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Abstract

We discuss the length of the longest cycle in a sparse random graph Gy, p,p = ¢/n.
c constant. We show that for large ¢ there is a function f(c) such that L, (c)/n — f(c)
a.s. The function f(c) = 1 — Y 3%, pr(c)e™ ¢ where pj, is a polynomial in k. We are
only able to explicitly give the values pi, p2, although we could in principle compute
any pi. We see immediately that the length of the longest path is also asymptotic to

f(e)n w.h.p.

1 Introduction

Erdés conjectured that if ¢ > 1 then w.h.p. G, ./, contains a path of length f(c)n where
f(c) > 0. This was proved by Ajtai, Komlds and Szemerédi [1] and in a slightly weaker form
by de la Vega [21] who proved that if ¢ > 4log2 then f(c) =1 — O(c™!). See also Suen [20].
Bollobas [3] realised that for large ¢ one could find a large path/cycle w.h.p. by concentrating
on a large subgraph with large minimum degree and demonstrating Hamiltonicity. In this
way he showed that f(c) > 1 — ¢**¢~%/2. This was then improved by Bollobas, Fenner and
Frieze [5] to f(c) > 1 — ®e¢ and then by Frieze [12] to f(c) > 1 — (1 +&.)(1 + c)e ¢ where
€. — 0 as ¢ — oo. This last result is optimal up to the value of ., as there are w.h.p.
~ (1 + c)e °n vertices of degree 0 or 1.
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Let p = ¢/n and let G = G,,,. We will assume throughout that c¢ is sufficiently large. Let
C5 denote the 2-core of G. By this we mean that part of the giant component consisting
of vertices that are in at least one cycle. The longest cycle in G is contained in Cy and the
length of the longest path differs from this by O(logn) w.h.p. The reason for this is that
w.h.p. the giant component of G consists of C5 plus a forest of trees with maximum diameter
O(logn).

As in the papers, [3], [5] and [12] we consider a process that builds a large Hamiltonian
subgraph. We construct a sequence of sets Sy = 0,51, Ss,...,5, C Cy and their induced
subgraphs I'g, ', 'y, ..., I'r. Suppose now that we have constructed Sy, £ > 0. We construct
Sy from Sy via one of two cases:

Construction of I

Case a: If there is v € S, that has at least one but fewer than 3 neighbors W outside Sy,
then we add W to Sy to make Syy;.

Case b: If there is a vertex v € Cy \ Sy of degree d in G that has more than d — 3 neighbors
in Sy then we define Sy,1 to be Sy plus v plus the neighbors of v that are currently not in .S;.

Note that we allow d < 3 here and so low degree vertices are always added to some Sj.

S, is the set we end up with when there are no more vertices to add. We note that Sy,
is well-defined and does not depend on the order of adding vertices. Indeed, suppose we
have two distinct outcomes O = vy, vy, ...,v, and Oy = wy,ws.,...,ws. Assume without
loss of generality that there exists ¢ which is the smallest index such that w; ¢ O;. Then,
X = {w,wy,...,wi1} CY = {vy,09,...,0,.}. If w; was added in Step a as v € X then
v € Y, contradiction. If w; is a neighbor of v € X then v qualifies for Step a at the end of
01, again a contradiction. Suppose then that w; is added in Step b. If w; = v then it would
be added to O; because we would have added S; U X and maybe more, a contradiction. If
w; is the neighbor of v then it would also be added after O, for the same reason, giving the
final contradiction. It follows that {wy,ws.,...,ws} C {vy,vq,...,v,} and vice-versa, by the
same reasoning.

We will argue below in Section 1.1 that w.h.p. the graph I'; induced by Sy is a forest plus
a few small components. Each tree in I';, will w.h.p. have at most logn vertices. For a tree
component 7" let vy(7T) denote the the set of vertices of T' that have no neighbors outside

Sr.

