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Abstract

We consider some biased Maker-Breaker games. Starting with the complete k-uniform hy-
pergraph on n vertices, at each turn Maker claims one edge, and then Breaker claims b edges.
Maker’s goal is to obtain a set of edges having some increasing property. We consider the case
where Maker’s desired property is minimum degree m, or having a full-rank incidence matrix,
or having a Berge Hamilton cycle or having a perfect matching or a Hamilton ℓ-cycle.

1 Introduction

In this paper we consider some Maker-Breaker games played on the edges of the complete k-
uniform hypergraph H = Hn,k, sometimes referred to as the board. There are two players, Maker
and Breaker, who take turns in acquiring the edges of H. In one turn Maker acquires one edge
and in one turn Breaker acquires b edges for some fixed number b which we call the bias. Maker’s
aim is to acquire a copy of some particular class of hypergraph and Breaker’s aim is to prevent
this. There will be a value b∗, which we call the threshold bias, such that Maker wins if b ≤ b∗ and
Breaker wins if b > b∗. We discuss estimates for b∗ for a variety of games.

The study of biased Maker-Breaker games begins with Chvátal and Erdős [3]. There are many
results in this area and the book by Hefetz, Krivelevich, Stojaković and Szabó [7] provides a very
nice introduction to the area.

We first consider the Minimum Degree Game, which is one of the most fundamental of games. Here
Maker’s goal is to build a hypergraph with minimum degree m. (The degree of a vertex v is the
number of edges that contain v.) For graphs, Gebauer and Szabó [6] asymptotically estimated the
threshold bias. We generalize their result to k-uniform hypergraphs.

Theorem 1. Suppose first that m = o(log n). Let b = βN
logn where N =

(︁
n

k−1

)︁
. Then for any fixed

ε > 0, Maker wins the Minimum Degree Game (i.e. Maker gets minimum degree m) if β ≤ 1− ε,
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and Breaker wins if β ≥ 1 + ε. In general, if m = Ω(log n), we only claim that Maker wins if
b ≤ γN

km+logn for γ < 1.

Next we consider the Matrix Rank Game. We use the same board Hn,k but we view it as an
n × M,M =

(︁
n
k

)︁
0/1 matrix AM over the boolean field GF2. Each edge e = {i1, i2, . . . , ik} gives

rise to a column ce that has a 1 in rows i1, i2, . . . , ik and a 0 everywhere else. We view the set of
m edges acquired by Maker as an n×m 0/1 sub-matrix Am. Maker’s aim to build a matrix Am of
“full rank”, i.e. n if k is odd and n− 1 if k is even (note that when k is even, rank n is not possible
since summing all rows gives the zero vector). We prove

Theorem 2. Let b = βN
logn . Then for any fixed ε > 0, Maker wins the Matrix Rank Game if

β ≤ 1− ε and Breaker wins if β ≥ 1 + ε.

Next we consider the Berge Hamiltonicity Game. A Berge Hamilton cycle (BHC) is a sequence
(v1, e1, v2, e2, . . . , vn−1, en, vn) of distinct vertices and edges where V (H) = {v1, v2, . . . , vn} and
{vi, vi+1} ⊆ ei for i = 1, 2, . . . , n (indices taken modulo n). In this Game Maker wants to construct
a BHC. Krivelevich [8] asymptotically estimated the threshold bias in the graph case (note that for
graphs, a BHC is just a Hamilton cycle). We adapt his proof to hypergraphs.

Theorem 3. Let b = βN
logn . Then for any fixed ε > 0, Maker wins the BHC Game if β ≤ 1− ε and

Breaker wins if β ≥ 1 + ε.

Our next theorem concerns the Hamilton ℓ-cycle Game in Hn,k. A Hamilton ℓ-cycle is, for some
ordering v1, . . . , vn of the vertices, a sequence of edges {v1, . . . , vk} , {vk−ℓ+1, . . . , v2k−ℓ} . . . , sub-
scripts taken modulo n, so that each edge in the sequence intersects the previous one in ℓ vertices.
A perfect matching is a set of edges E1, E2, . . . , En/k whose union is [n] and for which Ei ∩ Ej = ∅
for all i ̸= j. For convenience, since we will treat them together, we view a perfect matching as a
Hamilton 0-cycle.

Theorem 4. Fix ℓ, k with ℓ < k/2. Let b0 = n
2k logn . Then, Maker wins the Hamilton ℓ-cycle

Game if b ≤ b0.

