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LARGE HOLES IN SPARSE RANDOM GRAPHS

A. M. FRIEZE and B. JACKSON
Received 18 October 1985

We show that there is a function a(r) such that for each constant r=3, almost every r-regular
graph on n vertices has a hole (vertex induced cycle) of size at least a(r)n as n— «. We also show
that there is a function f(c) such that for ¢=>0 large enough, G,,,, p=c/n almost surely has a
hole of size at least f(c)n as n—+oo.

Introduction

This paper is concerned with the existence of large holes i.e. induced cycles,
in random graphs. We study in particular random regular graphs and sparse random
graphs with constant average degree.

In a recent paper [5] we showed that such graphs have large induced trees
with high probability. For the model of random graphs with constant average degree
this confirmed a conjecture of Erdds and Palka [3]. This conjecture was confirmed
independently and contemporaneously by Fernandez de la Vega [4]. Thus this paper
strengthens the above results by specifying that the induced tree can be taken to be
a path.

For a graph G let ¢(G) denote the size of its largest hole. Our first result con-
cerns random regular graphs. Let R(r, n) denote the set of regular graphs of degree r
with vertex set ¥,={1, 2, ..., n}. We turn R(r, n) into a probability space by giving
each graph in R(r, n) the same probability.

Theorem 1. Let r=3 be fixed and let R(r,n) be chosen randomly from R(r, n).
Then where q=gq(r)=02r—3)(2r—4) we have

lim Pr(a(R(r, n)) = nr(r—2)"1(1—gqlog,(1+ g ) —¢)) = 1

Jor any fixed £=0.

The second result concerns the model G, ,, p=c/n where ¢ is a constant.

AMS subject classification (1980):
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Here each of the (;] possible edges is independently included with probability p
and excluded with probability 1—p.

We prove
Theorem 2. For large enough c, and q=q(4c),

lim Pr (0(Gp,ep) = (njdc)(1 —cPe=) (1 —glog, (14+g7H) —e)) = 1

for any fixed e=0.

The restriction, for large enough ¢’ in the above theorem comes from our
method of proof. We conjecture that a similar result holds for any ¢>1.

Regular graphs

We prove Theorem 1 by analysing a simple algorithm FINDPATH thatsearches
for a long induced path. We show that FINDPATH almost surely finds a path
of the stated length. (By almost surely, a.s., we simply mean with probability —1
as n--c=). It is then a simple matter to show there is a.s. a large hole.

FINDPATH keeps a path P,=(v;, ?a, ..., %) such that P,_; is induced. It
checks as to whether or not Py itself is induced and if so it tries to grow its path from
»,. It searches the currently available edges 4 (v,) which are incident with ¥, and then
proceeds as follows:

(1) A(v)=0 or there is an edge in A(v,) of the form (v, %), i=k—2).
In this case FINDPATH backtracks i.e. removes vertices ¥y, ¥—, ... from P until
a »; is found for which A(v;)#0, otherwise

(2) FINDPATH chooses an edge (v, w)€A4(»), extends P, by making
vep1=w; and removes edge (v, w;) from A(vy).

More formally we define

Algorithm FINDPATH
Input graph G=(¥,, E);
begin
k:=1; v,:=1; for v=1 to n do A():={e€E: vEe}
repeat
Wi={v#v,: e€A(v,) and v€e}={wy, Wa, ..., Wp};
if W=0 or WN{vy, v, ..., G—a}#0 then
begin
for ecA(v,) doremove (e); backtrack
end else
begin
Vepri=wy; remove ((v, w1));
i=k+1
end
until forever
end;
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procedure backtrack;
begin
repeat
k:=k—1; if k=1 then STOP;
until A(v,)=0
end;

procedure remove (e: edge);
begin

; let e=(x,); A(x):=A(x)—{e}; A(¥):=A4(y)—{e}
end.

It is clear that (2y, ¥s, ..., ¥,—4) 15 always an induced path, any v, that stops
the path from being induced is immediately discarded.

We now turn to the performance of FINDPATH on random regular graphs.
In order to obtain a result for G, ., ¢ constant, we shall prove a slightly stronger
result.

Thus let A=3 be an integer constant and let d=d,,d,, ...,d, satisfy
3=d,=4 for i=1,2,...,n. Let %(d) denote the set of simple graphs with vertex
set v, satisfying d(i)=d, (degree of vertex i) for i=1,2,...,n. Thus graphs in
%(d) have no loops or multiple edges. Assume that d is graphic i.e. %(d)=0.