Notation 1: Let 7 denote the set of trees in I';. For a tree T € T let Pr be the set
of vertex disjoint path packings of T" where every endpoint of a path in P has a neighbor
outside 7. Here we allow paths of length 0, so that a single vertex with neighbors outside
T counts as a path. For P € Pr let n(T, P) be the number of vertices in 7" that are not
covered by P. Let ¢(T') = minpep, n(T, P) and Q(T') € P denote a set of paths that leaves
¢(T) vertices of T uncovered i.e. satisfies n(T,Q(T")) = ¢(T).

If A= A(n), B = B(n) then we write A~ B if A= (14 0(1))B as n — 0.

We will prove



Theorem 1.1. Let p = ¢/n where ¢ > 0 is a sufficiently large constant. Then w.h.p.

Ly = [V(Co)| = ) o(T). (1)

TeT

The size of Cs is well-known. Let z < 1 be the unique solution to xe™® = ce™°. Then w.h.p.
(see e.g. [15], Lemma 2.16),

|Cs] = (1 —x) (1—%) n. (2)
B(Cy)| = (1- %)2571 (3)

Equation (4.5) of Erdés and Rényi [8] tells us that

T = (ce™)F = ce ™ + ®e 7 + O(cPe™™). (4)

k!

e kk—l
k=1

We will argue below that w.h.p., as ¢ grows, that

> d(T) = O(c’e*)n. (5)

TeT
We therefore have the following improvement to the estimate in [12].

Corollary 1.2. W.h.p., as ¢ grows, that

Ly~ (1= (c+1)e =’ *+0(’e ™)) n. (6)

Note the term (¢ + 1)e~¢ which accounts for vertices of degree 0 or 1. In principle we can
compute more terms than what is given in (6). We claim next that there exists some function
f(c) such that the sum in (1) is concentrated around f(c¢)n. In other words, the sum in (1)
has the form ~ f(c)n w.h.p.

Theorem 1.3. (a) There exists a function f(c) such that for any € > 0, there exists n. such
that for n > n.,

Bl o] < )
(b) .
Wn — f(c) a.s

We will prove Theorem 1.3 in Section 3.



1.1 Structure of I';:

We first bound the size of S;. We need the following lemma on the density of small sets.

Lemma 1.4. W.h.p., every set S C [n] of size at most ng = n/10¢* contains less than 3|S|/2
edges i Gy, p.

Proof. The expected number of sets invalidating the claim can be bounded by

SR G =X (5 () () =X () e
O

Now consider the construction of Sp. Let Sy consist of the vertices with degree at most
D = 18 that appear in the sequence. If we start with this Sy and run the process then we
will achieve the same Sy, as in the given version of the process. Now w.h.p. there are at most
np = QC%efcn vertices of degree at most D in G,,,, (see for example Theorem 3.3 of [15]) and
so |S1| < 3np. Now suppose that the process continues for another k& rounds. Then Sii4
has at least kD /2 edges and at most 3np + 3k vertices. This is because each round adds
a vertex v and at the end of the round ¢ the neighbors of v are in 5;. Suppose k reaches
np before the process stops. Then e(Sk+1)/|Sk+1| > Dnp/(12np) = 3/2. But, 6np < ny,

contradicting Lemma 1.4. So, we can assert that w.h.p.

V(I'L)| < 6np < ne” . (8)
We note the following properties of Sp. Let
Vo ={v e V(') C SL: v has at least one neighbor in V;} and V; = Cy \ Sp,
and for T € T we let

vo(T) = V(T) \ Va.

G1 Each vertex v ¢ S \ V5 has no neighbors in ;.

G2 Each v € V] U V5 has at least 3 neighbors in V.

We will now show that each component K of I satisfies

V)|
3

[vo(K)| = (9)

So = 0 and so (9) is satisfied by every component spanned by Sy. Suppose that at step £ (9)
is satisfied by every component spanned by S,. At step £ + 1, if Case a is invoked, v € K



and K’ is the new component, then |K’| < |K|+ 3 and vy(K) increases by at least one and
so (9) continues to hold, because

vo(K') > vo(K) + 1> (K| +3)/3 > |K'|/3.

