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Let k be a fixed positive integer. A graph H has property M, if it contains |3k ] edge disjoint
hamilton cycles plus a further edge disjoint matching which leaves at most one vertex isolated,
if k is odd. Let p = c/n, where c is a large enough constant. We show that G, , a.s. contains a
vertex induced subgraph H, with property M, and such that |V (H)| = (1 — (1 + &(c))c* e~/
(k — 1)!)n, where £(c)— 0 as ¢ — . In particular this shows that for large ¢, G, , a.s. contains
a matching of size (1 - (1+&(c))e™)n (k=1) and a cycle of size (1—(1+ &(c))ce )n
(k =2).

1. Introduction

In this paper we study the size of the largest matching and cycle in random
graphs with edge probability c/n, where c is a large constant. We continue the
analysis of Bollobas [2], Bollobds, Fenner and Frieze [3] and confirm the
conjecture in the final paragraph of the latter paper.

We shall let G, , denote a random graph with vertex set V,, ={1,2,...,n} in
which edges are chosen independently with probability p. We say that G, , has a
property Q almost surely (a.s.) if lim, .. P1(G, , € Q) =1.

For ¢ >0 define a(c), B(c) by

a(c) =sup(a=0): G, ., a.s. contains a matching of size
at least 3an) (1.1)

and

B(c) =sup(B =0): G, ,, a.s. contains a cycle of size
at least fn). (1.2)

Our main result is an improved estimate of S(c).

In what follows p =c/n and €,(c), &,(c) are unspecified functions satisfying
lim.,. g(c)=0,i=1, 2.
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Theorem 1.1. a(c)=1-(1+¢&/(c))e”® (1.3)

As far as we know the only other paper dealing with this question is by Karp
and Sipser [8], who prove some strong results about a simple heuristic for finding
a large cardinality matching.

There has been more work done on estimating B(c). Ajtai, Komlés and
Szemerédi [1] and Fernandez de la Vega [7] showed that S(c)—1 as c—> =
Bollobds [2] made a significant step forward by showing that G, , a.s. contains a
large Hamiltonian subgraph and that B(c) =1 — ¢**¢~“2 By refining this analysis,
Bollobds, Fenner and Frieze [3] showed that 8(c) =1 — c®¢~°. The main result of
this paper is

Theorem 1.2. B(c)=1-—(1+ &5(c))ce™ (1.4)

Corollary 1.2. A random digraph with edge density c/n a.s. contains a directed
cycle of size n(1 — (1 + &,(c))ce™ ).

We shall prove Theorems 1.1 and 1.2 as a corollary of a more general result.
Let k be a fixed positive integer. A graph has property M, if it contains |3k edge
disjoint hamilton cycles plus a further edge disjoint matching which leaves at most
one vertex isolated, if k is odd.

Theorem 1.3. For any fixed integer k=1 G, , a.s. contains a set of vertices A,
such that

Al =1 =1+ e(c))c* e~/ (k — 1))n

and the graph H, induced by A, has property M,. Here £(c)— 0 as c— © and the
result remains true if c— o with n. (For c(n)=Ilogn + constant the statement
needs refining. See the end of the proof.)

Property M, was studied by Bollobas and Frieze [4] and in that paper they
showed that if a random graph is constructed by adding one edge at a time than
a.s. the first edge to produce minimum degree k produces M,.

An earlier version of this paper proved Theorems 1.1 and 1.2 separately. The
idea that Theorem 1.3 could be proved without much extra work occurred during
conversations with Tomasz Luczak during a seminar on random graphs in
Pozndn, Poland in 1985. We are grateful for this insight.

Notation. The following notation is used throughout. Let G be a graph.
V(G), E(G) denote the sets of vertices and edges of G.
For § ¢ V(G) we let G[S]= (S, E(S)), where E(S)={e€ E(G):ec S}.

Ng(S) = {w € S: there exists v € § such that {v, w} € E(G)}.
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For v € V(G) we write Ng(v) for Ng({v}) and dg(v) for the degree of v. u(G) is
the maximum cardinality of a matching of G.

BS(x, m) = :ZJ (7)era-pr

As the case c>logn is well known we shall assume for convenience that
ce <3logn.

