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Abstract

We discuss the length of the longest cycle in a sparse random graph Gn,p, p = c/n.
c constant. We show that for large c there is a function f(c) such that Ln(c)/n→ f(c)
a.s. The function f(c) = 1 −

∑∞
k=1 pk(c)e

−kc where pk is a polynomial in k. We are
only able to explicitly give the values p1, p2, although we could in principle compute
any pk. We see immediately that the length of the longest path is also asymptotic to
f(c)n w.h.p.

1 Introduction

Erdős conjectured that if c > 1 then w.h.p. Gn,c/n contains a path of length f(c)n where
f(c) > 0. This was proved by Ajtai, Komlós and Szemerédi [1] and in a slightly weaker form
by de la Vega [21] who proved that if c > 4 log 2 then f(c) = 1−O(c−1). See also Suen [20].
Bollobás [3] realised that for large c one could find a large path/cycle w.h.p. by concentrating
on a large subgraph with large minimum degree and demonstrating Hamiltonicity. In this
way he showed that f(c) ≥ 1 − c24e−c/2. This was then improved by Bollobás, Fenner and
Frieze [5] to f(c) ≥ 1− c6e−c and then by Frieze [12] to f(c) ≥ 1− (1 + εc)(1 + c)e−c where
εc → 0 as c → ∞. This last result is optimal up to the value of εc, as there are w.h.p.
≈ (1 + c)e−cn vertices of degree 0 or 1.
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Let p = c/n and let G = Gn,p. We will assume throughout that c is sufficiently large. Let
C2 denote the 2-core of G. By this we mean that part of the giant component consisting
of vertices that are in at least one cycle. The longest cycle in G is contained in C2 and the
length of the longest path differs from this by O(log n) w.h.p. The reason for this is that
w.h.p. the giant component of G consists of C2 plus a forest of trees with maximum diameter
O(log n).

As in the papers, [3], [5] and [12] we consider a process that builds a large Hamiltonian
subgraph. We construct a sequence of sets S0 = ∅, S1, S2, . . . , SL ⊆ C2 and their induced
subgraphs Γ0,Γ1,Γ2, . . . ,ΓL. Suppose now that we have constructed S`, ` ≥ 0. We construct
S`+1 from S` via one of two cases:

Construction of Γ
Case a: If there is v ∈ S` that has at least one but fewer than 3 neighbors W outside S`,
then we add W to S` to make S`+1.
Case b: If there is a vertex v ∈ C2 \S` of degree d in G that has more than d− 3 neighbors
in S` then we define S`+1 to be S` plus v plus the neighbors of v that are currently not in S`.

Note that we allow d < 3 here and so low degree vertices are always added to some S`.

SL is the set we end up with when there are no more vertices to add. We note that SL
is well-defined and does not depend on the order of adding vertices. Indeed, suppose we
have two distinct outcomes O1 = v1, v2, . . . , vr and O2 = w1, w2., . . . , ws. Assume without
loss of generality that there exists i which is the smallest index such that wi /∈ O1. Then,
X = {w1, w2, . . . , wi−1} ⊆ Y = {v1, v2, . . . , vr}. If wi was added in Step a as v ∈ X then
v ∈ Y , contradiction. If wi is a neighbor of v ∈ X then v qualifies for Step a at the end of
O1, again a contradiction. Suppose then that wi is added in Step b. If wi = v then it would
be added to O1 because we would have added S1 ∪X and maybe more, a contradiction. If
wi is the neighbor of v then it would also be added after O1 for the same reason, giving the
final contradiction. It follows that {w1, w2., . . . , ws} ⊆ {v1, v2, . . . , vr} and vice-versa, by the
same reasoning.

We will argue below in Section 1.1 that w.h.p. the graph ΓL induced by SL is a forest plus
a few small components. Each tree in ΓL will w.h.p. have at most log n vertices. For a tree
component T let υ0(T ) denote the the set of vertices of T that have no neighbors outside
SL.

Notation 1: Let T denote the set of trees in ΓL. For a tree T ∈ T let PT be the set
of vertex disjoint path packings of T where every endpoint of a path in P has a neighbor
outside T . Here we allow paths of length 0, so that a single vertex with neighbors outside
T counts as a path. For P ∈ PT let n(T, P ) be the number of vertices in T that are not
covered by P . Let φ(T ) = minP∈PT

n(T, P ) and Q(T ) ∈ P denote a set of paths that leaves
φ(T ) vertices of T uncovered i.e. satisfies n(T,Q(T )) = φ(T ).

If A = A(n), B = B(n) then we write A ≈ B if A = (1 + o(1))B as n→∞.

We will prove
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Theorem 1.1. Let p = c/n where c > 0 is a sufficiently large constant. Then w.h.p.