Adding v in Case b could merge components K1, Ks, ..., K, into one component K’ while
adding at most 3 vertices. Hence 3+ Y ._, |K;| > |K’'| and so

K’ -3 |K'|
3 37

1 T
vo(K’)21+UO(K)21+§Z|Ki| > 14

=1

and so (9) continues to hold for all the components spanned by Sy 1.

We next show that w.h.p., only a small component can satisfy (9). The expected number of
components of size k < ne~%? that satisfy this condition is at most

A O L

n 1—c/6\k _ 2
< %(206 )" =o(n™?), (10)

if ¢ is large and k > logn.

So, we can assume that all components are of size at most logn. Then the expected number
of vertices on components that are not trees is bounded by

loiz <Z> [ <§>k (kjﬁ) (1- p)k(n—k)/b‘ < loiz <%>k s (%)’f (6_ck/9)
k=3 £
logn

< Z k (QCtel’c/Q)/LC =0(1).

Markov’s inequality implies that whp such components span at most logn = o(n) vertices.

Notation 2: For T' € T, let My be the matching obtained by replacing each path of Q(7T') by
an edge and let M* = (J;or Mp. We let I'] be the subgraph of G induced by V. We also let
'} be the bipartite graph with vertex partition V;, V5 and all edges {e € E(G) : e € V] x V) }.
Finally let T* =T5UT5 U M* and V* =V, UV, = V(™).

2 Proof of Theorem 1.1

The RHS of (1), modulo the o(n) number of vertices that are spanned by non tree components
in I'z, is clearly an upper bound on the largest cycle in Cy. Any cycle must omit at least
¢(T) vertices from each T' € T. On the other hand, as we show, w.h.p. there is cycle H
that spans Vi U {J;e7 V(Q(T)) (see Notation 1). The length of H is equal to the RHS of
(1). Equivalently, we show that

w.h.p. there is a Hamilton cycle H* in I'* that contains all the edges of M™. (11)



2.1 Proof of (5)

We are not able at this time to give an asymptotic estimate of ) ;.. ¢(T"). We will have to
make do with (5). On the other hand, } ;. ¢(T) can be approximated to within arbitrary
accuracy, using the argument in Section 3.

We work in G, ,. Observe that 7" must have a vertex of degree three in order that ¢(7) > 0.
The smallest such tree has seven vertices and consists of three paths of length two with a
common vertex. Therefore, in G, ,,

£ o (0

TeT k>T
<o Z (%)k (%)kl exp{—cmax{3,k/3}}
= 0(266_36)71, (12)

We obtain (5) from (12).

2.2 Structure of I']

Suppose now that [Vi| = N and that V; contains M edges. The construction of I" does not
involve the edges inside V;, but we do know that that [} has minimum degree at least 3.
The distribution of I'} will be that of Gy, ps subject to this degree condition, viz. the random
graph G“S/lzj’w which is sampled uniformly from the set Q{‘/i%, the set of graphs with vertex
set Vi, M edges and minimum degree at least 3. This is because, we can replace I'] by any
graph in G(‘;/i?}w without changing I';,. By the same token, we also know that each v € V5 has

at least 3 random neighbors in V;. We have that

(1 + El)CN

N >n(l —2e7%?) and M € 5 ,

(13)

where £, = ¢ '/3. The bound on N follows from (2) and (8) and the bound on M follows
from the fact that in G, ,,

Pr (as 18] = N, e(S) ¢ (1 :I:el)(];])p) < 2(2) exp {—gglN(A;—_l)p} = o(1).

2.3 Partitioning/Coloring G = G,

We will use the edge coloring argument of Fenner and Frieze [10] to verify (11). In this
section we describe how to color edges.



We color most of the edges of G light blue, dark blue or green. We denote the resultant
blue and green subgraphs by I';, I'] respectively (an edge is blue if it is either dark or light
blue). We later show that the blue graph has expansion properties while the green graph
has suitable randomness.

Every vertex v € V; independently chooses 3 neighbors in V; and we color the chosen edges
light blue. Then we color every edge in V5 : V; light blue. Thereafter we independently color
(re-color) every edge of G dark blue with probability 1/2000. Finally we color green all the
uncolored edges that are contained in Vi. (Some of the edges of G will remain uncolored and
play no significant role in the proof.)

