b,H). Note that if H is a forest then m∗H = 1 (assuming that ∆H ≥ 2) but it turns out that
there are trees that have the property A(b,H). Since p = n−(k+1)/k is the threshold probability
for having a copy of every tree with k edges, it follows that p = 1/nm

?
H = 1/n is not the

threshold for the anti-Ramsey property A(b,H).

So we begin with a general result for arbitrary graphs that are not acyclic.

Theorem 1 For all graphs H containing at least one cycle there exists a constant b0 = b0(H)
such that if b ≥ b0 then there exist c1 = c1(b,H) and c2 = c2(b,H) such that if p = cn−1/m∗H

then

lim
n→∞

Pr(Gn,p ∈ A(b,H)) =

{
0 if c ≤ c1

1 if c ≥ c2.
(1)

In truth the bound c ≥ c2 holds for all b ≥ 2, as will be seen from an examination of the proof
in Section 4.2.

Our proof of the 1-statement (when c ≥ c2) has been reduced to a few lines by a clever
observation from one of the reviewers of the paper. We are happy to acknowledge this fact.

We study the threshold for A(b,K3) in more detail. For b = 2 and H = K3, the situation is
completely resolved.
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Theorem 2 Let p = cn
n2/3 . Then

lim
n→∞

Pr(Gn,p ∈ A(2,K3)) =


0 if cn → 0
1− e−c6/24 if cn → c

1 if cn →∞.

Note that Theorem 2 shows that some condition on b is necessary in Theorem 1 (since m∗K3
= 2).

When b = 3 and H = K3 there is an intriguing gap in our result.

Theorem 3 Let p = c
n1/2 . Then,

lim
n→∞

Pr(Gn,p ∈ A(3,K3)) =

{
1− e−c10/120 if c < 1/

√
2

1 if c >
√

2.

Theorem 3 leaves open the possibility of a ‘one-sided-sharp’ phase transition; to be precise,
there could be a critical value c ∈ [1/

√
2,
√

2] at which the probability that Gn,c/√n has property
A(3,K3) quickly jumps from 1− e−c10/120 to 1. Finally, we note that (1) holds for H = K3 and
b ≥ 4, see Remark 2 after the proof of Theorem 3.

We now turn to the anti-Ramsey thresholds for forests. For a tree T , let s(b, T ) be the
minimum value s such that there exists a tree with s edges having property A(b, T ). For a
fixed forest F , the threshold for A(b, F ) will then be p = n−(s+1)/s where s is the maximum of
s(b, T ) over all connected components T of F . So the study of thresholds for A(b, F ) amounts
to the study of s(b, T ). We begin with the following general statement about the growth rate
of s(b, T ) as b grows.

Theorem 4 Let T be a fixed tree with diameter l, and set m = bl/2c. Then (letting b → ∞)
we have

s(b, T ) = Θ(bm).

The upper bound in Theorem 4 is given by a certain class of trees which we conjecture always
determines s(b, T ). Let T be a tree, e be an edge in T and b be a positive integer. In Section 5
we define the tree BT,e,b (which we dub the b-blow-up of T centered at e) and show that
BT,e,b ∈ A(b, T ).

Conjecture 1 For any b ≥ 2 and tree T ,

s(b, T ) = min
e∈T
{|E(BT,e,b)|}.

In support of this conjecture, we verify it for paths and rooted trees with a constant branching
factor. Using similar proof techniques we have verified the conjecture for a few other special
classes of trees (e.g. the m-fork which consists of m leaves added to an endpoint of a path of
length 3). The details for these other classes of trees are omitted for the sake of brevity. We
note that Picolleli [16] has verified the conjecture for all trees of diameter at most four.

Theorem 5

3



(a) Let Pl be the path with l edges. We have

s(b, Pl) =

{
(b+ 1)

∑k−1
i=0 b

i if l = 2k
1 + 2

∑k
i=1 b

i if l = 2k + 1.

(b) Let Td,l be a rooted tree, with all leaves at distance l from the root such that every non-leaf
has the same degree d. Then

s(b, Td,l) = 1 + 2
l−1∑
i=1

(b(d− 1))i + (b(d− 1))l.

We prove our theorems in the following order. Theorem 2 is proved first in Section 2.
Theorem 3 is proved in Section 3. The general theorem, Theorem 1, is proved in Section 4, and
we discuss trees in Section 5.

A few words on our notation. We will use ‘⊆’ to denote inclusion. The expression an ∼ bn
means that limn→∞ an/bn = 1. The O()-notation is standard.

2 Proof of Theorem 2

We begin by noting that K4 has the anti-Ramsey property A(2,K3) (by proving the following,
more general statement).