We turn %(d) into a probability space by giving all members of %(d) the same
probability 1/|%(d)|. Theorem 1 follows immediately from Lemma 1.

Lemma 1. Let G be chosen randomly from %(d), Then

,}ﬂ Pr(o(G) = (2m/4)(4—2)"(1—qglog.(1+g ) —¢)) = 1

where q=q(4) and &=0 is arbitrary.

Proof. In order to study %(d) we consider the model defined in Bollobés [1].
Let Dy, D,, ..., D, be disjoint sets with |D;/=d; and set

Di= UDl
i=1

and 2m=|D|.

A configuration C is a partition of D into m pairs, the edges of C. Let @ be
the set of all N(2m)=(2m)!2~"/m! configurations. Turn ® into a probability space
by giving all members of ® the same probability. For Ce® let ¢(C) be the multi-
graph with vertex set ¥, in which 7 is joined to j whenever C has an edge with one end
vertex in D; and the other in D;. Clearly ¥(d) S #(®) and

15-1(G)| = de'

for every Ge%(d).

Let Q be a property of the graphs in G(d) and let O* be a property of the con-
figurations in ®. Suppose these properties are such that for GE%(d) and CE®~1(G)
the configuration C has 0* if and only if G has Q. All we shall need from [2] is that
if almost every C has Q* then almost every G has Q.
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We shall thus be able to prove *90%’ of the lemma if we can show that FIND-
PATH applied to a multigraph @(C), C chosen randomly from @, almost surely
finds an induced path of the required size. It will then be straightforward to show
that a large hole a.s. exists.

In the following analysis we do not assume that the C chosen randomly from
@ is given to us completely. Instead we assume that C is constructed by an oracle
and we have to ask the oracle to get information about C. Done this way we can
easily handle the conditioning introduced by the knowledge that the path (v;, vs, ...
vees V1) 18 induced.

We shall now give the version of FINDPATH applied to configurations in
this context. At any stage A(i) S D; is the set of points of D; whose pairings in C are
not completely known to us, i=1,2,...,n Initially A(@F)=D; for i=1,2,...,n.
FCD is the set of free points, i.e. points associated with vertices that have never
been on our path. For such vertices, A(»)EF although A(v) need not equal D,
as vertices removed from further consideration may have had » as a neighbour.

k-1
L= A(v)
i=1

is the set of unpaired points associated with vertices on the induced path.
In the following, ¢ is an iteration count.

Algorithm FINDPATH (applied to configurations)

begin
i=1: v:=1; F:={1,2,..;2m}—A(1); L:=0p; 1:=1
repeat
X =AD="1x1;%5 5 X}
Case Analysis
Ask oracle if any x; is paired with anything in LUX.
(a) Answer YES: Ask oracle what is paired with x;, /=1,2, ..., p.
Answer y;, =1,2, ...,p.
for i=1 to p do remove (x;, »;);
backtrack.
(b) Answer NO: Ask oracle what is paired with x,
Answer ;.
Let y,€A4(v); remove (X, 11);
ki=k+1; v:=v; L:=LU(X—{x1}).
end of case analysis
t=t+1
until forever
end;

procedure backtrack
begin
repeat
k:=k—1; if k=1 then STOP
until 4(z;)=0
L:=L—A(v)
end;
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procedure remove (x, y);

begin
let x€A(v), yeA(w);
A@):=A@)—{x}; AWw):=4Aw)—{¥}
Fi=F={x,y}; L:=L—{x,y}

end.

We note first that throughout the algorithm |L|=(k—1)(4—2)+1 as
|[A@)|=4—1 and |A@)|=4-2, i=2,..,k—1 by construction. We use
|L|/(4—2) as an estimate for k—1 in our analysis. The reason for this is that it is
difficult to analyse the reductions in k caused by backtracking whereas |L| decreases
by at most 4—2.

An execution of FINDPATH is used to define a random sequence s;, S, ...
<ees Si5 ... Where s,=1 means that case (b) with p=2 occurred during the #'th
iteration of the algorithm and s,=0 otherwise.