The above coloring satisfies the following properties:

(C1) Every vertex in V] U V4 is joined to at least 3 vertices in V; by a blue edge.
(C2) Every dark blue edge appears independently with probability 5%.

iven the degree sequence 0 every gra with vertex set V; and degree
(C3) Gi the deg q d, of T, y graph H with vert t V1 and deg
sequence d, is equally likely to be I'}.

We can justify C3 as follows: Amending G by replacing I'; by any other graph G" with
vertex set Vi and the same degree sequence and executing our construction of Sy, will result
in the same set Sy, and sets Vi, V5. So, each possible G’ has the same set of extenstions to
G, and as such is equally likely.

2.4 [Expansion of [}
We wish to estimate the probability that small sets have relatively few neighbors in the
graph I';. For S C V* we let N,(S) ={w e V*\ S:Jv e S, {v,w} € E(I})}.

It is known that for a graph with minimum degree at least three that a set of endpoints S
obtained by rotations, that

S U N(S) contains at least |S| 4+ |[N(S)| + 1 edges with an endpoint in S, (14)

see for example Lemma 5 of [9].

Lemma 2.1. W.h.p. there does not exist S C V* of size |S| < n/4 such that |Ny(S)| < 2|S|
and S : (Ny(S) N'V1) contains at least |S| + |Ny(S) N V1| + 1 edges in T.

Proof. Assume that the above fails for some set S. The particular values for the sets V, V5,
conditions Gy, ,,. To get round this, we describe a larger event £ in G = G,,,, that (a) occurs
as a consequence of there being a set S with small expansion and (b) and only occurs with
probability o(1). This event involves an arbitrary choice for V;, V5 etc.



Let T'=V*N Ny(S) and W = N,(S) \ V* C Sy, that is T and W is the neighborhood of S
inside and outside of V* respectively. Then the following event £ must hold. There exist
S, T,W such that, where s = |S|,t = |T| and w = |W|,

(i) s+t <2s.

(ii) SUT spans s+t + 1 edges in G and every vertex in W is connected to a vertex in S
by a dark blue edge.

(iii) No vertex in S is connected to a vertex in V' \ (SUT U W) by a dark blue edge.

Thus,

>( )( (i)
<?>S () (L) () e ()
S(ec>2(s+t)(s+t) <s;;t> ecs ( ;:t))exp{_lc_(‘;}
coenfo el ) () (5 o)
= (e (%C> (Becs)eXp{ 105}_( )’ (%)26_><%)

At the 5th line we used that t + w < 2s, thus ¢, w < 2s. Hence

n/4 2s 2s—t

(@60 < 30 (e (5 )emcs)s(?’;f):ou).

s=0 t=0 w=0

2.5 The Degrees of the Green Subgraph

Lemma 2.2. W.h.p. at least 99n/100 vertices in Vi have green degree at least ¢/50. In
addition every set S C Vi of size at least n/4 has total green degree at least cn/250.

Proof. At most 6n edges are colored light blue and thereafter the Chernoff bounds imply that
w.h.p. at most (14 ¢€)cn /4000 edges are colored dark blue, for some arbitrarily small positive
e. The probability that a vertex has degree less than ¢/4 is bounded by 2¢ C/’\c/ < 1/1000.
Azuma’s inequality or the Chebyshev inequality can be employed to show that w.h.p. there




are at most /1000 vertices of degree less than ¢/4 in G. Therefore every set of n/100 vertices
spans at least [(n/100 — n/1000)c/4]/2 > (1 + €)en /4000 + 6n + ¢/50 - n/100 edges. Thus
in every set of vertices of size at least n/100 there is a vertex that is incident to ¢/50 green
edges, proving the first part of our Lemma.

It follows that w.h.p. every set of size n/4 has total green degree at least

n n C cn
(5-105) X 55> 5=
4100/ " 50 ~ 250

2.6 Posa Rotations

We say that a path/cycle P in I'* is compatible if for every {v,w} € M* and V(P)N{v,w} # ()
implies that P contains the edge {v, w}. We are thus going to show that w.h.p. T'* contains
a compatible hamilton cycle.