Lemma 6
Kr+2 ∈ A(r,K3) for r ≥ 1.

Proof Assume for the sake of contradiction that a given r-bounded coloring of Kr+2 does
not have a rainbow triangle. Let C be a largest connected component, in terms of number of
vertices, induced by edges of the same color, red say. The number of vertices in C is at most
r + 1 and so there is a vertex v /∈ C. Consider the edges from v to C. They cannot be colored
red and as there are no rainbow triangles they must all be the same color, blue say. But then
the connected component induced by the blue edges that contains v has more vertices than C,
contradiction. 2

Now assume that p = c
n2/3 and let Z4 denote the number of copies of K4 in Gn,p. Thus

E(Z4) =
(
n

4

)
p6 → c6

24
.

It is well known ([20], [2],[13]) that in this case Z4 is asymptotically Poisson and so

Pr(Z4 = 0)→ e−c
6/24.

Since K4 ∈ A(2,K3) and the property A(b,H) is monotone, we can prove Theorem 2 by showing
that if p = c

n2/3 , c constant, then

lim
n→∞

Pr(Gn,p ∈ A(2,K3) | Gn,p is K4-free) = 0. (2)
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We now define a triangle graph Γ = (W,X) where W is the set of triangles of Gn,p and
(T1, T2) ∈ X iff the triangles T1, T2 share an edge. If C = {T1, T2, . . . , T`} is a connected
component of Γ we define the base graph of C to be the sub-graph GC of Gn,p with vertex
set VC =

⋃`
i=1 V (Ti) and edge set EC =

⋃`
i=1E(Ti).

We say that a graph K is d-degenerate if there is an ordering v1, v2, . . . , vk of the vertices
of K such that each vertex v has at most d neighbors that appear before v in this ordering; to
be precise,

|{j : j < i and {vi, vj} ∈ E(K)}| ≤ d

for every i = 1, . . . , k. Note that for any component of Γ we have

|EC | ≥ 2|VC | − 3

with equality iff GC is 2-degenerate.

Lemma 7 Let Γ be the triangle graph of Gn,p with p = c/n2/3 where c is constant. Whp every
component C of Γ satisfies one of the following two conditions

(a) GC is isomorphic to K4, or

(b) GC is 2-degenerate.

Proof We first show that whp |VC | ≤ 6 for all components C of Γ. Indeed, if there exists a
component C of Γ such that |VC | ≥ 7 then there is a set of 7 vertices in Gn,p that spans at least
11 edges. A simple first moment calculation shows whp that no such sub-graph of Gn,p exists.

It remains to show that whp there are no components C of Γ such thatGC is not 2-degenerate
and VC = 5 or 6. However, these correspond to sub-graphs of Gn,p with 5 vertices and 8 edges
and sub-graphs of Gn,p with 6 vertices and 10 edges, respectively. By the first moment method
no such sub-graphs of Gn,p exist. 2

We are now ready to prove (2). Suppose Gn,p is K4-free and that every component C of
Γ has GC 2-degenerate. We color the edge set of Gn,p by considering each component of Γ in
turn. Consider a 2-degenerate ordering v1, . . . vk of the vertices of GC . We introduce one color
for each vertex and color the edge {vi, vj} with the color corresponding to the maximum of i
and j. If {va, vb, vc} is a triangle in C then the color corresponding to the maximum of a, b and
c appears on 2 of the edges in triangle. Thus, this gives a 2-bounded coloring of the edges of
Gn,p with no rainbow K3.

3 Proof of Theorem 3

Suppose first that p = c
n1/2 and c < 1/

√
2.

Let Z5 denote the number of copies of K5 in Gn,p. We have

E(Z5) =
(
n

5

)
p10 → c10

120
and Pr(Z5 = 0)→ e−c

10/120.
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Since K5 ∈ A(3,K3) by Lemma 6, we can prove the first part of Theorem 3 by showing that if
p = c

n1/2 and c < 1/
√

2 then

lim
n→∞

Pr(Gn,p ∈ A(3,K3) | Gn,p is K5-free) = 0. (3)

Let the triangle graph Γ be as defined in Section 2. A component C of Γ is safe if

|EC | ≤ 2|VC |.

Lemma 8 Whp every connected component C of Γ is safe.

Proof Consider the following process that generates all connected components of Γ. Choose 3
vertices u, v, w and let V0 = {u, v, w} and let E0 = {{u, v}, {u,w}, {v, w}}. If u, v, w generate a
triangle in G continue as follows: Suppose that we have generated a disjoint sequence of vertex
sets V0, V1, . . . , Vk and edge sets E1, E2, . . . , Ek. Initialize Vk+1 = Ek+1 = ∅ and then perform
the following steps:

A. For each z /∈ V (k) =
⋃k
i=0 Vi and e = {x, y} ∈ Ek see if both edges {x, z}, {y, z} exist in

Gn,p. If so, add these edges to Ek+1 and z to Vk+1. This is done one vertex at a time and
for each vertex it is done one edge at a time. We place z in Vk+1 on the first success and
then move on to the next vertex.