The lower bound on the threshold bias is rather weak. For an upper bound we can take b ∼ N/ log n
as in Theorems 1, 2 and 3.

A small tweak to the proof of Theorem 4 yields a more colorful version. In the Rainbow Hamilton
ℓ-cycle Game Maker gives her acquired edge a color from a set Q of size D = n/(k − ℓ). Her aim
is to build a rainbow Hamilton ℓ-cycle i.e. one in which edge has a different color.

Theorem 5. Fix ℓ, k with ℓ < k/2 and let Q be a D-set of colors. Then, Maker wins the Rainbow
Hamilton ℓ-cycle Game if b ≤ b0.

In Section 2 we prove Theorem 1. In Section 3 we prove Theorem 2. In Section 4 we prove Theorem
3. In Section 5 we prove Theorems 4 and 5.

We follow a strategy as laid out in Krivelevich [8] and Ferber, Krivelevich and Naves [9]. Here
Maker builds a random graph that w.h.p. contains the desired structure. Our contribution is to
extend this idea to hypergraphs and prove Theorems 1 to 5.
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2 Minimum Degree Game

2.1 Breaker strategy

Suppose that b ≥ (1+ε)N
logn . We will show that Breaker can take every edge incident with some

particular vertex, which means that Breaker actually wins all of the games listed in Theorems 1 –
3. Breaker’s strategy here will have two phases.

Breaker’s goal in Phase 1 is to build a set S of s := n/ log n vertices with the following properties:
by the end, none of the vertices in S are incident with any of Maker’s edges, and Breaker has taken
every edge which is incident with two vertices of S. We follow a strategy based on that of Chvátal
and Erdős [3] for graphs.

To analyze Phase 1, suppose Breaker has some current set S with the required properties (in the
beginning S is empty). We will show that Breaker can increase the size of S by one each turn.
Assuming that Breaker has succeeded so far in growing S by one vertex at each turn, but |S| < s,
there have only been |S| = o(n) turns so far and so Maker has only touched o(n) vertices. Breaker
chooses two vertices x, y that are untouched by Maker. Breaker takes every edge containing x and
y, and every edge containing one of x, y and another vertex from S. Breaker can do all of this in
one turn since b > (1+2|S|)

(︁
n

k−2

)︁
. Breaker then adds x, y to S. On Maker’s turn, Maker can touch

at most one vertex from S, and so playing by this strategy Breaker can keep growing S by one
vertex each turn. Thus, Phase 1 succeeds.

In Phase 2, Breaker’s goal is to take every remaining edge from some vertex in S. Phase 2 will
be an instance of the Box Game of Chvátal and Erdős [3]. In the Box Game, we have x boxes,
each containing y balls. Two players, BoxMaker and BoxBreaker, take turns where BoxMaker
takes b balls per turn and BoxBreaker only takes one ball. BoxMaker wins if they take every ball
in some box. Theorem 2.1 in [3] implies that BoxMaker wins if b ≥ y/ log x. For our present
Minimum Degree Game, Breaker will play the role of BoxMaker. For each vertex v ∈ S we have
a “box” consisting of all the edges containing v, so each box has at most N elements. Since
b ≥ N/ log s ∼ N/ log n, Breaker wins.

2.2 Maker strategy

We will prove something stronger than what is strictly necessary for Therem 1.

Theorem 6. Let N =
(︁
n−1
k−1

)︁
and breaker’s bias be b. Suppose that 1 ≤ b ≤ (1−ε′)αN

km+logn for α, ε′ ∈ (0, 1).
There exists a strategy for Maker to obtain minimum degree m in at most mn rounds. Furthermore,
Maker’s strategy involves some arbitrary choices. In particular, in any round, Maker chooses a
vertex v (specified by the strategy) and then arbitrarily chooses an edge incident containing v from
a set of size at least (1− α)N .

The arbitrary choices allowed in Maker’s strategy will be used to prove Theorems 2, 3. In those
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proofs, Maker will make each arbitrary choice uniformly at random. To prove Theorem 4, we will
prove a version where the board is an arbitrary D-regular graph (k = 2).

Theorem 7. Let G be an arbitrary n-vertex, D-regular graph, i.e k = 2 and let breaker’s bias be b.

Suppose that b ≤ (1−ε′)αD
2m+logn for α, ε′ ∈ (0, 1). There exists a strategy for Maker to obtain minimum

degree m in at most mn rounds. Furthermore, Maker’s strategy involves some arbitrary choices. In
particular, in any round, Maker chooses a vertex v (specified by the strategy) and then arbitrarily
chooses an edge incident with v from a set of size at least (1− α)D.