Suppose that I'* and hence I'; is not Hamiltonian and that P = (v, vs, ..., vs) is a longest
compatible path in both I'* and I'}. If {vs,v;} € E;f \ M* then the path
(1,09, ..., Vs, Vs, Vs_1, - .., Uiy1) 18 said to be obtained from P by an acceptable rotation with

vy as the fixed endpoint. Let END;(P,v1) be the set of endpoints of paths obtainable
from P by a sequence of acceptable rotations with v; as the fixed endpoint. Then, for
v € END}(P,v;) we let END;(P,,v) be defined similarly. Here P, is a path with endpoints
v1, v obtainable from P by acceptable rotations.

Arguing as in the proof of Posd’s lemma we see that |[Ny(END*(P,vy))| < 2|END;(P,vy)|.
So, from Lemma 2.1 we see that w.h.p. |END;(P,,v)| > Ny for all v € END; (P, vy).

We let
END;(P)=END;(Po)u | )  END;(P,v).
vEEND*(Pyv1)

2.7 Coloring argument

We use a modification of a double counting argument that was first used in [10]. The specific
version is from [11]. Given a two-colored I'*, we choose for each v € V;, an additional incident
edge & = {v,n,} where n, € V; UV, We re-color £, blue if necessary. There are at most
IT = [],cy, d(v) choices for & = (£,,v € V1).

For a graph I', I' = I'* or I';, we let ¢(I") denote the length of the longest compatible path
in I'. We indicate that I" has a compatible Hamilton cycle by ¢(I') = N.

We now let a(§,T7) = 1 if



H1 I is not Hamiltonian.
H2 E(F;;) =((T').
H3 |Ny(S)| > 2[S] for all S C V(I™*),|S] < n/4.

We observe first that if I'* is not Hamiltonian and H2 holds then there exists £ such that
a(§, ) = 1. Indeed, let P = (vi,vs,...,v,) be a longest path in I'*. Then we simply let &,
be the edge {v;,v;11} for 1 < i < r. It follows that if ® denotes the number of choices for
I, and 7 is the probability that I'™* is not Hamiltonian, then

> a(€,Ty)
&Ly

g < QT +o(1), (15)

where the o(1) term accounts for failure of the high probability events that we have identified
so far.

On the other hand I'; is a random graph over all the graphs with degree sequence Dj. Hence
Z a(g, ) < @I1 Mmax g, (16)
£,G; g

where 7, is defined as follows: let P be some longest path in I';. Then 7, is the probability
that a random realization of I'; does not include a pair {z,y} where y € END;(P,z). We
will argue below that

dry(v) Y dry(w)

wEEN Dy (Py,v)

max 7y < omx ] 1— B, (17)
vEEND; (P)
> ) Y dylw)
< O(1) x exp { — =) Z’ij Do) : (18)

The extra factor 2x accounts for the cases where w € ENDj}(P,,v) and v € END}(P,,w).
Lemma 2.2 implies that at least n/4 —n/100 out of the at least n/4 vertices in EN D} (P)
have dr:(v) > ¢/50. Also, for such v the set ENDj(P,,v) U {v} is of size at least n/4 and
so has total degree at least cn/250. Thus from (18), it follows that

<01 s G o) w0 | o menior
ranbxwg_O( )xexp{ i <e

The Arithmetic-Geometric-mean inequality implies that

=] dw) < (%)N < (20)"

veEV]

10



It then follows that
e—cn/105

W +o(1) = o(1),

T <
and completes the proof of (11).

Proof of (17): This is an exercise in the use of the configuration model of Bollobés [4]. Let
W = [2M,] where M, is the number of green edges and let Wy, W5, ..., Wy be a partition
of W where |W,| = dr:(v),v € V1. The elements of W will be referred to as configuration
points or just as points. A configuration F' is a partition of W into M, pairs. Next define
Y : W — [N] by x € Wy(y). Given F', we let v(F') denote the (muti)graph with vertex set 1}
and an edge {¢(z),¥(y)} for all {x,y} € F. We say that v(F) is simple if it has no loops or
multiple edges. Suppose that we choose F' at random. The properties of F' that we need are

P1 If G, Gy € Gg, then Pr(y(F) = G | v(F) is simple) = Pr(y(F) = Gy | 7(F) is simple).
P2 Pr(+(F) is simple) = Q(1).