Let /, denote |L| at the beginning of iteration ¢, then

(la) Ss=1->ly =h+1
(1b) §=0->1L,,=1-24-3)

If case (b) occurs and p=1 then /,.,=/,. If case (a) occurs then p=4-—1
at this stage and so remove (x;,»;), i=1,2,...,p reduces |L| by at most 4—1.
Backtracking reduces |L| by at most 4 —2 more. So, if S,=s,+...+s,, then

(2 I, = t—(24-=-3)(t—S).
We now prove a lower bound for Pr(s,=1), for /=2. Note that Pr(s;=1)=

=1- [g] /(2m—1). Assume then that at the start of iteration 7—1 we have /,_;=/,

|Fl=f, f*=|{x: xX€EA@)E F where |A(v)|>=—3}| and |X|=p as usual. We consider
the case where backtrack was not called at the previous iteration. It can be seen that
if backtrack had been called then the probability that s,=1 increases slightly (8
below decreases while « is unchanged).

Since each x€L must be paired with an element of FUX the number of
ways of continuing our pairings is

B =(f+p(f+p-1)..(f+p—I+)N(f+p-D
1,1 1) sr+zo—st
= (f+P)!/[[Tf+?p-—§ 1]122 sl
The number of completions that lead to s,=1 is at least

o= f*(f=4)..(—4-1+D(-1-D..(f=l-p+ D N(=1-p)

=f*(f-D—1-D(f-1-2)...(f—1-4+ 1)/(%f_2i1_%},] izl 2T

To see this we associate with each x€A(@)S F a set B(x)S F such that A(»)S
CB(x) and |B(x)|=4. Our expression for « is the number of pairings in which
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x,€X is paired with »,€A@) S F, |A(v)|=3; each x€L is paired w1th something
in F—B(»y), Xa, X3, ..., X, are paired with elements of I and the remaining elements
are paired arbitrarily. Each such pairing yields s,=1.

Thus > ) S
3) Pr(s, = 1]|1X| = p) =o/p sz[l—l—j?—] [1—7:21—]
We now use the inequalities
(4) 1= (1=2)(4-2)+1
(5 f=2m—(-1)4
(6) f*=f-2(t-2)(4-2)+1).

(4) and (5) are straightforward. To veryfi (6) let f;=|{v: D(»)EF and |4(»)|=i}|,
i=1,2. Then fi+f=(—-2)(4—2)+1 and f*=f—(f,+2f,) and (4c) follows.
Using (4)—(6) in (3) and p=4—1 (for t:#1) we deduce that for t<2mj/4

24(A-2)(t—2)+A4%+1
2m—td

(7) Pr(s,=1)=1—

given that at least 7 iterations are executed and regardless of the history of the algo-
rithm.

Thus let z,, 25, ..., z;, t=mf4 be independent Bernouilli random variables
with
_ 24(4=2)(t—2)+ 42 +1

ER(z =) 2m—t4
Let Z,=z +2,+...+z. It follows that
(8) Pr(S,=a)=Pr(Z, =a) forany a=0.

Our aim now is to show that FINDPATH a.s. executes at least something close to
t*=2mf(q+1)4 iterations where g=g(4), and that as.,

2m 1
Let z=[n'®] and note from (7) that
(10) Pr (S, < 1) = O(n-19),

For t=1 we use the following result which is a simple corollary of Theorem 1
of Hoeffding [6]:

Let X;, 0=X;=1, i=1,2, ..., N be independent random variables and let
n=EX;+X,+...+Xy)/N. Then

(11) Pr(X;+X,+...+Xy— Nu| = ep) = 2e=5Nef3,
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Now for t=z

(12) U= E(z;+2z+...+2)
- (1+(3)) 2 (-2

foetr ", 24(4-2)x
= 0(1))(if[1 2m—Ax ]dx

= (1—-o(1)) [t+(2A —4) [t—szlong%]]
2mt .
= (1—o(1)) [!+(2A—4) [t—m]] (using x = log (1+x))

for t=t*

24—4
=12 for large n.
Using (8) and (11) we deduce that for ¢>0 and small

PrAtr=st=r S=(1-9u)=Pr@tt=t=1"1 Z, =(1-9)u)

= ‘tz*’ a8 — O (e~ 27/,
Hence, using (2) o
(13) Pr(3t,tst=1: L <t—(t—(1—-e)pu)(24-3)) = 0(e~=**).
Now for n large

2m 2m
t—24-3)(t—(1-&) ) = 1—(24 *-3)[“‘(1 —2e) [”‘(2" ) (“Tbg 2m—-At]]]