Ln ≈ |V (C2)| −
∑
T∈T

φ(T ). (1)

The size of C2 is well-known. Let x < 1 be the unique solution to xe−x = ce−c. Then w.h.p.
(see e.g. [15], Lemma 2.16),

|C2| ≈ (1− x)
(

1− x

c

)
n. (2)

|E(C2)| ≈
(

1− x

c

)2 c

2
n. (3)

Equation (4.5) of Erdős and Rényi [8] tells us that

x =
∞∑
k=1

kk−1

k!
(ce−c)k = ce−c + c2e−2c +O(c3e−3c). (4)

We will argue below that w.h.p., as c grows, that∑
T∈T

φ(T ) = O(c6e−3c)n. (5)

We therefore have the following improvement to the estimate in [12].

Corollary 1.2. W.h.p., as c grows, that

Ln ≈
(
1− (c+ 1)e−c − c2e−2c +O(c6e−3c)

)
n. (6)

Note the term (c + 1)e−c which accounts for vertices of degree 0 or 1. In principle we can
compute more terms than what is given in (6). We claim next that there exists some function
f(c) such that the sum in (1) is concentrated around f(c)n. In other words, the sum in (1)
has the form ≈ f(c)n w.h.p.

Theorem 1.3. (a) There exists a function f(c) such that for any ε > 0, there exists nε such
that for n ≥ nε, ∣∣∣∣E[Ln]

n
− f(c)

∣∣∣∣ ≤ ε. (7)

(b)
Ln
n
→ f(c) a.s.

We will prove Theorem 1.3 in Section 3.
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1.1 Structure of ΓL:

We first bound the size of SL. We need the following lemma on the density of small sets.

Lemma 1.4. W.h.p., every set S ⊆ [n] of size at most n0 = n/10c3 contains less than 3|S|/2
edges in Gn,p.

Proof. The expected number of sets invalidating the claim can be bounded by

n0∑
s=4

(
n

s

)( (s
2

)
3s/2

)( c
n

)3s/2

≤
n0∑
s=4

(
ne

s
·
(se

3

)3/2

·
( c
n

)3/2
)s

=

n0∑
s=4

(
e5/2c3/2s1/2

33/2n1/2

)s
= o(1).

Now consider the construction of SL. Let S0 consist of the vertices with degree at most
D = 18 that appear in the sequence. If we start with this S0 and run the process then we
will achieve the same SL as in the given version of the process. Now w.h.p. there are at most
nD = 2cDe−c

D!
n vertices of degree at most D in Gn,p, (see for example Theorem 3.3 of [15]) and

so |S1| ≤ 3nD. Now suppose that the process continues for another k rounds. Then Sk+1

has at least kD/2 edges and at most 3nD + 3k vertices. This is because each round adds
a vertex v and at the end of the round i the neighbors of v are in Si. Suppose k reaches
nD before the process stops. Then e(Sk+1)/|Sk+1| ≥ DnD/(12nD) = 3/2. But, 6nD < n0,
contradicting Lemma 1.4. So, we can assert that w.h.p.

|V (ΓL)| ≤ 6nD ≤ ne−c/2. (8)

We note the following properties of SL. Let

V2 = {v ∈ V (Γ) ⊆ SL : v has at least one neighbor in V1} and V1 = C2 \ SL

and for T ∈ T we let
υ0(T ) = V (T ) \ V2.

G1 Each vertex v /∈ SL \ V2 has no neighbors in V1.

G2 Each v ∈ V1 ∪ V2 has at least 3 neighbors in V1.

We will now show that each component K of Γ satisfies

|υ0(K)| ≥ |V (K)|
3

. (9)

S0 = ∅ and so (9) is satisfied by every component spanned by S0. Suppose that at step ` (9)
is satisfied by every component spanned by S`. At step ` + 1, if Case a is invoked, v ∈ K
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and K ′ is the new component, then |K ′| ≤ |K|+ 3 and υ0(K) increases by at least one and
so (9) continues to hold, because

υ0(K ′) ≥ υ0(K) + 1 ≥ (|K|+ 3)/3 ≥ |K ′|/3.

Adding v in Case b could merge components K1, K2, . . . , Kr into one component K ′ while
adding at most 3 vertices. Hence 3 +

∑r
i=1 |Ki| ≥ |K ′| and so

υ0(K ′) ≥ 1 + υ0(K) ≥ 1 +
1

3

r∑
i=1

|Ki| ≥ 1 +
|K ′| − 3

3
=
|K ′|

3
.

and so (9) continues to hold for all the components spanned by S`+1.

We next show that w.h.p., only a small component can satisfy (9). The expected number of
components of size k ≤ ne−c/2 that satisfy this condition is at most(

n

k

)
kk−2

( c
n

)k−1
(
k

k/3

)
(1− p)k(n−k)/3 ≤

(ne
k

)k
kk−2

( c
n

)k−1

2ke−ck/6

≤ n

ck2

(
2ce1−c/6)k = o(n−2), (10)

if c is large and k ≥ log n.

So, we can assume that all components are of size at most log n. Then the expected number
of vertices on components that are not trees is bounded by

logn∑
k=3

(
n

k

)
kk+1

( c
n

)k ( k

k/6

)
(1− p)k(n−k)/6 ≤

logn∑
k=3

(ne
k

)k
kk+1

( c
n

)k
(e−ck/9)

≤
logn∑
k=3

k
(
2ce1−c/9)k = O(1).