2.
Lemma 2.1. Let G =G, , and let vertex v be ‘small’ if dg(v) <c/10 and ‘large’

otherwise. Let SMALL, LARGE be the sets of small and large vertices respectively.
Let W=W,UW,UW,UW,, where

W.={v:v is small and there exists a small w such that v and w are
joined by a path of length k}.
(v =w is allowed for k =3, 4).
Let 1 =17 be fixed. Then for c large G a.s. satisfies the following:

{v eV,:dg(v) <c/10 + 1}| < ne %7, 2.1
there does not exist S < V,,, with |S| = ne™“ and |{e € E(G): e N S #0}| =4c |S|;
(2.2)
dcs(v)<4logn forveV,; (2.3)
|W|<ce*">n; (2.4)
@+ScV,, |S|<n/2l and S c LARGE implies
W EANE (2.5)
S c V,, n/2l <|S| <3in implies
(2.6)

[{{v, w} € E(G):veS, weS}=clS|/3L.

Proof. To prove (2.1) note that for n large
Exp(|{v € V,: ds(v) <c/10 + 1}) = nBS(c/10 + 1, n — 1) < ne 6%

Now the variance of this set size can be shown to be <ne™*”

Thus one can use either the Chebycheff or Markov inequality depending on
whether or not ¢ remains bounded as n tends to infinity.
Next note that the probability there exists a set S violating (2.2) is no more

than
s 4cs 5+1/cy cs
= 2 )< 3 e
s>§n:e—c(s><|-4cs-|)p s;%_c s ] \4cs s;n:e_c 756 o(1).
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To prove (2.3) we observe that
1
Exp(l{v € V,: do(v) > 4logmi)=n 3 ("7 )pt-py
k>4logn
ce

k
—] =o(1
k>4logn<k> ( )
as ce<3logn.

Since the expectation of the number of cycles of length 3 or 4 is o(c*) their
contribution is easily absorbed into what follows.

Next let P, = {paths of length k in G with small endpoints}. Now clearly

|Wk| <2 |Pk| fork=1,2,3,4. 2.7)
Furthermore
Exp(|P) = ( )pit2 (2.8)

Where A = BS(c/10 — 1, n —2) < e~ %%, Now

Exp(P) = Exp() + (5 ) (" *Jpo + 200 -2} )

where
A =Pr(smaLL 2 {1,2,3,4}\E(G) 2 {{1, 2}, {3, 4}})
<Pr(|[Ng(1)N{5,6, ...,n} sc/10-1)*
<(AQ1-p)™?
and
A, =Pr(smaLL 2 {1, 2,3}\E(G) 2 {{1, 2}, {2, 3}})
<(A1-p)7).
This gives

Var(|Py|) <ce ™*"n for n large. (2.9
Similar calculations give
|P] =31 + o(1))n**'p*¥A% for k =2,3,4. (2.10)

(2.4) now follows from (2.7), (2.8), (2.9) and (2.10).

To prove (2.5) we take ¢ =20(/ + 1)log(! + 1) and first consider S for which
1<s=|S|=<n/(200e*( +1)*). Let T=SUNs(S) and t=|T|. If (2.5) does not
hold for S then |T|<m,= [n/(200e*(I + 1)*] and T contains at least m,=
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[ct/20(I + 1))] edges of G. The probability that such a T exists is no more than
e
2 (2 =2 (5) G2
t=1 t =1 2m2
m;
! (n_e)'(lOe(lH)t)z‘
1 \ ¢ n
100e>(/ + 1)

n
For |S| = m;= [n/(300e*(l + 1)*] we can ignore the fact that the vertices of § are

large. Let my = [n/2]]. The probability that such an S exists violating (2.5) is no
more than

£ (a-rreoe $ (50

sS=ms3

I

A
3

t

n
3

t=1

= 55 o+ ey~

which proves (2.5).
the probability that (2.6) does not hold is not more than

S ( )BS(cs/31, s(n - 5) <2 $ <s )s(:”’ﬁ(is:ﬂ?)“’y(ﬁ)“’ye_wz

S=my S=mgy c n

(c, n large)

(3]
<2 i (2le(3le)¥e=P) =o(1). O

S=my

The proofs of our theorems rely on the removal of a certain set of vertices. We

must show that this set is not too large. The following lemma deals with part of
this set.