B. For each pair of vertices consisting of a vertex z in Vk+1 and a vertex a in V (k+1) see if
the edge {z, a} is in Gn,p. If so add this edge to Ek+1.

Of course, we terminate when Vk+1 = ∅ after step A. Let Vfinal and Efinal be the vertex and
edge sets, respectively, that are formed at the end of this process and let C = Cu,v,w be the
triangle component containing the triangle u, v, w (if this triangle appears). Note that Efinal

is not necessarily equal to EC as we add edges in step B that are not necessarily involved in
triangles. However, we do have EC ⊆ Efinal. Also,

|Efinal \ EC | ≥ 2|Vfinal \ VC |.

Thus, if |Efinal| is at most 2|Vfinal| then Cu,v,w is safe. Since edges and vertices join at a ratio
of 2 edges to each vertex during step A, we have |Efinal| ≤ 2|Vfinal| iff the number of edges that
join during a step B is at most 3.

Note that throughout our process the conditioning we impose on Gn,p is of a very special
form. At any given point we have fully queried certain edges (i.e. we are conditioning on the
event that some set of edges appears and some other set of edges does not appear). Furthermore,
since we have checked to see if certain pairs of edges appear in Gn,p in step A we also condition
on the event that a certain collection of pairs of edges do not appear. Since the latter is a
downwardly closed event, it follows from the FKG inequality that when we condition on this
event the probability that any set of k edges (that have not been fully queried) lie in Gn,p is at
most pk.

We view our process as a sort of branching process in which the edges are the individuals
and each edge that joins has a ‘parent’ edge that it attaches to. Let Ai be the number of step
A children of the ith edge to join. Let Bi be the number of step B children of the ith edge to
join. Note that there is ambiguity in the parent of a type B edge. We assign paternity to an
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arbitrarily chosen incident - and previously appearing - edge. Note also that each of these Bi
edges shares a common vertex with its parent.

Define the constant c′ = 6/(δc)2 where δ > 0 is defined by c + δ = 1/
√

2. Let K = c′ log n.
Let X1, X2, . . . be a sequence of i.i.d. Bi(n, p2) random variables. Here Bi is used to denote the
binomial random variable. Let Y1, Y2, . . . be a sequence of i.i.d. Bi(2K, p) random variables.
Note that 2Xi dominates Ai for all i while Yi dominates Bi for i = 1, . . . ,K.

Let S be the event that the edges {u, v}, {u,w}, {v, w} appear in Gn,p. If S occurs and
|Efinal| > K then

∑K
i=1Ai > K −

∑K
i=1Bi − 3. If S occurs and K ≥ |Efinal| > 2|Vfinal| then∑K

i=1Bi ≥ 4.

Thus we have

Pr (|Efinal| > 2|Vfinal| | S) ≤ Pr (|Efinal| > K | S) + Pr (|Efinal| > 2|Vfinal| | S ∧ |Efinal| ≤ K)

≤

[
Pr

(
K∑
i=1

2Xi > K − 6

)
+ Pr

(
K∑
i=1

Yi ≥ 4

)]
+ Pr

(
K∑
i=1

Yi ≥ 4

)
.

Now we apply the Chernoff bounds. Since the sum
∑K

i=1Xi is distributed as Bi(Kn, p2) we
have

Pr

(
K∑
i=1

Xi ≥
K − 6

2

)
≤ Pr

(
K∑
i=1

Xi ≥ Knp2(1 + δ)

)
≤ exp

{
−δ2Knp2/3

}
=

1
n2
.

(Note that we use the fact (1/
√

2 − x)2(1 + x) < 1/2 for x in the interval (0, 1/
√

2) and that
we assume that n is sufficiently large.) For the sum of the Yi’s we simply have

Pr

(
K∑
i=1

Yi ≥ 4

)
≤
(

2K2

4

)
p4 = O

(
(log n)8

n2

)
.

Therefore, by the union bound, the probability that there is a triangle component C that is not
safe is

O

(
n3

(
1√
n

)3 (log n)8

n2

)
= o(1).

2

Assume that all triangle components C are safe. We give an algorithm for coloring each
triangle component in such a way that no triangle is rainbow. Consider a fixed component C
of Γ. We define the graph D to be K6 minus a perfect matching. Let v1, v2, v3, . . . , v` be the
vertices of GC listed so that

(i) If GC contains a copy of D then this graph comes at the beginning of the sequence. If
there is no copy of D, but there is a copy of K5−e then this graph comes at the beginning
of the sequence. Finally, if there is no copy of D or K5− e, but there is a copy of K4 then
this graph comes at the beginning of the sequence.