Markov’s inequality implies that whp such components span at most log n = o(n) vertices.

Notation 2: For T ∈ T , let MT be the matching obtained by replacing each path ofQ(T ) by
an edge and let M∗ =

⋃
T∈T MT . We let Γ∗1 be the subgraph of G induced by V1. We also let

Γ∗2 be the bipartite graph with vertex partition V1, V2 and all edges {e ∈ E(G) : e ∈ V1×V2}.
Finally let Γ∗ = Γ∗1 ∪ Γ∗2 ∪M∗ and V ∗ = V1 ∪ V2 = V (Γ∗).

2 Proof of Theorem 1.1

The RHS of (1), modulo the o(n) number of vertices that are spanned by non tree components
in ΓL, is clearly an upper bound on the largest cycle in C2. Any cycle must omit at least
φ(T ) vertices from each T ∈ T . On the other hand, as we show, w.h.p. there is cycle H
that spans V1 ∪

⋃
T∈T V (Q(T )) (see Notation 1). The length of H is equal to the RHS of

(1). Equivalently, we show that

w.h.p. there is a Hamilton cycle H∗ in Γ∗ that contains all the edges of M∗. (11)
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2.1 Proof of (5)

We are not able at this time to give an asymptotic estimate of
∑

T∈T φ(T ). We will have to
make do with (5). On the other hand,

∑
T∈T φ(T ) can be approximated to within arbitrary

accuracy, using the argument in Section 3.

We work in Gn,p. Observe that T must have a vertex of degree three in order that φ(T ) > 0.
The smallest such tree has seven vertices and consists of three paths of length two with a
common vertex. Therefore, in Gn,p,

E

(∑
T∈T

φ(T )

)
≤O

∑
k≥7

(
n

k

)
pk−1(1− p)(n−k) max{3,k/3}

≤O
∑
k≥7

(ne
k

)k ( c
n

)k−1

exp {−cmax {3, k/3}}

= O(c6e−3c)n, (12)

We obtain (5) from (12).

2.2 Structure of Γ∗1

Suppose now that |V1| = N and that V1 contains M edges. The construction of Γ does not
involve the edges inside V1, but we do know that that Γ∗1 has minimum degree at least 3.
The distribution of Γ∗1 will be that of GV1,M subject to this degree condition, viz. the random
graph Gδ≥3

V1,M
which is sampled uniformly from the set Gδ≥3

V1,M
, the set of graphs with vertex

set V1, M edges and minimum degree at least 3. This is because, we can replace Γ∗1 by any
graph in Gδ≥3

V1,M
without changing ΓL. By the same token, we also know that each v ∈ V2 has

at least 3 random neighbors in V1. We have that

N ≥ n(1− 2e−c/2) and M ∈ (1± ε1)cN

2
, (13)

where ε1 = c−1/3. The bound on N follows from (2) and (8) and the bound on M follows
from the fact that in Gn,p,

Pr

(
∃S : |S| = N, e(S) /∈ (1± ε1)

(
N

2

)
p

)
≤ 2

(
n

N

)
exp

{
−ε

2
1N(N − 1)p

3

}
= o(1).

2.3 Partitioning/Coloring G = Gn,p

We will use the edge coloring argument of Fenner and Frieze [10] to verify (11). In this
section we describe how to color edges.
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We color most of the edges of G light blue, dark blue or green. We denote the resultant
blue and green subgraphs by Γ∗b ,Γ

∗
g respectively (an edge is blue if it is either dark or light

blue). We later show that the blue graph has expansion properties while the green graph
has suitable randomness.

Every vertex v ∈ V1 independently chooses 3 neighbors in V1 and we color the chosen edges
light blue. Then we color every edge in V2 : V1 light blue. Thereafter we independently color
(re-color) every edge of G dark blue with probability 1/2000. Finally we color green all the
uncolored edges that are contained in V1. (Some of the edges of G will remain uncolored and
play no significant role in the proof.)

The above coloring satisfies the following properties:

(C1) Every vertex in V1 ∪ V2 is joined to at least 3 vertices in V1 by a blue edge.

(C2) Every dark blue edge appears independently with probability p
2000

.

(C3) Given the degree sequence dg of Γ∗g, every graph H with vertex set V1 and degree
sequence dg is equally likely to be Γ∗g.

We can justify C3 as follows: Amending G by replacing Γ∗g by any other graph G′ with
vertex set V1 and the same degree sequence and executing our construction of SL will result
in the same set SL and sets V1, V2. So, each possible G′ has the same set of extenstions to
Gn,p and as such is equally likely.

2.4 Expansion of Γ∗b

We wish to estimate the probability that small sets have relatively few neighbors in the
graph Γ∗b . For S ⊆ V ∗ we let Nb(S) = {w ∈ V ∗ \ S : ∃v ∈ S, {v, w} ∈ E(Γ∗b)}.