These are well established properties of the configuration model, see for example Chapter
11 of [15]. Note that P2 uses the fact that w.h.p. Gf,i%w (and hence I';) has an exponential
tail, as shown for example in [13]. But, given all this, in the context of the configura-

tion model, (17) is a simple consequence of a random pairing of W. The O(1) factor is
1/ Pr(v(F) is simple) and bounds the effect of the conditioning.

3 Proof of Theorem 1.3

For v € Cy we let ¢p(v) = ¢(T)/|vo(T)| if v € vo(T') for some T € T and ¢(v) = 0 otherwise.

Thus
> (T =) b(v).

TeT veCy

Hence (1) can be rewritten as,

Lo~ |Col = 3 6l0). (19)

veCya

Let k1 = ki(e, ¢) be the smallest positive integer such that

o0

Z (632306_6/4)k <

k=k1—1

€
3

Note that for large ¢, we have

log —. (20)



For v € Cy let G, be the graph consisting of (i) the vertices of G that are within distance
ki from v and (ii) a copy of K33 where every vertex in the k; neighborhood of v is adjacent
to each vertex of the same one part of the bipartition. We consider the algorithm for
the construction of I' on G, and let Cy,, 'y, V14, Va,u, Spw, v0,0(T) be the corresponding
sets/quantities.

For a tree T' € Sp, let f(T') be equal to |T| minus the maximum number of vertices that
can be covered by a set of vertex disjoint paths with endpoints in V5, (we allow paths of
length 0). For v € Cy, if v belongs to some tree T' € S, set f(v) = f(T')/vo.(T). Else set
fv) = 0.

For v € Cs let t(v) =1if v € Vi orif v € S and in I, v lies in a component with at most
ki1 — 2 vertices that are not connected to V; in G. Set t(v) = 0 otherwise. Observe that if

t(v) = 1 then ¢(v) = f(v). Otherwise |p(v) — f(v)] < 1.

By repeating the arguments used to prove (10) and (9) it follows that if £(v) = 0 then v lies
on a component C' of size at most logn. In addition at least |V(C')|/3 vertices in V(C) are

not adjacent to any vertex outside V(C'). Thus the expected number of vertices v satisfying
t(v) = 0 is bounded by

log2n 3k n ] ' ' '

> 3 (1)) e
, J) \k

k=k1—1 j=k

log?n

e\ 3k
<n 3k (_) 93k (3], )3k—2 h—1,—ck/4
n 2 Sklae) e

- 303 _—c/a\k _ €T
n 2 < —.
E (e°2%ce™ ") 3
fe=k1—1

IN

A vertex v € [n] is good if the ith level of its BFS neighborhood has size at most 3¢'k; /e for
every i < k; and it is bad otherwise. Because the expected size of the i*" neighborhood is
~ ¢" we have by the Markov inequality that v is bad with probability at most = ¢/3k; and
so the expected number of bad vertices is bounded by en/2. Thus

E(Z¢<v>— > f(v)>SE Z¢<v>—2f<v>>+E(
<E[] Y Io) - f(v) +E(Z 1)

v is bad

> W)

v is bad




Let H. be the set of BF'S neighborhoods that are good i.e. whose ith levels are of size at most
3c'ky /e for every i < ki. Every element of H. corresponds to a pair (H, o) where H is a
graph and o is a distinguished vertex of H, that is considered to be the root. Also for v € Cy
let G(Ng, (v)) be the subgraph induced by the k" neighborhood of v. For (H,oy) € H.
let int(H) be the set of vertices incident to the first k; — 1 neighborhoods of oy and let
Aut(H, og) be the number of automorphisms of H that fix oy. Note that each good vertex v
is associated with a pair (H, oy) € H. from which we can compute f(v), since f(v) = f(og).
Thus, if now M = |E(Cy)|, N = |Cs,