The fact that Maker wins in Theorem 1 when m = o(log n), β ≤ 1 − ε follows from Theorem 6,
with α = (1− ε′/2), b = (1− ε′)N/ log n, where ε′ is chosen sufficiently small depending on ε, and
m = O(1).

Proof of Theorem 6. We adapt the argument of Gebauer and Szabo [6] from the graph case. We
let HM , HB denote the subgraphs of H with the edges taken by Maker, Breaker respectively. Let
dB(v), dM (v) denote the degree of v in HB, HM respectively. At each turn, Maker will choose
some vertex v and take an edge e incident with v, which we will call easing v. Of course this
edge e also contains other vertices, but we only say that one of them is eased per turn. Let
d+M (v) denote the number of times a vertex v has been eased so far (so dM (v) ≥ d+M (v)). Let
dang(v) := dB(v) − kbd+M (v) be the danger of vertex v at any time. A vertex is dangerous for
Maker if d+M (v) < m.

Maker’s Strategy: In round i, choose a dangerous vertex vi of maximum danger and choose an
edge randomly from those edges incident with vi that are not already taken.

Claim 1. Maker can ensure that dB(v) ≤ αN for all dangerous v ∈ V .

Proof of Claim 1. Let Mi, Bi denote Maker and Breaker’s ith moves. Suppose for contradiction
that after Bg−1 there is a dangerous vertex vg such that dB(vg) > αN . Let J(i) := {vi+1, . . . , vg}.
Next define

dang(Mi) =

∑︁
v∈J(i−1) dang(v)

|J(i− 1)|
and dang(Bi) =

∑︁
v∈J(i) dang(v)

|J(i)|
,

computed before the ith moves of Maker, Breaker respectively.

Then dang(M1) = 0 and dang(Mg) = dang(vg) > αN − kbm. Let as(i) be the number of edges e
claimed by Breaker in his first i moves such that |J(i) ∩ e| = s. We have

Lemma 8.

dang(Mi) ≥ dang(Bi). (1)

dang(Mi) ≥ dang(Bi) +
kb

|J(i)|
, if J(i) = J(i− 1). (2)

dang(Bi) ≥ dang(Mi+1)−
kb

|J(i)|
(3)

dang(Bi) ≥ dang(Mi+1)−
b+ σ(i)

|J(i)|
. (4)
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where

σ(i) :=
k∑︂

s=2

(s− 1)

(︃
as(i)− as(i− 1) +

(︃
|J(i)|
s− 1

)︃(︃
n

k − s

)︃)︃
. (5)

Proof of Lemma 8. Equation (1) follows from the fact that a move by Maker does not increase
danger. Equation (2) follows from the fact that if vi ∈ Ji−1 then its danger, which is a maximum,
drops by kb. Equation (3) follows from the fact that Breaker takes at most b edges contained in Ji.
For equation 4 note that dang(Mi+1)− dang(Bi) is |J(i)|−1 times the increase in

∑︁
v∈J(i) dang(v)

due to Breaker’s additional choices. This will equal |J(i)|−1 times the increase in dB(J(i)). If
Breaker chooses an edge e such that |e ∩ J(i)| = s then this adds s to dB(J(i)). Let bs(i) be the
number edges of this form, so that the change in dB(J(i)) is

∑︁k
s=1 sbs(i). Then

as(i)− as(i− 1) ≤ bs(i)−As, (6)

where As =
(︁|J(i)|
s−1

)︁(︁
n

k−s

)︁
. The term As arises as a bound on the number of edges lost due to the

deletion of the vertex vi−1. So,

k∑︂
s=1

sbs(i) =

k∑︂
s=1

bs(i) +

k∑︂
s=2

(s− 1)bs(i) ≤ b+ σi, from (6).

This completes the proof of Lemma 8.

It follows that

dang(Mi) ≥ dang(Mi+1) if J(i) = J(i− 1). (7)

dang(Mi) ≥ dang(Mi+1)−min

{︃
kb

|J(i)|
,
b+ σ(i)

|J(i)|

}︃
. (8)

Next let 1 ≤ i1 ≤ · · · ≤ ir ≤ g − 1 be the indices where J(i) ̸= J(i − 1). Then we have |J(ik)| =
r − k + 1 for each k, and |J(i1 − 1)| = |J(0)| = r + 1. Let ℓ =

⌈︂
n

logn

⌉︂
and assume first that r ≥ ℓ

and then use the first minimand in (8) for i1, . . . , ir−ℓ and the second minimand otherwise.