It is known that for a graph with minimum degree at least three that a set of endpoints S
obtained by rotations, that

S ∪N(S) contains at least |S|+ |N(S)|+ 1 edges with an endpoint in S, (14)

see for example Lemma 5 of [9].

Lemma 2.1. W.h.p. there does not exist S ⊂ V ∗ of size |S| ≤ n/4 such that |Nb(S)| ≤ 2|S|
and S : (Nb(S) ∩ V1) contains at least |S|+ |Nb(S) ∩ V1|+ 1 edges in Γ∗b .

Proof. Assume that the above fails for some set S. The particular values for the sets V1, V2

conditions Gn,p. To get round this, we describe a larger event ES in G = Gn,p that (a) occurs
as a consequence of there being a set S with small expansion and (b) and only occurs with
probability o(1). This event involves an arbitrary choice for V1, V2 etc.
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Let T = V ∗ ∩Nb(S) and W = Nb(S) \ V ∗ ⊆ SL, that is T and W is the neighborhood of S
inside and outside of V ∗ respectively. Then the following event ES must hold. There exist
S, T,W such that, where s = |S|, t = |T | and w = |W |,

(i) s+ t ≤ 2s.

(ii) S ∪ T spans s+ t+ 1 edges in G and every vertex in W is connected to a vertex in S
by a dark blue edge.

(iii) No vertex in S is connected to a vertex in V \ (S ∪ T ∪W ) by a dark blue edge.

Thus,

Pr(ES | s, t, w)

≤
(
n

s

)(
n

t

)(
n

w

)( (
s+t
2

)
s+ t+ 1

)
swps+t+w+1

(
1− p

2000

)s(n−s−t−w)

≤
(en
s

)s (en
t

)t (en
w

)w (e(s+ t)

2

)s+t+1

sw
( c
n

)s+t+w+1

exp
{
− p

2000

(sn
4

)}
≤ (ec)2(s+t)

(
s+ t

2s

)s(
s+ t

2t

)t (ecs
w

)w (ec(s+ t)

2n

)
exp

{
− cs

105

}
≤ (ec)6s exp

{
s · t− s

2s

}
exp

{
t · s− t

2t

}(ecs
2s

)2s
(

3ecs

2n

)
exp

{
− cs

105

}
= (ec)6s

(ec
2

)2s
(

3ecs

2n

)
exp

{
− cs

105

}
=

(
(ec)6

(ec
2

)2

e−
c

105

)s
·
(

3ecs

2n

)
.

At the 5th line we used that t+ w ≤ 2s, thus t, w ≤ 2s. Hence

Pr(∃S : ES) ≤
n/4∑
s=0

2s∑
t=0

2s−t∑
w=0

(
(ec)6

(ec
2

)2

e−
c

105

)s
·
(

3ecs

2n

)
= o(1).

2.5 The Degrees of the Green Subgraph

Lemma 2.2. W.h.p. at least 99n/100 vertices in V1 have green degree at least c/50. In
addition every set S ⊂ V1 of size at least n/4 has total green degree at least cn/250.

Proof. At most 6n edges are colored light blue and thereafter the Chernoff bounds imply that
w.h.p. at most (1+ε)cn/4000 edges are colored dark blue, for some arbitrarily small positive

ε. The probability that a vertex has degree less than c/4 is bounded by 2 e
−cλc/4

c/4!
< 1/1000.

Azuma’s inequality or the Chebyshev inequality can be employed to show that w.h.p. there
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are at most n/1000 vertices of degree less than c/4 in G. Therefore every set of n/100 vertices
spans at least [(n/100 − n/1000)c/4]/2 > (1 + ε)cn/4000 + 6n + c/50 · n/100 edges. Thus
in every set of vertices of size at least n/100 there is a vertex that is incident to c/50 green
edges, proving the first part of our Lemma.

It follows that w.h.p. every set of size n/4 has total green degree at least(n
4
− n

100

)
× c

50
>

cn

250
.

2.6 Posá Rotations

We say that a path/cycle P in Γ∗ is compatible if for every {v, w} ∈M∗ and V (P )∩{v, w} 6= ∅
implies that P contains the edge {v, w}. We are thus going to show that w.h.p. Γ∗ contains
a compatible hamilton cycle.

Suppose that Γ∗ and hence Γ∗b is not Hamiltonian and that P = (v1, v2, . . . , vs) is a longest
compatible path in both Γ∗ and Γ∗b . If {vs, vi} ∈ E∗b \M∗ then the path
(v1, v2, . . . , vi, vs, vs−1, . . . , vi+1) is said to be obtained from P by an acceptable rotation with
v1 as the fixed endpoint. Let END∗b (P, v1) be the set of endpoints of paths obtainable
from P by a sequence of acceptable rotations with v1 as the fixed endpoint. Then, for
v ∈ END∗b (P, v1) we let END∗b (Pv, v) be defined similarly. Here Pv is a path with endpoints
v1, v obtainable from P by acceptable rotations.

Arguing as in the proof of Posá’s lemma we see that |Nb(END
∗(P, v1))| ≤ 2|END∗b (P, v1)|.