Lemma 2.2. Let X, =sMALL and let the sequence of sets X, X, . . . , X, be defined

by
, >2}

and let s be the smallest i = 1 such that X;.,=X,. Let X =\_j_, X;, then

X,-={veV,,:

| X| <2e*c’e*"n a.s. (2.11)

Proof. For xe XUX; let i(x)=min{i:xe€X;} and let D(x)=(V(x), A(x))
denote a digraph inductively constructed as follows: for x € X;, D(x) = ({x}, §)
and for x € X; let y;, y, be 2 distinct neighbours of x satisfying i(x) > i(y,), i(y,)-
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Then
D(x)=(V)UV()U{x}, AG) UAG,) U{(x, y1), (x, y2)})
Each D(x) is acyclic, (weakly) connected and satisfies

each v € V(x) has outdegree 0 or 2 and x is the unique

vertex of indegree 0. (2.12)
Let

k = the number of vertices of outdegree 2 = |K(x)],

where K(x) = S(x) — X,,
and let

[ = the number of vertices of outdegree 0 = |L(x)|,
where I(x) = S(x) N X,.

It follows then that
|A(x)| =2k (2.13a)

and we will show

I<k+1andif [=k +1, then D(x) is a binary tree rooted at x. (2.13b)

This is most easily proved by induction on k. A digraph satisfying (2.12) has at
least one vertex y whose outneighbours z,, z, both have outdegree zero.
Removing arcs (y, z;) and (y, z,) and any vertex which becomes isolated we
obtain a smaller digraph satisfying (2.12).

We obtain from the above that we can associate with each x € X, a set V(x) of
vertices and a partition of V(x) into K(x), L(x) satisfying

x #x' implies V(x) # V(x'); (2.14a)
if k =|K(x)|, I=|L(x)|, then2<I<k +1; (2.14b)
L(x) < SMALL; (2.14¢)
G(x) = G[V(x)] is connected and has at least 2k edges; (2.144d)
if =k +1 and G(x) has 2k edges, then G(x) is a tree

with leaves L(x). (2.14¢)

We estimate | X, — X;| by counting sets of vertices satisfying (2.14). For a given
k, I, m let Ay, be the expected number of sets K, L with |K|=k, |L|=1
satisfying (2.14) above, where G[K U L] has m edges. Then

+
. (k 1) |
At < ( k)( 1) 2 ) |pBS(c/10, n —k - 1)

m

(0 () (e () amfa-)

= Ri,1,m-
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Now if c<2logn, k, Isn'?, then py; mii/thism<n"" for n large. Thus
*3H

sz Metm < (1 + 0(1)) i 1,20 (2.15)

With the same bounds on ¢, &, / and with n large and / <k + 1 we have

’-“k,l,Zk < 21nl—k(e402k)kl——le —2cl/3 (2 16)
which implies

k+1 k+1

> s <21(e*ck/n)k > (n/le*?)
1=2

=2
< n(e402)ke—2ck/3
<ne %% as ¢ =300.
It follows that s <log n a.s., and we can assume k <log n. Now, using (2.16),

logn k logn
2 2 Wic.r 2k =21 2 (e4c2)ke—2ck/3
k=2 1=2 k=2
< 22(e4C2)4e_4C/3
and so

the number of sets, K, L with 2<I<k is a.s. less than n}%e™*", (2.17)

We only need to consider the case =k +1 from now on. But as p; ;41 m+1/
Pi x+1,m < 3ck/n we have

2 Biir1,m < (L +0(0)) i ks1,26 (2.18)

m=2k
So we are finally reduced to estimating

7, =the number of vertex induced binary trees with k leaves
(k-b-trees) in which each leaf is small.

Let 6, be the number of (vertex labelled) k-b-trees contained in a complete
graph with 2k — 1 vertices. (Clearly 6, < (2k — 1)*73). Then

Exp(7i) = (Zk"_ 1>(:v,dp2'°-2(1 — p)*ED-2%k+2Bg(c/10 — 1, n — 2k + 1)*
< n(e’c’e *"?)* for n large. (2.19)
To estimate Var(t), let {T}, T5, ..., Tz}, B=(x"-1)6r, be the set of

k — b-trees contained in a complete graph with n vertices. Let A; be the event
that 7; is a vertex induced subgraph of G, , in which all leaves are small.