If GC does not contain any of these graphs then the first three vertices in the sequence
form a triangle.
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(ii) Let vk be the last vertex in our initial graph as defined in (i). Each subsequent vertex
vi, i > k has at least 2 neighbors (called back-neighbors below) among v1, . . . , vi−1 and
the set of neighbors of vi among v1, . . . , vi−1 span at least one edge.

Property (ii) follows from the facts that the ordering of vertices by their addition to GC satisfies
it and that we can start growing GC from any triangle, in particular, from one belonging to the
targeted initial graph.

For i = k + 1, . . . , v let di be the number of neighbors vi has among v1, . . . , vi−1. By
assumption di ≥ 2 for all i > k. Let It = {i > k : di = t}, t ≥ 3 and I = I3 ∪ I4 ∪ I5. Note
that our assumption that C is safe implies that It = ∅ for t ≥ 6 and |I3| + 2|I4| + 3|I5| ≤ 3.
Furthermore,

GC contains D =⇒ I = ∅
GC contains K5 − e =⇒ I4 ∪ I5 = ∅

GC contains K4 =⇒ I5 = ∅ and |I3|+ 2|I4| ≤ 2.

We first check that K5 − e and D can be colored without creating a rainbow triangle.

K5 − e: Suppose that e = {4, 5}. The following table shows a coloring without a rainbow
triangle:

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5}
1 1 2 3 1 2 3 2 3

D: Suppose that the deleted matching is {1, 4}, {2, 5}, {3, 6}. The following table shows a
coloring without a rainbow triangle:

{1,2} {1,3} {1,5} {1,6} {2,3} {2,4} {2,6} {3,4} {3,5} {4,5} {4,6} {5,6}
1 2 2 1 1 3 4 3 3 4 4 2

We then use the following basic coloring algorithm to color the remainder of EC : color the edges
between vi and v1, . . . , vi−1 with the same color i. This always gives a coloring with no rainbow
K3 (the color of the last vertex in each triangle appears on 2 of the edges in the triangle).
However, the coloring is 3-bounded only if di ≤ 3 for all i. For example, the algorithm succeeds
if GC contains a copy of D or K5 − e, because here I4 = I5 = ∅. We henceforth assume that
GC does not contain either of these graphs. We now describe how to modify this algorithm for
the remaining cases. The availability of free colors (that is, colors used less than three times
in this basic coloring) will help us in this task. For the sake of brevity, we will mention only
the changes needed to fix this coloring.

Case 1: There exists an i such that di = 5.

In this case we have dj = 2 for j > k, j 6= i. If the back-neighbors of vi are
vi1 , . . . , vi5 then we recolor each {vi, vis} with color is. Any triangle formed by i
and 2 of its back-neighbors can be expressed as vi, vis , vit where is > it, say. This
triangle will then have two edges of color is.
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Case 2: There exists an index i such that di = 4.

Let the back-neighbors of vi be vi1 , . . . , vi4 where i1 < i2 < i3 < i4.

Case 2a: di4 = 2.

Here, we use the color i4 for the edge {vi4 , vi}.

Note that if C contains a copy of K4 then, assuming that di = 4, we are in Case 2a
(otherwise i4 ≤ k = 4 and we have a copy of K5, a contradiction). Assume for the
remaining sub-cases that C does not contain a copy of K4.

Case 2b: di4 = 3.

We have
dj = 2 for j < i, j 6= i4.

Now we consider the graph X induced by {vi1 , . . . , vi4}. By assumption
X has at most 4 edges (otherwise we have a K5 or K5 − e). Since C does
not contain a copy of K4, X does not contain a triangle. We may assume
that vi4 is adjacent to vi3 : Otherwise we can just recolor the edge {vi3 , vi}
with color i3. Also, we may assume that X has no isolated vertex vp:
Otherwise p = i1 or i2, and we can recolor the edge {vp, vi} with color p.
Therefore, we can now restrict our attention to one of the following cases
listed below:
Case 2bi: X is 2 disjoint edges.

One of the edges in X is {vi1 , vi2}. The color i2 is a free color, so
we can use it to recolor the edge {vi, vi2}.

Case 2bii: X is a path of length 3.

If vi2 is an endpoint connected to vi1 , then we are done by recol-
oring {vi2 , vi} with color i2. Thus we can assume that our path
is the union of two sub-paths going monotonely up and ending in
vi4 . (One of the sub-paths can be empty.) Take the longer sub-
path, let it begin with edge {vib , via}, b < a ≤ 3. We recolor the
edge {vib , vi} with color ia (thus color ia forms a path of length
3 after the recoloring).