So, from Lemma 2.1 we see that w.h.p. |END∗b (Pv, v)| ≥ N0 for all v ∈ END∗b (P, v1).

We let
END∗b (P ) = END∗b (P, v1) ∪

⋃
v∈END∗(P,v1)

END∗b (Pv, v).

2.7 Coloring argument

We use a modification of a double counting argument that was first used in [10]. The specific
version is from [11]. Given a two-colored Γ∗, we choose for each v ∈ V1, an additional incident
edge ξv = {v, ηv} where ηv ∈ V1 ∪ V2. We re-color ξv blue if necessary. There are at most
Π =

∏
v∈V1 d(v) choices for ξ = (ξv, v ∈ V1).

For a graph Γ, Γ = Γ∗ or Γ∗b , we let `(Γ) denote the length of the longest compatible path
in Γ. We indicate that Γ has a compatible Hamilton cycle by `(Γ) = N .

We now let a(ξ,Γ∗g) = 1 if
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H1 Γ∗b is not Hamiltonian.

H2 `(Γ∗b) = `(Γ∗).

H3 |Nb(S)| ≥ 2|S| for all S ⊆ V (Γ∗), |S| ≤ n/4.

We observe first that if Γ∗ is not Hamiltonian and H2 holds then there exists ξ such that
a(ξ,Γ∗g) = 1. Indeed, let P = (v1, v2, . . . , vr) be a longest path in Γ∗. Then we simply let ξvi
be the edge {vi, vi+1} for 1 ≤ i < r. It follows that if Φ denotes the number of choices for
Γ∗g and πH̄ is the probability that Γ∗ is not Hamiltonian, then

πH̄ ≤

∑
ξ,Γ∗

g

a(ξ,Γ∗g)

Φ
+ o(1), (15)

where the o(1) term accounts for failure of the high probability events that we have identified
so far.

On the other hand Γ∗g is a random graph over all the graphs with degree sequence D∗g . Hence∑
ξ,G∗

g

a(ξ,Γ∗g) ≤ ΦΠ max
Γ∗
g

πg, (16)

where πg is defined as follows: let P be some longest path in Γ∗b . Then πg is the probability
that a random realization of Γ∗g does not include a pair {x, y} where y ∈ END∗b (P, x). We
will argue below that

max
Eb

πg ≤ O(1)×
∏

v∈END∗
b (P )

1−

dΓ∗
g
(v)

∑
w∈END∗

b (Pv ,v)

dΓ∗
g
(w)

2× 2M

 (17)

≤ O(1)× exp

−
∑

v∈END∗
b (P )

dΓ∗
g
(v)

∑
w∈END∗

b (Pv ,v)

dΓ∗
g
(w)

4M

 . (18)

The extra factor 2× accounts for the cases where w ∈ END∗b (Pv, v) and v ∈ END∗b (Pw, w).
Lemma 2.2 implies that at least n/4 − n/100 out of the at least n/4 vertices in END∗b (P )
have dΓ∗

g
(v) ≥ c/50. Also, for such v the set END∗b (Pv, v) ∪ {v} is of size at least n/4 and

so has total degree at least cn/250. Thus from (18), it follows that

max
Eb

πg ≤ O(1)× exp

{
−

n
4
· c

50
· (n

4
− n

100
) · cn

250

4M

}
≤ e−cn/106 .

The Arithmetic-Geometric-mean inequality implies that

Π ≤
∏
v∈V1

d(v) ≤
(∑

v∈V d(v)

N

)N
≤ (2c)n
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It then follows that

πH ≤
e−cn/105

(2c)n
+ o(1) = o(1),

and completes the proof of (11).

Proof of (17): This is an exercise in the use of the configuration model of Bollobás [4]. Let
W = [2Mg] where Mg is the number of green edges and let W1,W2, . . . ,WN be a partition
of W where |Wv| = dΓ∗

g
(v), v ∈ V1. The elements of W will be referred to as configuration

points or just as points. A configuration F is a partition of W into Mg pairs. Next define
ψ : W → [N ] by x ∈ Wψ(x). Given F , we let γ(F ) denote the (muti)graph with vertex set V1

and an edge {ψ(x), ψ(y)} for all {x, y} ∈ F . We say that γ(F ) is simple if it has no loops or
multiple edges. Suppose that we choose F at random. The properties of F that we need are

P1 IfG1, G2 ∈ Gdg then Pr(γ(F ) = G1 | γ(F ) is simple) = Pr(γ(F ) = G2 | γ(F ) is simple).

P2 Pr(γ(F ) is simple) = Ω(1).

These are well established properties of the configuration model, see for example Chapter
11 of [15]. Note that P2 uses the fact that w.h.p. Gδ≥3

V1,M
(and hence Γ∗g) has an exponential

tail, as shown for example in [13]. But, given all this, in the context of the configura-
tion model, (17) is a simple consequence of a random pairing of W . The O(1) factor is
1/Pr(γ(F ) is simple) and bounds the effect of the conditioning.