E( S° fw) M N) =3y > PH.on S (0r)

v is good v k>1 (Hyog)EHe
(G(Ngy (v)),0)=(H,0m)
|V (H)|=k
- O(”) + Z Z Z pH,on<0H)7 (21)
v k>1 (H,01)EHe

H is a tree
(G(Ngy (v),v)=(H,0m)

where pg ,,, is the probability (G(N, (v)),v) = (H,o0x) in Cy. We show in Section 3.1 that

N 1 NN\ (kN
e iy (o) .

where f is defined in (25) below and A satisfies (26) below.
Finally observe that with the exception of the o(1) term, all the terms in (21) are independent

of n. We let
f(on) NN s fa(BN)
X3 it w) )

k>1 (H,og)€EH.
H is a tree

Then for a fixed ¢, we see that f.(c) is monotone increasing as ¢ — 0. This is simply because
H. grows. Furthermore, f.(¢) < 1 and so the limit f(c) = lim._, f-(c) exists. This verifies
part (a) of Theorem 1.3. For part (b), we prove, (see (38)),

Lemma 3.1.
Pr(|L, — E(L,)| > en+ n3/4) _ O(G_Q(nl/5))‘

Proof. To prove this we show that if v(H) is the number of copies of H in Cy then H € H.
implies that
Pr(|v(H) — E(v(H))| = n*?) = O(e~""). (24)

The inequality follows from a version of Azuma’s inequality (see (38)), and the lemma follows
from taking a union bound over
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graphs H. Note also that the o(n) term in (21) is bounded by the same e°( term
times the number of cycles of length at most 2k, in G. The probability that this exceeds n'/?
is certainly at most the RHS of (24). We will give details of our use of the Azuma inequality
in Section 3.1. O

Part (b) of Theorem 1.3 follows by letting € — 0 and from the Borel-Cantelli lemma.

3.1 A Model of ()

It is known that given M, N that, up to relabeling vetices, C5 is distributed as G}%@. The

random graph G;%%J is chosen uniformly from vaai which is the set of graphs with vertex
set [N], M edges and minimum degree at least two.

3.1.1 Random Sequence Model

We must now take some time to explain the model we use for G‘;\%ﬁ. We use a variation
on the pseudo-graph model of Bollobds and Frieze [6] and Chvétal [7]. Given a sequence
X = (11, Zo, ..., Taps) € [n]*M of 2M integers between 1 and N we can define a (multi)-graph
Gx = Gx(N, M) with vertex set [N] and edge set {(zg9;_1,%9) : 1 < i < M}. The degree
dx(v) of v € [N] is given by

dx(v) = |{j € 2M] : z; = v} |.

If x is chosen randomly from [N]* then Gy is close in distribution to Gy . Indeed,
conditional on being simple, Gy is distributed as Gy ;. To see this, note that if G is simple
then it has vertex set [N] and M edges. Also, there are M!2M distinct equally likely values
of x which yield the same graph.

Our situation is complicated by there being a lower bound of 2 on the minimum degree. So
we let
N3, = {x € [N]*™ : dy(j) > 2 for j € [N]}.

Let Gx be the multi-graph Gy for x chosen uniformly from [N ]?5% It is clear then that
conditional on being simple, Gy has the same distribution as G‘;\%@. It is important therefore

to estimate the probability that this graph is simple. For this and other reasons, we need to

14



have an understanding of the degree sequence dy when x is drawn uniformly from [N]3L,.

Let
)= =>"= (25)
for k > 0.