Next let Y, ={(,j): |[V(T)UV(T)|=p} for p=2k—1,...,4k—2 and let
Z,,={G))eY,: |E(T;) U E(T})| = q}. Then

Exp(ti) = Exp(ti) + A; + 4,, (2.20)
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where
A= D Pr(4;NA)
(.j)eYax—2
and
4k—3
A= 2, D Pr(A,NA).
p=2k—1 (i,j)eY,
Now
1 2k_1 k. »
where

0=BS(c/10—1, n — 2k + 1)*BS(c/10 — 1, n — 4k + 2)*

is an estimate of the probability that all leaves of 2 particular disjoint trees are
small. It follows that

A, < Exp(t)*(1 —p)~%. (2.21)

Now for p <4k — 3 we have

4k—4

> Pr(A4,nA)= 3 > Pr(4;NA4)

(.j)eY, q=p-1 (i, j)eZ,,

p

< 500t e
q

=p-1 2k —1 n

<ne~*? for n large. (2.22)

(2.19), (2.20), (2.21), (2.22) plus the Chebycheff inequality implies that 7 is
a.s. within a factor (1 + o(1)) of the right-hand side of (2.19). This together with
(2.17) and (2.18) proves the result. [

For a positive integer k, the k-core V,(G) is defined to be the largest set Sc V,
such that 6(G[S]) = k. This is well defined, for if 8(G[S;])=k for i =1, 2, then
6(G[S, U $,])) = k. We let G denote the subgraph of G induced by V,(G).

The k-core can be constructed using the following algorithm.

begin
H:=G;
while 6(H) <k do
begin
Y:={veV(H): dy(v)<k};
H:=H[V(H)-Y]
end
end

On termination H = G,. This is because one can easily show inductively that
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each iteration removes vertices that are not in V,(G) and as 6(H) = k we have
V(H) c Vi(G).

Clearly any matching of G is contained in G, (= G minus isolated vertices) and
any cycle of G is contained in G.,.

Now for k=1 let A, = Ai(G,,,) = Vi(G,,) —(WUXUY,), where W, X are
as defined in Lemmas 2.1, 2.2 respectively and

Yi={yeV,;: dG,,,,,(Y) =k and Ncn,,,()’) 0X+¢}-
Let H, = H (G, ,) = G, ,[A.], then we have

Lemma 2.3. For k=1 let M be any matching of G, ,[A] which is not incident
with any small vertex. Let H, = H, — M, then for large c

0+ ScAs [S|<n/(2k +8) implies |Ng(S)|=k|S|a.s. (2.23)

Proof. Let G=G, ,, H= H, and for a given Slet §; =SNsMaLLand §,=S5 - ;.
Now

IN(S)| = [Nu(S)] = |S:] + [Nk(S2)| — min(]S,], |S]). (2.24)

This follows from S N (W U X) = .
Also, we claim

INu(S1)| = K|Sy (2.25)

Note first that v e S; implies d;(v) =k and no pair of vertices of S, are
adjacent, since S; N W, ={. Note that no pair of vertices of S, have a common
neighbour as S,NW,=0. Also NgS)N(WUY,)=0 as S NW=4.
Furthermore v € S, implies |[Ng(v)NX|=<1 as §;N X =@. Thus to prove (2.25)
we need only show that if v e S; and ds(v) =k, then Ng(v)NX =@. But this
follows from S; N Y, = 0.

We claim next that if (2.5) holds with [ = k + 4, then

INu(82)| = (k +2) [S,]. (2.26)

For then |Ng(S)|=(k+4)|S,| and for each veS,, |(Ng(v)|<|Nu(v)| +2.
This is because v is incident with at most one edge of M and is adjacent to at most
one vertex of WU XUY,. It is a simple matter to verify (2.23) from (2.24),
(2.25) and (2.26). O

Lemma 2.4.

k-1

14, = n(l -+ (@) - 5 e—c) as., 2.27)

where €(c)— 0 as c— .
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Proof.
|Al = V(G| = [W| - |X]| - Y, - WU X|

We show first that
|Yk—WUX|<|X|. (2.28)

For y € Y, — X there is, by definition, a unique x(y) € X such that y is adjacent to
x(y) in G. Now for distinct y,, y, € Y; — W we have x(y,) # x(»,) else y, € W, and
(2.28) follows.