3 Proof of Theorem 1.3

For v ∈ C2 we let φ(v) = φ(T )/|υ0(T )| if v ∈ υ0(T ) for some T ∈ T and φ(v) = 0 otherwise.
Thus ∑

T∈T

φ(T ) =
∑
v∈C2

φ(v).

Hence (1) can be rewritten as,

Ln ≈ |C2| −
∑
v∈C2

φ(v). (19)

Let k1 = k1(ε, c) be the smallest positive integer such that

∞∑
k=k1−1

(e323ce−c/4)k <
ε

3
.

Note that for large c, we have

k1 ≤
2

c
log

1

ε
. (20)
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For v ∈ C2 let Gv be the graph consisting of (i) the vertices of G that are within distance
k1 from v and (ii) a copy of K3,3 where every vertex in the k1 neighborhood of v is adjacent
to each vertex of the same one part of the bipartition. We consider the algorithm for
the construction of Γ on Gv and let C2,v,Γv, V1,v, V2,v, SL,v, υ0,v(T ) be the corresponding
sets/quantities.

For a tree T ∈ SL,v let f(T ) be equal to |T | minus the maximum number of vertices that
can be covered by a set of vertex disjoint paths with endpoints in V2,v (we allow paths of
length 0). For v ∈ C2, if v belongs to some tree T ∈ SL,v set f(v) = f(T )/υ0,v(T ). Else set
f(v) = 0.

For v ∈ C2 let t(v) = 1 if v ∈ V1 or if v ∈ SL and in Γ, v lies in a component with at most
k1 − 2 vertices that are not connected to V1 in G. Set t(v) = 0 otherwise. Observe that if
t(v) = 1 then φ(v) = f(v). Otherwise |φ(v)− f(v)| ≤ 1.

By repeating the arguments used to prove (10) and (9) it follows that if t(v) = 0 then v lies
on a component C of size at most log n. In addition at least |V (C)|/3 vertices in V (C) are
not adjacent to any vertex outside V (C). Thus the expected number of vertices v satisfying
t(v) = 0 is bounded by

log2 n∑
k=k1−1

3k∑
j=k

(
n

j

)(
j

k

)
jj−2pj−1(1− p)k(n−j)

≤ n

log2 n∑
k=k1−1

3k
( e

3k

)3k

23k(3k)3k−2ck−1e−ck/4

≤ n
∞∑

k=k1−1

(e323ce−c/4)k <
εn

3
.

A vertex v ∈ [n] is good if the ith level of its BFS neighborhood has size at most 3cik1/ε for
every i ≤ k1 and it is bad otherwise. Because the expected size of the ith neighborhood is
≈ ci we have by the Markov inequality that v is bad with probability at most ≈ ε/3k1 and
so the expected number of bad vertices is bounded by εn/2. Thus

E

(∣∣∣∣∣∑
v∈V

φ(v)−
∑

v is good

f(v)

∣∣∣∣∣
)
≤ E

(∣∣∣∣∣∑
v∈V

φ(v)−
∑
v∈V

f(v)

∣∣∣∣∣
)

+ E

(∣∣∣∣∣ ∑
v is bad

f(v)

∣∣∣∣∣
)

≤ E

∣∣∣∣∣∣
∑

v:t(v)=0

|φ(v)− f(v)

∣∣∣∣∣∣
+ E

( ∑
v is bad

1

)

≤ E

 ∑
v:t(v)=0

1

+
εn

3

12



≤ εn

2
+
εn

3
< εn.

LetHε be the set of BFS neighborhoods that are good i.e. whose ith levels are of size at most
3cik1/ε for every i ≤ k1. Every element of Hε corresponds to a pair (H, oH) where H is a
graph and o is a distinguished vertex of H, that is considered to be the root. Also for v ∈ C2

let G(Nk1(v)) be the subgraph induced by the k1
th neighborhood of v. For (H, oH) ∈ Hε

let int(H) be the set of vertices incident to the first k1 − 1 neighborhoods of oH and let
Aut(H, oH) be the number of automorphisms of H that fix oH . Note that each good vertex v
is associated with a pair (H, oH) ∈ Hε from which we can compute f(v), since f(v) = f(oH).
Thus, if now M = |E(C2)|, N = |C2|,

E

( ∑
v is good

f(v)

∣∣∣∣M,N

)
=
∑
v

∑
k≥1

∑
(H,oH)∈Hε

(G(Nk1
(v)),v)=(H,oH)

|V (H)|=k

ρH,oHf(oH)

= o(n) +
∑
v

∑
k≥1

∑
(H,oH)∈Hε

H is a tree
(G(Nk1

(v)),v)=(H,oH)

ρH,oHf(oH), (21)

where ρH,σH is the probability (G(Nk1(v)), v) = (H, oH) in C2. We show in Section 3.1 that

ρH,oH ≈
1

Aut(H, oH)

(
N

2M

)k−1

λ2k−2f2(kλ)

f2(λ)k
, (22)

where fk is defined in (25) below and λ satisfies (26) below.