2m 2m
(14) ét—2a(2z1——3)t+[t 4 log 2m—At]q
(15) = t[l —2e(24-3)— gat ] using log(l+x) =
= 2m— At ElaOS s
= t[1—23(2A—3)—L) for t=¢= LRI
g+e (g+1+&)4
(16) =gt if & =(g+1)(@d4-5¢

We deduce from (10) and (16) that FINDPATH a.s. executes ¢’ iterations.
However, since & can be made arbitrarily small and the RHS of (14) is a continuous
function of #, which is strictly positive at #* we can extend the inequality (16) to ¢*
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and deduce that ¢* iterations a.s. take place. Substituting 7=¢* into (14) and using
(13), yields (9).

In what follows &=0 is arbitrarily small. For u=t let E,(u) denote the
event:

FINDPATH continues for at least u iterations, S.=t and

L=t—(t—(1—ep)24-3) for t=t=u

Let E,=E;(1%). We have shown that Pr(E)=1-—0(l). Let ,=|(1—g)"|
and L,(1)={j<en: A(»;)#0 at the start of iteration #}.

If E; occurs then using (9) we have /,=(1—glog (1 +q~ 1) —ae)(2m[d)>en
for n,=t=1* where a=0 is a constant.

Let E,(¢) denote the event: some x€A(v,) is paired with some y€A(v)
for some i€L,(¢) and no element of A(v,)—{x} is paired with an element of L.
Let :

¥
Ez = TL__Jr Eg (t).
If E,NE, occurs then o(®(C))=(1—qlog (1+g~*)—be)(2m/4)(4—2)~" where
b=0 is a constant, and so we can prove the lemma by showing
Pr(E;NE,) = 1—o(l).

Next let E; denote the event: |L,(#)|=¢ce~n/2, for t;=t=t*. Then arguing simi-
larly to the way we argued for (5) we can show

Pr(BOIEONEN N ) =120 (;_40-D0) [1-—-0[-1]]

2m 2m n
=u(e, A) for n large.

Where (e, 4) is strictly positive and independent of n. Hence, where 0=1—ua(e, 4)
we have ;

Pr (El(t)ﬂEaﬂkr:) E,(K)) = 0 Pr(E,() N E,N 'rjl E, (k)

=0Pr(E,(t—1)NE;N 0 E,(K))
k=t,

and hence
Pr (E,NE;NE,) = 6.

As Pr(E)=1—0(l), we can complete the proof of the lemma by showing
that

(17) Pr(E) = 1—o(1).
Let now f,=[(1+¢/(4—2))en]. We find after some simplification using (15), that,
for n large

ta—(ta—(1—&) ) (24 —3) = (1 —ae) 1y,

where a=0 is constant.
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We thus deduce that if E,(#,) occurs then
IL(t)] = (1—ag) ts.

Now at time #, there are at most (4—2)(f,—en)=¢*n points in L(t,)—L,(f;) and
hence if E;(f,) occurs

(18) |L(t2)] = (1—(a+1)g)n.

Now fix a ¢, L=t=t* For x€L,(f;) we now, estimate a lower bound for the pro-
bability that x€L,(¢) which is independent of which other members of L,(f,) are
in L;(¢). In fact

Pr(xeL,(9) = 7 [l—z;j:iiu]

u=ty-+1

((4—1)/(2m—A4u)) is an upper bound to the probability that x is paired with an
element of A (»,) by the oracle in iteration u).

2m

4—1 (g+1)4
(19) = (1—-———5;—-)
2m—
[q+1]

=e 2 for large n.

Now (18) and (19) imply (17), and the lemma, since then |L;(¢)| dominates proba-
bilistically a binomial random variable with parameters &(1—(a+1)e)n and e=%/4,

Sparse graphs

Bollobds, Fenner and Frieze [3] proved the following result: for sufficiently
large ¢, G,, ., a.5. contains a vertex induced subgraph H such that, after relabelling
the vertices of H as {1, 2, ..., h}.

(@) h=n(1—c"e°).

(b) 6=6(H)<4(H)=4c.

(c) Conditional on the degree of vertex i in H being d;, i=1,2,...,h, H is
equally likely to be any graph with such a degree sequence.

Theorem 2 follows from Lemma 1 and the above.

Note added in proof. Tomdsz Luczak has proved the conjecture given after the state-
ment of Theorem 2.
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