Now let Z, be the set of vertices of degree <k —1in G and let Z;, Z,, ... be

the sequence of sets removed in each iteration of the k-core finding algorithm.
Now, it is well known that

1Zo| = (1 - o(1))n(1 -5 Ci‘?—c) as.

i=0
We show that
Z,c XUWUY, (i=12,...)

Thus assume inductively that Z,, Z,, .. ., Z,_; c XU W, U Y, for some i =1 (true
vacuously for i=1) and let T =g Z. Then y € Z; implies dg(y)=k but
INo(y) - T|<k—1.

Case 1. |[Nc(y)NT|=2
By assumption T ¢ X UsMALL and so y € X.

Case 2. |[INc(y)NT|=1
Then dg(y) = k implies y e X U W, U Y,
Hence |Vi(G)| =|Zy| — | X U W, U Y,| and the lemma follows. O

Lemma 2.5. Let ¢ be large and G satisfy the conditions in Lemmas 2.1, 2.2 and
2.3. Let X be a t-factor of H, where, t<k. Then H= (A, E(Ay)—X) is
connected.

Proof. If H is not connected, then there exists a nonempty S < A, such that
Ny(S) =8. We show that this is not possible for ¢ large enough. (2.23) implies
that |S|=n/(2k +8). (2.27) implies that, for c large, fewer than 2c* ‘e ~n
vertices are deleted from G in producing H. Then (2.2) implies that at most
8c*e~°n edges are lost in the construction. But then (2.6) with [ =k + 4 implies
that not all edges with one vertex in $ have been deleted. O

Suppose a graph G contains h edge-disjoint hamilton cycles. Let the graph
obtained from G by deleting the edges in these cycles be referred to as an
h-subgraph of G.
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Define ¢(G) = (h, p) by
h = maximum number of disjoint hamilton cycles in G;
(0 if k<2h

maximum cardinality of a matching

p =ﬁ in any h-subgraph of G if k=2h+1

maximum length of a path

Lin any h-subgraph of G fk=2h+2

If ¢(G)=(h, p) we define a ¢-subgraph H of G to be any h-subgraph of G
containing either a matching of size p or a path of length p as the case may be.
Let the edges in E(G) — E(H) be referred to as a ¢-set.

Lemma 2.6. Let H be a graph which cannot be disconnected by the removal of a
t-factor, t<k. Suppose that H does not have property M,. Then there exists
U= {u,, u,, ..., u}cV(H) and for each u; € U, a set U; = V(H) such that
() u; € U, w € U; implies (u;, w) ¢ E(H) and ¢(H) > y(H) (in the lexicographic
ordering), where H is obtained from H by adding the edge (u;, w).
() |[Ng(U)| <k (U}, i=1,2,...,¢

Proof. Let (h, p) = ¢(H) and H’ be a ¢-subgraph of H. We deduce that H' is
connected.

Case 1. h < |3k]|

Let U= {uy, u,, ..., u} be the set of vertices which are endpoints of longest
paths of H'. Posa [12] has shown that for each u; € U there exists a set U;c U
such that

(a) for each w € U, there is a longest path in H' with endpoints u;, w;

(b) [N (Up)| <2 |UJ.
Since H' is connected and non-hamiltonian no edge joins the endpoints of any
longest path. Adding such an edge must increase ¢ (in the lexicographic sense).

Case 2. h=|3k], k odd

Let # be the set of maximum cardinality matchings of H. Let U=
{uy, u,, . . ., u,} be the set of vertices left isolated by some M € M.

Let u;e U and let some M, e M leave u; isolated. Let S;+@ be the set of
vertices, different from u;, left isolated by M,. Let U; be the set of vertices
reachable from S; by an even length alternating path w.r.t. M;. Let U;= S, U U; <
U. 1t is clear that (1) holds.