Case 2biii: X is a 3-star.

Note that the center of the star cannot be vi4 (since the back-
neighbors of vi4 must span an edge). Therefore, one of the edges
in the star has a free color. Use this color on the edge from the
corresponding leaf to i.

Case 2biv: X is 4-cycle.

Let vp be the vertex not in {vi1 , vi2 , vi3} that is a back-neighbor
of vi4 . Let vq be the neighbor of vi4 in {vi1 , vi2}. Let vs be the
other vertex in {vi1 , vi2}. We have the following sub-cases.
• vp is not adjacent to vq.

The edge {vi4 , vq} has no conditions on its color (relative
to vi4) i.e. vi4 , vp, vq and vi4 , vi3 , vq do not form triangles.
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Using this observation we can proceed as follows. We re-
color edge {vi4 , vq} with color i. We then color edge {vi, vi4}
with color i4. We color edge {vi, vi3} with color i3 (and the
edges {vi, vi1}, {vi, vi2} keep color i).
• vp is adjacent to vq but not to vi3 .

We replace the color on {vp, vi4} with the color on {vp, vq}.
Then use color i4 on the other edges incident to vi4 , including
the edge to vi.
• vp is adjacent to vq and to vi3 .

Note first that p < i3 as otherwise the back neighbors of
vp do not span an edge. Since vp and vs are the (only)
back-neighbors of vi3 there must be an edge between them.
Now we have a copy of D with the deleted matching being
{vi3 , vq}, {vi4 , vs}, {vi, vp}, contradiction.

This completes the proof of (3) and the first part of the proof of Theorem 3.

Suppose now that c >
√

2. Whp Gn,p has (1+o(1))cn3/2/2 edges, (1+o(1))c3n3/2/6 triangles
and o(n3/2) copies of K4. Suppose that we have a 3-bounded coloring and Ai is the set of colors
that are used i times and ai = |Ai| for i = 1, 2, 3. Thus,

a1 + 2a2 + 3a3 = (1 + o(1))cn3/2/2. (4)

Suppose that there are no rainbow triangles. Then each triangle T contains a pair of edges of
the same color c(T ). For color x let t(x) be the number of triangles T such that c(T ) = x. So
t(x) = 0 for x ∈ A1, t(x) ≤ 1 for x ∈ A2 and t(x) ≤ 2 for x ∈ A3, unless x is used to color
three edges of a copy of K4. These latter colors are relatively rare (since the total number of
K4-sub-graphs is o(n3/2)) and so we have

a2 + 2a3 ≥ (1 + o(1))c3n3/2/6. (5)

It follows from (4) and (5) that
c3

4
≤ c

2
or c ≤

√
2.

This contradiction completes the proof of Theorem 3.

Remark 1 The bound c >
√

2 in Theorem 3 can be improved. For example we could remove
from our accounting those edges that are not in triangles. Or we could note that isolated triangles
(which whp form a non-negligible proportion of the triangles) must be accounted for by colors
x such that t(x) = 1. While these arguments improve this upper bound, they do not completely
close the gap between the bounds in Theorem 3.

Remark 2 If b ≥ 4 and c < 1/
√

2 then limn→∞Pr(Gn,p ∈ A(b,K3)) = 0. To see this observe
that K5 /∈ A(b,K3) for b ≥ 4. Second, whp no two copies of K5 in Gn,p share an edge. Thus
we can color all copies of K5 without creating a rainbow copy of K3. The rest of the edges can
now be colored as in the proof of Theorem 3.
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4 Proof of Theorem 1

4.1 Small c

Let p = cn−1/m∗H . We first consider the case where c is sufficiently small. We can assume in
fact that

mH > mH′ for all H ′ ( H with vH′ ≥ 3.

For if not, and m∗H = mH′ for a sub-graph H ′ of H then we can show that it is possible to color
Gn,p without creating a rainbow copy of H ′, which of course shows there is no rainbow copy of
H. It follows that if H ′ ( H and vH′ ≥ 3 then

δH′
def=

eH − eH′
mH

− vH + vH′ = (vH′ − 2)
(

1− mH′

mH

)
> 0.

Define
δH = min

{
δH′ : H ′ ( H, vH′ > 2

}
.

We follow a similar strategy to that in the previous section. In place of the triangle graph
Γ we will have the H-graph ΓH whose vertices are the copies of H in Gn,p and in which two
vertices H1, H2 are joined by an edge in ΓH if H1, H2 share at least one edge in Gn,p.