0 = dang(M1) ≥ dang(Mg)−
b+ σ(ir)

|J(ir)|
− · · · − b+ σ(ir−ℓ+1)

|J(ir−ℓ+1)|
− kb

|J(ir−ℓ)|
− · · · − kb

|J(i1)|

> αN − kbm− b+ σ(ir)

1
− · · · − b+ σ(ir−ℓ+1)

ℓ
− kb

ℓ+ 1
− · · · − kb

r

= αN − kbm− b log ℓ− kb log
r

ℓ
− σ(ir)

1
− · · · − σ(ir−ℓ+1)

ℓ
+O(b). (9)

Now using (5) we have that

r∑︂
j=r−ℓ+1

σ(ij)

r − j + 1
=

r∑︂
j=r−ℓ+1

∑︁k
s=2(s− 1)

(︂
as(ij)− as(ij − 1) +

(︁
r−j+1
s−1

)︁(︁
n

k−s

)︁)︂
r − j + 1

=
k∑︂

s=2

(s− 1)
r∑︂

j=r−ℓ+1

as(ij)− as(ij − 1)

r − j + 1
+

r∑︂
j=r−ℓ+1

k∑︂
s=2

(︁
r−j+1
s−1

)︁(︁
n

k−s

)︁
r − j + 1

(10)
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Regarding the first sum in (10), we claim that

r∑︂
j=r−ℓ+1

as(ij)− as(ij − 1)

r − j + 1
=

ℓ∑︂
j=1

as(ir+1−j)− as(ir+1−j − 1)

j
≤ 0. (11)

Indeed, observe first that as(ir+1−j − 1) ≥ as(ir−j), j ≥ 0 follows from J(ir−j) = J(ir+1−j − 1).
Also, as(ir) = 0 because J(ir) = J(g − 1) = {vg}. And then (11) becomes

as(ir) +
ℓ−1∑︂
j=1

(︃
as(ir−j)

j + 1
− as(ir+1−j − 1)

j

)︃
− as(ir+1−ℓ − 1)

ℓ
≤ 0.

Regarding the second sum in (10), note that for s ≥ 3 and r− ℓ+1 ≤ j ≤ r we have
(r−j+1

s−1 )( n
k−s)

r−j+1 =

O
(︂

1
logn

)︂
(r−j+1

s−2 )( n
k−s+1)

r−j+1 and so the second sum is at most
(︂
1 +O

(︂
1

logn

)︂)︂
ℓ
(︁

n
k−2

)︁
.

Continuing from (9) we have

0 > αN − kbm− b log ℓ− kb log
r

ℓ
−
(︃
1 +O

(︃
1

log n

)︃)︃
ℓ

(︃
n

k − 2

)︃
+O(b)

≥ αN − kbm− b log n+ b(k + 1) log log n−O

(︃
N

log n

)︃
+O(b) > 0

since b ≤ (1−ε′)αN
km+logn . This completes the case where r ≥ ℓ.

If r < ℓ then we use the first minimand in (8) and get a similar contradiction from

0 ≥ αN − kbm− b log ℓ.

This completes the proof of Claim 1.

This completes the proof of Theorem 6.

Note that in the proof above, we actually showed that every vertex is eased m times, which is
stronger than Maker having minimum degree m. Thus we have the following.

Corollary 9. Under the assumptions of Theorem 6, Maker can ensure that each vertex is eased m
times.

The purpose of this corollary is for use in the Matrix Rank Game and in the BHC Game. In those
games, the first phase of Maker’s strategy will be to build a hypergraph that roughly resembles
“m-out” which is done by easing each vertex m = O(1) times.

Theorem 7 is proved basically by replacing N by D in the proof of Theorem 6. One can also see a
complete proof in the appendix of [5]. (This proof replaces m by K, otherwise the proof is basically
the same as the proof of Theorem 6.
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3 Rank Game

Observe first that if b ≥ (1 + ε)N/ log n then Breaker can isolate a vertex and win the game. So
from now on asume that b ≤ (1− ε)N/ log n.

Maker’s Strategy: There will be two phases, the first of which will be to play the Minimum
Degree Game. We apply Theorem 6 with ε′ small with respect to ε, α = 1 − ε′ and m = O(1)
where m is large. The arbitrary choices in the strategy will be made uniformly at random. In so
doing Maker builds a random matrix A with the following properties: for each i ∈ [n] there are m
columns Coli = {ci,j , j = 1, 2, . . . ,m} where (i) each c ∈ Coli has a 1 in row i and (ii) the other

k − 1 1’s are chosen randomly from a subset of
(︁[n]\{i}

k−1

)︁
of size at least αN .