Finally observe that with the exception of the o(1) term, all the terms in (21) are independent
of n. We let

fε(c) =
∑
k≥1

∑
(H,oH)∈Hε

H is a tree

f(oH)

Aut(H, oH)

(
N

2M

)k−1

λ2k−2f2(kλ)

f2(λ)k
. (23)

Then for a fixed c, we see that fε(c) is monotone increasing as ε→ 0. This is simply because
Hε grows. Furthermore, fε(c) ≤ 1 and so the limit f(c) = limε→0 fε(c) exists. This verifies
part (a) of Theorem 1.3. For part (b), we prove, (see (38)),

Lemma 3.1.
Pr(|Ln − E(Ln)| ≥ εn+ n3/4) = O(e−Ω(n1/5)).

Proof. To prove this we show that if ν(H) is the number of copies of H in C2 then H ∈ Hε

implies that

Pr(|ν(H)− E(ν(H))| ≥ n3/5) = O(e−Ω(n1/5)). (24)

The inequality follows from a version of Azuma’s inequality (see (38)), and the lemma follows
from taking a union bound over

13



exp

{
O

(
ck1(ε)k1(ε)

ε

)}
= exp

O
c 2 log 1

ε
c

2 log 1
ε

c

ε


= exp

{
O

(
(1/ε)2 log c/c log 1

ε

cε

)}
= exp

{
O((1/ε)2+2 log c/c)

}
graphs H. Note also that the o(n) term in (21) is bounded by the same eO((1/ε)2+2 log c/c) term
times the number of cycles of length at most 2k1 in G. The probability that this exceeds n1/2

is certainly at most the RHS of (24). We will give details of our use of the Azuma inequality
in Section 3.1.

Part (b) of Theorem 1.3 follows by letting ε→ 0 and from the Borel-Cantelli lemma.

3.1 A Model of C2

It is known that given M,N that, up to relabeling vetices, C2 is distributed as Gδ≥2
N,M . The

random graph Gδ≥2
N,M is chosen uniformly from Gδ≥2

N,M which is the set of graphs with vertex
set [N ], M edges and minimum degree at least two.

3.1.1 Random Sequence Model

We must now take some time to explain the model we use for Gδ≥2
N,M . We use a variation

on the pseudo-graph model of Bollobás and Frieze [6] and Chvátal [7]. Given a sequence
x = (x1, x2, . . . , x2M) ∈ [n]2M of 2M integers between 1 and N we can define a (multi)-graph
Gx = Gx(N,M) with vertex set [N ] and edge set {(x2i−1, x2i) : 1 ≤ i ≤ M}. The degree
dx(v) of v ∈ [N ] is given by

dx(v) = | {j ∈ [2M ] : xj = v} |.

If x is chosen randomly from [N ]2M then Gx is close in distribution to GN,M . Indeed,
conditional on being simple, Gx is distributed as GN,M . To see this, note that if Gx is simple
then it has vertex set [N ] and M edges. Also, there are M !2M distinct equally likely values
of x which yield the same graph.

Our situation is complicated by there being a lower bound of 2 on the minimum degree. So
we let

[N ]2Mδ≥2 = {x ∈ [N ]2M : dx(j) ≥ 2 for j ∈ [N ]}.

Let Gx be the multi-graph Gx for x chosen uniformly from [N ]2Mδ≥2. It is clear then that

conditional on being simple, Gx has the same distribution as Gδ≥2
N,M . It is important therefore

to estimate the probability that this graph is simple. For this and other reasons, we need to

14



have an understanding of the degree sequence dx when x is drawn uniformly from [N ]2Mδ≥2.
Let

fk(λ) = eλ −
k−1∑
i=0

λi

i!
(25)

for k ≥ 0.

Lemma 3.2. Let x be chosen randomly from [N ]2Mδ≥2. Let Zj, j = 1, 2, . . . , N be independent
copies of a truncated Poisson random variable P, where

Pr(P = t) =
λt

t!f2(λ)
, t ≥ 2.

Here λ satisfies
λf1(λ)

f2(λ)
=

2M

N
. (26)

Then {dx(j)}j∈[N ] is distributed as {Zj}j∈[N ] conditional on Z =
∑

j∈[n] Zj = 2M .

Proof. This can be derived as in Lemma 4 of [2].

It follows from (13) and (26) and the fact that f1(λ)/f2(λ)→ 1 as c→∞ that for large c,

λ = c
(
1 +O(ce−c)

)
. (27)

We note that the variance σ2 of P is given by

σ2 =
λ(eλ − 1)2 − λ3eλ

f 2
2 (λ)

.