Lemma 3.2. Let x be chosen randomly from [N]ggz Let Z;,5 =1,2,..., N be independent
copies of a truncated Poisson random variable P, where

)\t
Pr(P=t) = , t>2.
KO NTAY

Here \ satisfies

AN 2M

L) N
Then {dx(j)}jen) is distributed as {Z;}jen) conditional on Z =3, .\ Z;j = 2M.
Proof. This can be derived as in Lemma 4 of [2]. O

It follows from (13) and (26) and the fact that f;(\)/f2(A) — 1 as ¢ — oo that for large c,
A=c(1+0(ce™)). (27)
We note that the variance o2 of P is given by

s Aler =1)2 = N3

g =

JEAR)
Furthermore,
al 1
Pr Z;=2M| = 1+O(N o2 28
(Z )Umx (N'o™) (28)
and

Pr (; Z; =2M — d) = a\/;r—N (1+0(d@+1)N"'e7?). (29)

This is an example of a local central limit theorem. See for example, (5) of [2] or (3) of [13].
It follows by repeated application of (28) and (29) that if £ = O(1) and d? +- - - +d3 = o(N)

then
N )\di
Pr(Z =d,i=12.. .k Z:=2M | ~ . 30

Let vx(s) denote the number of vertices of degree s in Gx.
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Lemma 3.3. Suppose that log N = O((NX)Y/?). Let x be chosen randomly from [N]3%.
Then as in equation (7) of [2], we have that with probability 1 — o(N~10),

NN NY O\ ,
0| < (14 (i) Jeevzsishen o
vx(j) =0, j>logN. (32)

5>2

We can now show Gy, x € [n]§Z, is a good model for G972

now that

For this we only need to show
Pr(Gy is simple) = Q(1). (33)
Again, this follows as in [2].

Given a tree H with k vertices of degrees z1, 2, ..., 21 and a fixed vertex v we see that if pgy
is the probability that G(Ny, (v)) = H in Gy then where ®(2m) = 2! we have

ml2m?
N\ (k=11 & o A dl B(2M — 2k +2)
% — . 34
o= () aumen = 2 Harw Uata™ sy ©
di+-+dp=D

:<N) (k_”;)W‘ZZ H( A=z B(2M — 2k + 2) (35)

k—1 Aut(H, o D2k dy. .dy i1 dl — Zz)'f2(>\) @(2M)
dy+-+d=D
(N (k=1 5 o ®2M —2k+2) o= (k\)P72kD
B (k: — 1) Aut(H, oH)A2 2 O(2M) fo(\)* Dz:;k (D —2(k—1)) (36)
N 1 NN\ L fa(kN)
~ s o) Yo (&)

Explanation for (34): We use (30) to obtain the probability that the degrees of [k] are
dyi,...,dr. Implicit here is that d; = O(logn), from (32). The contribution to the sum
of D > 2klogn can therefore be shown to be negligible. Having fixed dy,...,d; we can
condition on dg.1,...,dy and then we essentially are dealing with the configuration model.
In which case ®(2M) is the total number of pairings of all points and ®(2M — k) is the
number of pairings, given we have H occuring in [k]. We then use the fact that &k is small
to argue that w.h.p. H is induced.

Explanation for (36): We use the identity

D!
——__ — P
2 ard

It only remains to verify (24). It follows from the above that E(v(H) | M,N) = Q(N).
We first condition on a degree sequence x satisfying (31). We then work in the associated
configuration model. We can generate a configuration F' as a permutation of the multi-set
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{d; x i :1 € [N]}. Interchanging two elements in a permutation can only change v(H) by
O(1). We can therefore apply Azuma’s inequality to show that

Pr(|v(H) — E(v(H))| > n*%) = O(e~ "), (38)

(Specifically we can use Lemma 11 of Frieze and Pittel [17] or Section 3.2 of McDiarmid
[19].) This verifies (24).

4 Summary and open problems

We have derived an expression for the length of the longest path in G, , that holds for large ¢
w.h.p. It would be interesting to have a more algebraic expression. Also, we could no doubt
make this proof algorithmic, by using the arguments of Frieze and Haber [14]. It would be
more interesting to do the analysis for small ¢ > 1. Applying the coupling of McDiarmid [18]
we see that the random digraph D, ,,p = ¢/n contains a path at least as long as that given
by the R.H.S. of (6). It should be possible to improve this, just as Krivelevich, Lubetzky
and Sudakov [16] did for the earlier result of [12].
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