A dependency will be a set of rows S such that
∑︁

r∈S r = 0. We have to show that w.h.p. there are
no dependencies, except for S = [n] in the case where k is even. Let DS for S ⊆ [n] be the event
that S defines a dependency. We now show that at the end of Phase 1, there are no dependencies
S of size s ≤ ηn where η = 1−α

3k . We have

P(DS) ≤
∏︂
i∈S

(︄
s
(︁
n−1
k−2

)︁
(1− α)

(︁
n−1
k−1

)︁)︄m

≤
(︃

ks

(1− α)n

)︃ms

. (12)

Explanation: the second inequality is easy, so we explain the first. If i ∈ S then each edge chosen
by vertex i must have an even number of vertices in S (including i), so there must be another
vertex in S. The number of possibilities for each such edge is at most s

(︁
n−1
k−2

)︁
. The denominator

accounts for the edge being chosen from a set of size at least (1− α)
(︁
n−1
k−1

)︁
.

So, from (12),

P(∃ a dependency S, |S| ≤ ηn) ≤
ηn∑︂
s=1

(︃
n

s

)︃(︃
ks

(1− α)n

)︃ms

≤
ηn∑︂
s=1

(︃(︂ s
n

)︂m−1
· kme

(1− α)m

)︃s

= o(1),

since η = 1−α
3k and m is sufficiently large.

In Phase 2, Maker just chooses uniformly at random from the available set of edges. We will argue
that in Phase 2, Maker can eliminate all remaining dependencies S.

First assume that ηn ≤ |S| ≤ (1 − η)n. There are Ws = s
(︁
n−s
k−1

)︁
= Ω(nk) edges with exactly one

vertex in S, and we call this set of edges ES . At the start of Phase 2, at mostm(b+1)N = o(nk) have
been acquired by Maker or Breaker. In the next n log logn rounds, at most (b+1)n log logn = o(nk)
additional edges will be acquired by the players. So the probability that Maker avoids ES during
these rounds is at most(︄

1− Ws − o(nk)(︁
n
k

)︁ )︄n log logn

≤ exp (−Ω(n log log n)) .
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Taking a union bound over all choices of S, we see that w.h.p. there will be no dependencies S of
size |S| ≤ (1− η)n at the end of Phase 2. If k is even then we are done since the complement of a
dependency is a dependency.

For odd k, and a dependency with |S| ≥ (1− η)n we focus on T = [n] \S during Phase 1. This will
be very similar to our treatment of DS on line (12). Note that

∑︁
r∈T = 1, where 1 = [1, 1, . . . , 1].

Let now OT be the event that
∑︁

r∈T = 1. Then, where t = |T |,

P(OT ) ≤
∏︂
i/∈T

(︄
t
(︁
n−1
k−2

)︁
(1− α)

(︁
n−1
k−1

)︁)︄m

. (13)

Explanation: if i /∈ T then each edge/column chosen by vertex i must contain a vertex in T .

The rest of the argument follows that of the above for the events DS . This completes the proof of
Theorem 2.

4 BHC Game

Definition 1. A hypergraph is an (r, α)-expander if for all disjoint sets of vertices X and Y , if
|Y | < α|X| and |X| ≤ r, then there is an edge, e, such that |e ∩X| = 1 and e ∩ Y = ∅.

Definition 2. For a hypergraph H, a booster is an edge such that either H∪e has a longer (Berge)
path than H or H ∪ e is (Berge) Hamiltonian.

Lemma 10 (Lemma 2.1 in [1]). There exists a constant ck > 0 such that if H is a connected
(r, 2)-expander k-graph on at least k+1 vertices, then H is Hamiltonian, or it has at least r2nk−2ck
boosters.

Lemma 11. There exist constants ε′,m > 0 (ε′ will be small, and m will be large) satisfying the
following. Let H be the hypergraph obtained by Maker playing according to Theorem 6 using the
parameter α = 1− ε′. Then w.h.p. H is an (εn/10k, 2)-expander.

Proof of Lemma 11. m is a constant and so Maker will win the Minimum Degree Game before any
significant proportion of edges are taken by the players. Fix some X,Y with |X| = x ≤ εn/10k
and |Y | = 2x. On each step when we ease a vertex in X, the probability of choosing an edge
that contains an additional vertex (other than the one we are easing) in X ∪ Y is at most ∼
3x
(︁

n
k−2

)︁
/(1− α)N < 3kx/2εn.