A component C of ΓH is safe if GC is b(H)-degenerate where we set

b(H) def= ∆H +mHvH − eH + 1

and ∆H is the maximum degree in H. Recall that GC is b(H)-degenerate if we can order VC =
{v1, v2, . . . , v`}, ` = |VC | such that each vi has at most b(H) neighbors among v1, v2, . . . , vi−1.

Lemma 9 Whp every connected component C of ΓH is safe.

Proof In analogy to the proof of Lemma 8, we consider a process where we choose a set of
vertices V0 = {v1, v2, . . . , vvH}, let E0 consist of all edges spanned by V0, and if E0 contains
a copy of H, we do a search that generates an edge set Efinal that contains EC where C is
the corresponding component of ΓH . We generate sets Vi, Ei, i = 1, 2, . . . , k via an iterative
application of the following 2 steps until Vk+1 = ∅ after step A:

A. For each set of vH vertices that contains some z 6∈ V (k) def= ∪ki=0Vi and some e ∈ Ek
determine if this set of vertices gives a copy of H. When we find such a copy of H we add
V (H)\V (k) to Vk+1, add E(H)\E(k) to Ek+1 and move on. It is important to stress that
once a vertex z is added to Vk+1 we do not query any other vertex set that contains z.

B. For each pair of vertices consisting of a vertex z in Vk+1 and a vertex a in V (k+1) see if
the edge {z, a} is in Gn,p. If so add this edge to Ek+1.

As in the proof of Lemma 8, the conditioning on Gn,p imposed by this search is of a very special
form. At any stage, certain edges are fully queried and we further condition on the event that
certain sets of edges do not appear. Under any conditioning of this form, the probability that
any set of k (not fully queried) edges appears in Gn,p is at most pk. Note further that after step
B we have fully queried all edges within V (k+1). Let Efinal be the edge set generated when this
process terminates.
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Again, we view this as a branching process where the edges are individuals. Here we have
three ways in which an edge e ∈ Ek can have offspring:

1. Copies of H found in step A such that V (H) ∩ V (k) = e,

2. Copies of H found in step A such that e ∈ E(H) but |V (H) ∩ V (k)| ≥ 3, and

3. Edges added during step B.

Of course, there is some ambiguity in assigning the paternity of edges of types 2 and 3. This is
done arbitrarily. Let Ai, Bi and Ci be the number of type 1, 2 and 3 offspring, respectively, of
the ith edge to join Efinal. For simplicity of our formulas, the edges that are in E0 but not in
the initial copy of H, are accounted for by increasing appropriate Ci’s.

Let K = C log n, where C = C(c,H) is a sufficiently large constant. Let X1, X2, . . . be i.i.d.
Bi
(
nvH−2, peH−1

)
random variables, let Y1, Y2, . . . be i.i.d.∑

H′(H,vH′≥3

Bi
(
KvH′−2nvH−vH′ , peH−eH′

)
random variables, and let Z1, Z2, . . . be i.i.d. Bi(2K, p) random variables. We see that Ai, Bi
and Ci are dominated by (eH − 1)Xi, (eH − 1)Yi and Zi, respectively, for i ≤ K. We have

E

[
K∑
i=1

(eH − 1)Xi

]
= K(eH − 1)nvH−2peH−1 = K(eH − 1)ceH−1.

So if c is sufficiently small the Chernoff bound implies

Pr

(
K∑
i=1

(eH − 1)Xi ≥ K − eH − (mHvH − eH + 1)− eH − 1
δH

[
vH −

eH
mH

+ 1
])

= O
(
neH/mH−vH−1

)
. (6)

The sum
∑K

i=1 Yi is distributed as∑
H′(H:vH′≥3

Bi
(
K ·KvH′−2nvH−vH′ , peH−eH′

)
.

Let I denote the set of sequences of non-negative integers (iH′ : H ′ ( H, vH′ ≥ 3) such that
the sum of the iH′ ’s is

⌈
1
δH

[
vH − eH

mH
+ 1
]⌉

. The probability that
∑K

i=1(eH − 1)Yi is at least

12



eH−1
δH

[
vH − eH

mH
+ 1
]

is bounded by

∑
(iH′ )∈I

∏
H′(H:vH′≥3

(
K ·KvH′−2nvH−vH′

iH′

)(
peH−eH′

)iH′
<

∑
(iH′ )∈I

∏
H′(H:vH′≥3

KvH iH′
(
nvH−vH′peH−eH′

)iH′
<

∑
(iH′ )∈I

∏
H′(H:vH′≥3

KvH iH′n−δH′ iH′

< KO(1)
∑

(iH′ )∈I

∏
H′(H:vH′≥3

n−δH iH′

≤ KO(1)
∑

(iH′ )∈I

neH/mH−vH−1.