Furthermore,

Pr

(
N∑
j=1

Zj = 2M

)
=

1

σ
√

2πN
(1 +O(N−1σ−2)) (28)

and

Pr

(
N∑
j=2

Zj = 2M − d

)
=

1

σ
√

2πN

(
1 +O((d2 + 1)N−1σ−2)

)
. (29)

This is an example of a local central limit theorem. See for example, (5) of [2] or (3) of [13].
It follows by repeated application of (28) and (29) that if k = O(1) and d2

1 + · · ·+d2
k = o(N)

then

Pr

(
Zi = di, i = 1, 2, . . . , k |

N∑
j=1

Zj = 2M

)
≈

k∏
i=1

λdi

di!f2(λ)
. (30)

Let νx(s) denote the number of vertices of degree s in Gx.
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Lemma 3.3. Suppose that logN = O((Nλ)1/2). Let x be chosen randomly from [N ]2Mδ≥2.
Then as in equation (7) of [2], we have that with probability 1− o(N−10),∣∣∣∣νx(j)− Nλj

j!f2(λ)

∣∣∣∣ ≤
(

1 +

(
Nλj

j!f(λ)

)1/2
)

log2N, 2 ≤ j ≤ logN. (31)

νx(j) = 0, j ≥ logN. (32)

We can now show Gx, x ∈ [n]2mδ≥2 is a good model for Gδ≥2
n,m. For this we only need to show

now that
Pr(Gx is simple) = Ω(1). (33)

Again, this follows as in [2].

Given a tree H with k vertices of degrees z1, z2, ..., zk and a fixed vertex v we see that if ρH
is the probability that G(Nk1(v)) = H in Gx then where Φ(2m) = (2m)!

m!2m
, we have

ρH ≈
(

N

k − 1

)
(k − 1)!

Aut(H, oH)

∞∑
D=2k

∑
d1,...,dk

d1+···+dk=D

k∏
i=1

λdi

di!f2(λ)
·

k∏
i=1

di!

(di − zi)!
Φ(2M − 2k + 2)

Φ(2M)
(34)

=

(
N

k − 1

)
(k − 1)!

Aut(H, oH)
λ2k−2

∞∑
D=2k

∑
d1,...,dk

d1+···+dk=D

k∏
i=1

λdi−zi

(di − zi)!f2(λ)

Φ(2M − 2k + 2)

Φ(2M)
(35)

=

(
N

k − 1

)
(k − 1)!

Aut(H, oH)
λ2k−2 Φ(2M − 2k + 2)

Φ(2M)f2(λ)k

∞∑
D=2k

(kλ)D−2(k−1)

(D − 2(k − 1)!)
(36)

≈ 1

Aut(H, oH)

(
N

2M

)k−1

λ2k−2f2(kλ)

f2(λ)k
. (37)

Explanation for (34): We use (30) to obtain the probability that the degrees of [k] are
d1, . . . , dk. Implicit here is that di = O(log n), from (32). The contribution to the sum
of D ≥ 2k log n can therefore be shown to be negligible. Having fixed d1, . . . , dk we can
condition on dk+1, . . . , dN and then we essentially are dealing with the configuration model.
In which case Φ(2M) is the total number of pairings of all points and Φ(2M − k) is the
number of pairings, given we have H occuring in [k]. We then use the fact that k is small
to argue that w.h.p. H is induced.

Explanation for (36): We use the identity∑
d1,...,dk

d1+···+dk=D

D!

d1! · · · dk!
= kD.

It only remains to verify (24). It follows from the above that E(ν(H) | M,N) = Ω(N).
We first condition on a degree sequence x satisfying (31). We then work in the associated
configuration model. We can generate a configuration F as a permutation of the multi-set
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{di × i : i ∈ [N ]}. Interchanging two elements in a permutation can only change ν(H) by
O(1). We can therefore apply Azuma’s inequality to show that

Pr(|ν(H)− E(ν(H))| ≥ n3/5) = O(e−Ω(n1/5)). (38)

(Specifically we can use Lemma 11 of Frieze and Pittel [17] or Section 3.2 of McDiarmid
[19].) This verifies (24).

4 Summary and open problems

We have derived an expression for the length of the longest path in Gn,p that holds for large c
w.h.p. It would be interesting to have a more algebraic expression. Also, we could no doubt
make this proof algorithmic, by using the arguments of Frieze and Haber [14]. It would be
more interesting to do the analysis for small c > 1. Applying the coupling of McDiarmid [18]
we see that the random digraph Dn,p, p = c/n contains a path at least as long as that given
by the R.H.S. of (6). It should be possible to improve this, just as Krivelevich, Lubetzky
and Sudakov [16] did for the earlier result of [12].
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[1] M. Ajtai, J. Komlós and E. Szemerédi. The longest path in a random graph, Combina-
torica 1 (1981) 1-12.

[2] J. Aronson, A.M. Frieze and B.G. Pittel, Maximum matchings in sparse random graphs:
Karp-Sipser re-visited, Random Structures and Algorithms 12 (1998) 111-178.

[3] B. Bollobás, Long paths in sparse random graphs, Combinatorica 2 (1982) 223-228.

[4] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs, European Journal on Combinatorics 1 (1980) 311-316.

[5] B.Bollobás, T.I.Fenner and A.M.Frieze, Long cycles in sparse random graphs, Graph
theory and combinatorics, Proceedings of Cambridge Combinatorial Conference in hon-
our of Paul Erdos (1984) 59-64.

[6] B.Bollobás and A.M.Frieze, On matchings and hamiltonian cycles in random graphs,
Annals of Discrete Mathematics 28 (1985) 23-46.
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