If u € Ny(U)), then u ¢ S; and so there exists y; such that {u, y,;} € M;. We show
that y, € U; which will prove that |Ny.(U;)| <|U| and the lemma. Now there exists
y, € U; such that {u, y,} € E(H). Let P be an even length alternating path from
some s € S; terminating at y,. If P contains {u, y;} we can truncate it to terminate
with {u, y,}, otherwise we can extend it using edges {y,, x} and {x, y;}.
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We are now ready for the

Proof of Theorem 1.3. We use a coloring argument that was introduced in
Fenner and Frieze [6]. Suppose that after generating G = G, , all its edges are
colored blue, and then each edge of G is re-colored green with probability
p' = (log n)/cn and left blue with probability 1 — p’. These recolourings are done
independently of each other.

Let E®, E® denote the blue and green edges respectively and let G® = (V,, E?),
H, = H(G) and H} = H,(G").

Remark 2.7. It is important to note that for a fixed value of E®, E? is a random
subset of E®, where each e € E” is independently included in E* with probability
p1=pp'/(1 —p(1—p')) and excluded with probability 1 — p;.

Consider next the following 2 events:

%= G = G, satisfies the conditions of Lemmas 2.1, 2.2, 2.3 and

¢(H,) <(|2k], Ga)(k —2|3k])), where a=|A(G)|.

E€=(a) 0+ S cA(G), |S|<n/(2k +8) implies [Ny:(S)| =k |S|;
(b) there does not exist e = {v, w} € E%, e = A.(G?)
such that ¢(Hy + e) > ¢(HY).

In consequence of what has already been proved, we need only prove

lim Pr(%) =0. (2.29)

To prove (2.29) we shall prove that for c large

Pr(¢| 9)=(1-o(1))(1-p)*", (2.30a)
Pr(%) < (1 — p,)" 7@+ (2.30b)
which together imply (2.29).

Proof of (2.30a). Let G, € ¢ be fixed and let F, be any fixed ¢-set of H,. We

prove

Pr(€| G,, = Gy)=(1-p")* —16(log n)*/c’n. (2.31)
We can readily verify this once we have shown that

ENYoENENENY,
where

&, = E? is a matching of Gj;

&, =no green edge meets any vertex of degree less than ¢/10 + 2 in
Gy or any vertexin W U X U Y,;

g:;:FbﬂEg:ﬁ
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For €, N &, implies
Ak(Gg) = Aw(Go)
and then &, implies (see Lemma 2.3) that (2.23) holds, which verifies &(a). &,
implies €(b).
Now it follows from (2.3) that

Pr(%,) <16(log n)*/c’n.

From Lemmas 2.1, 2.2 and (2.27) we find that the total number of edges of G,
that are excluded by the conditions in &,, &, is no more than

n((c/10+ 1)e > + 4cke ) + dkn < kn
Thus
Pr(,U% U &)<1-(1-p)" +16(logn)*/c’n,

which proves (2.31). O
Proof of (2.30b). Now
Pr(%) =D, Pr(€| G® = NPr(G® = I),
r

where I' is an arbitrary graph with vertices V,.

Now if H(I) fails to satisfy &(a), then Pr(€|G® =T)=0. So let us assume
that €(a) holds.

Now if U, U,, ..., U, are as defined in Lemma 2.6 with H = H,, then each set
is of size at least n/(2k + 8) and for &(b) to hold no green edge can join u; € U to
w € U,. But then in view of Remark 2.7 and &(a) we have

Pr(%(b) | G® = I') < (1 — p,)""/C@+®?),
which implies (2.30b). O

Finally, let us consider what happens when ¢— . The above proof shows that
H, a.s. has property M,. For k=1 and c =logn + x, x constant, one can easily
show that A, a.s. comprises all non-isolated vertices of G. Thus we obtain Erdés
and Renyi’s result [5] as a corollary. Similarly, when k=2 and c=logn +
loglogn +x, A, a.s. comprises all vertices of degree at least 2 and so we obtain
Komlés and Szemerédi’s result [9] as well. (Tomasz Luczak pointed out an error
in an earlier statement of these last two results). O

Corollary 1.2 follows directly from Theorem 1.2 and the Percolation Theorem
of McDiarmid [11].
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