(Note that δH ≤ δH′ for any H ′ ( H by definition.) Since there are |I| = KO(1) sequences we
have

Pr

(
K∑
i=1

(eH − 1)Yi ≥
eH − 1
δH

[
vH −

eH
mH

+ 1
])

= KO(1)neH/mH−vH−1. (7)

Finally, we have

Pr

(
K∑
i=1

Zi ≥ mHvH − eH + 1

)
≤
(

2K2

mHvH − eH + 1

)
pmHvH−eH+1

= KO(1)neH/mH−vH−1/mH . (8)

Since the expected number of the initial graphs H is at most nvHpeH = nvH−eH/mH , the union
bound applied to (6), (7) and (8) shows that whp every component of ΓH has at most K edges.
The desired b(H)-degenerate ordering then follows from (8).

2

Of course, if every component of ΓH is safe and b ≥ b(H) then one can color the edges of G
so that there are no rainbow copies of H. To color EC for a component C, we simply use the
same new color for every edge from vi to {v1, v2, . . . , vi−1} for 1 ≤ i ≤ |VC |. Then every copy of
H in C has a last vertex in the order and our coloring prevents this copy being rainbow. (Note
that we use the fact that H has minimum degree at least 2, which follows from the assumption
mH > mH′ for all sub-graphs H ′ and the inequality mH > 1.)

4.2 Large c

As already mentioned, the following proof is due to a reviewer of the paper. We will show that
if every coloring of the edges of graph G with b colors contains a monochromatic copy of H then
G ∈ A(b,H). Thus the claimed result for large c follows immediately from Rödl and Ruciński
[17].

Indeed, given a b-bounded coloring of G, let the edges colored i be denoted ei,1, ei,2, . . . , ei,bi
where bi ≤ b for all i. Now consider the auxilliary coloring in which edge ei,j is colored with
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j. At most b colors are used and so in the auxilliary coloring there will be a monochromatic
copy of H. The definition of the auxilliary coloring implies that this copy of H is rainbow in
the original coloring.

5 Trees

We first define the tree BT,e,b and prove that BT,e,b ∈ A(b, T ).

Let e = {x, y} be an edge of the tree T . For each vertex v in T let `v be the distance from
v to e (so `x = `y = 0) and let Sv be the set of all strings of the form (v, i1, i2, . . . , i`v) where
i1, i2, . . . , i`v are integers in the set {1, 2, . . . , b}. Note that we have Sx = {(x)} and Sy = {(y)}.
The vertex set of the BT,e,b is

⋃
v∈V (T ) Sv. In addition to the edge {(x), (y)}, we place an edge

between vertex (v, i1, . . . , i`v) and (w, j1, . . . , j`w) if and only if

(a) w and v are adjacent in T , and

(b) ik = jk for k = 1, . . . , `v (where we assume `w = `v + 1).

We call the set of edges in BT,e,b between a vertex in Sv and a set of vertices in Sw, where
`w = `v + 1, a bundle of edges. We also let the singleton edge {(x), (y)} form a bundle. Note
that the edge set of BT,e,b is the disjoint union of the set B of bundles.

Let Ω be the set of colors in an arbitrary b-bounded coloring of BT,e,b. For each bundle
B ∈ B let CB be the set of colors used on the edges in B. Let X ⊆ B. Since the coloring is
b-bounded we have ∣∣∣∣∣ ⋃

B∈X
CB

∣∣∣∣∣ ≥ 1
b

∑
B∈X

|B| ≥ (|X| − 1)b+ 1
b

.

Since the cardinality of this union is an integer, it is at least |X|. So, by Hall’s Theorem, there
is a system of distinct representatives of the sets {CX : X ∈ B}.

This system of distinct representatives corresponds to a set Y of edges in BT,e,b such that
there is exactly one edge from each bundle in Y and the colors on the edges in Y are all different.
This set of edges defines a rainbow copy of T (as well as some extra components) and shows
that BT,e,b ∈ A(b, T ).

5.1 Special Cases: Proof of Theorem 5

We begin by showing that for the path Pl with l edges we have

s(b, Pl) =

{
(b+ 1)

∑m−1
i=0 bi if l = 2m

1 + 2
∑m

i=1 b
i if l = 2m+ 1.

(9)

Observe first that since the b-blow up of Pl centered on the edge e at the middle of the path is
in A(b, Pl), the above expression is an upper bound on s(b, Pl).