By the union bound, the probability that there exist some X,Y such that H does not have any
edge e with exactly one vertex in X and no vertices in Y is at most

εn/10k∑︂
x=1

(︃
n

x

)︃(︃
n

2x

)︃(︃
3kx

2εn

)︃mx

≤
εn/10k∑︂
x=1

(︂ne
x

)︂3x(︃3kx

2εn

)︃mx

= o(1)
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Maker’s strategy is as follows. First play the Minimum Degree Game from Lemma 11 to obtain
H. Since H is a (εn/10k, 2)-expander, each connected component has at least εn/10k vertices, so
there are at most 10k/ε components. After winning the Minimum Degree Game, Maker’s next
goal is to choose edges to connect H, which takes at most 10k/ε turns. Now H is a connected
(εn/10k, 2)-expander, and Lemma 10 tells us there are Ω(nk) boosters. We are still so early in
the game that only o(nk) edges have been taken by the players, so almost all the boosters are
available. Now Maker chooses a booster every turn for at most n turns, winning the game. This
proves Theorem 3.

5 Perfect Matchings and Hamilton ℓ-cycles

Maker’s Strategy for Theorem 4: Maker starts by severely restricting the board. Let [n] be the
vertex set of the board. LetAi = {(k − ℓ− 1)(i− 1) + 1, (k − ℓ− 1)(i− 1) + 2, . . . , (k − ℓ− 1)i+ ℓ}
for i = 1, 2, . . . , D = n

k−ℓ . The elements of Ai are taken modulo n−D, and so the Ai form a (k−1)-
uniform Hamilton ℓ-cycle on the vertex set {1, . . . , n−D}. (When ℓ = 0 this is a perfect matching.)
Let B = {n−D+1, n−D+2, . . . , n} be the vertices not in any Ai. Maker will restrict the board
by only taking edges of the form Ai ∪ {x} where x ∈ B. Breaker is of course free to take other
edges but this will not matter.

Now let Γ be the complete bipartite graph with vertex sets A = {A1, A2, . . . , AD}. To be clear,
|A| = |B| = D. Each edge (Ai, j) of Γ corresponds to the edge Ai∪{j} of Hn,k. A perfect matching
{(Ai, ϕ(i)), i = 1, 2, . . . , D} corresponds to Hamilton ℓ-cycle {Ei ∪ {ϕ(i)} , i = 1, 2, . . . , D} in H.

Maker will make her choices as if she were playing the minimum degree game on Γ with m =
10, α = 1/11. If she wants to ease Ei ∈ A then she chooses v ∈ Ei and a random w ∈ B such that
the edge X = Ei∪{w} is currently available and adds X to E(HM ). Similarly, if she wants to ease
w ∈ B then she chooses a random i such that the edge X = Ei ∪ {w} is currently available and
adds X to E(HM ). We claim that w.h.p. Maker claims a perfect matching in Γ.

We apply Hall’s theorem. We show first that if B1 = {∃S ⊆ A, |S| ≤ D/2, |NΓ(S)| < |S|} then

P(B1) ≤
D/2∑︂
s=5

(︃
D

s

)︃2(︃ 11s

10D

)︃10s

≤
D/2∑︂
s=5

(︄
D2e2

s2
·
(︃

11s

10D

)︃10
)︄s

= o(1). (14)

Explanation: fix sets S ⊆ A, T ⊆ B of size s. Then the probability that Maker chooses w ∈ T
when easing v ∈ E ∈ S is at most s

(1−α)D = 11s
10D .

If |S| > D/2 and |NΓ(S)| < |S| then |NΓ(B \ NΓ(S))| < |B \ NΓ(S)| and we proceed as in (14).
This completes the proof of Theorem 4.

Now consider Theorem 5. We have a set of colors Q = {c1, . . . , cD}, and whenever Maker takes an
edge she will assign it the color ci where n−D+ i is the vertex in B which Maker’s edge contains.
Thus our Hamilton ℓ-cycle will be rainbow and the rest of the proof follows that of the uncolored
version.
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6 Open questions

While some of our results are tight, there are several open questions that immediately spring to
mind. Theorem 2 could probably be extended to fields other than GF2. The bounds on the bias b
seem quite weak in Theorems 4, 5 and they do not include the cases where k/2 ≤ ℓ < k.
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