For the lower bound we use induction on l with cases l = 1, 2 being trivial. Let a tree U give
a rainbow Pl for every b-bounded coloring of U . Partition E(U) as X ∪ F1 ∪ · · · ∪ Fk so that

(i) for each 1 ≤ i ≤ k, |Fi| ≤ b,
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(ii) for each 1 ≤ i ≤ k and every path (x1, x2, x3, x4) in H, if the edge {x2, x3} belongs to Fi,
then Fi contains the edge {x1, x2} or the edge {x3, x4} (in other words each Fi consists
of all edges in U that intersect some set of vertices), and

(iii) |X| is as small as possible (given (i) and (ii)).

Note that every b-bounded coloring of the forest X yields a rainbow Pl−2; otherwise, we color
the forest X with no rainbow Pl−2 and each Fi with its own color to give a coloring of U with
no rainbow Pl. Thus for some component Y of X we have |E(Y )| ≥ s(b, Pl−2). By induction
|E(Y )| is bounded below by the expression in (9).

In order to count the edges in U , we assign the other components of X and the parts Fi to
vertices of Y according to their vertex of attachment. (I.e. the vertex z and its incident edges
are assigned to y ∈ Y if the path from z to y is edge disjoint from E(Y ).)

We claim that for each vertex y ∈ Y of Y -degree d there are at least b−d+ 1 edges attached
to Y in this way. Indeed, if this is not true, then form a new Fi-set by putting together all edges
of Y incident to y, plus all parts attached to y. The new Fi has at most b edges and |X| has
strictly decreased. Take any path (x1, x2, x3, x4) with the edge {x2, x3} ∈ Fi. If y 6∈ {x2, x3},
then both edges {x1, x2} and {x3, x4} are in Fi. If, say, y = x2 then the edge {x1, x2} ∈ Fi.
The claim has been proved.

For x ∈ V (Y ) let dY (x) be the Y -degree and fY (x) the aggregate number of edges of E(U \Y )
assigned to x. We have ∑

x∈V (Y )

(dY (x) + fY (x)) ≥ (b+ 1)|V (Y )|.

But this sum equals 2|E(Y )|+ |E(U) \ E(Y )| = |E(U)|+ |E(Y )|. So,

|E(U)| ≥ (b+ 1)|V (Y )| − |E(Y )| = b|E(Y )|+ b+ 1 ≥ b · s(b, Pl−2) + b+ 1,

as required to complete the proof of (9).

Now we turn to part (b) of Theorem 5. We will show that

s(b, Td,l) = 1 + 2
l−1∑
i=1

(b(d− 1))i + (b(d− 1))l (10)

where Td,l is a rooted tree, with all leaves at distance l from the root such that every non-leaf
has the same degree d.

Observe first that the tree BTd,l,e,b with e being any edge incident with the root shows that
our expression is an upper bound for s(b, Td,l).

For the lower bound we again proceed by induction on l. The case l = 1 is simple: a tree with
at most b(d−1) edges can be colored using only d−1 colors. Let l ≥ 2 and let U be a tree with
the coloring property (i.e. U ∈ A(b, Td,l)). We again grow classes Fi as in the proof of (9) but
this time the restriction on their size is (d−1)b (to be precise, we partition U into X,F1, . . . , Fk
such that we have |Fi| ≤ (d − 1)b, (ii) and (iii)). Note that every b-bounded coloring of the
forest X yields a rainbow Td,l−1; otherwise, we color the forest X with no rainbow Td,l−1 and
each Fi with its own set of d− 1 colors to give a coloring of U with no rainbow Td,l. Therefore,
X has a component Y such that |E(Y )| ≥ s(b, Td,l−1), which is equal to the expression in (10)
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by induction. We again assign the other components of X and the parts Fi to vertices of Y
according to their vertex of attachment and let dY (x) be the Y -degree and fY (x) the aggregate
number of edges of E(U \ Y ) assigned to x. We have

|E(U)|+ |E(Y )| =
∑

x∈V (Y )

(dY (x) + fY (x)) ≥ ((d− 1)b+ 1)|V (Y )|.

But then

|E(U)| ≥ ((d− 1)b+ 1)|V (Y )| − |E(Y )| = (d− 1)b|E(Y )|+ (d− 1)b+ 1,

giving the required lower bound.

5.2 Proof of Theorem 4

For the upper bound, consider a b-blow-up of T centered on an edge e that is in the middle of
a longest path in T . The upper bound follows from the fact that this blow-up is in A(b, T ) and
has O(bm) vertices.

For the lower bound it is enough to note that if a tree H is a sub-graph of T then s(b,H) ≤
s(b, T ). Since T contains the path Pl and s(b, Pl) = Ω(bm), we have the desired lower bound.
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[5] P. Erdős, J. Nes̆etril and V. Rödl, Some problems related to partitions of edges of a graph in Graphs
and other Combinatorial topics, Teubner, Leipzig (1983) 54-63.
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