
Finding perfect matchings in random cubic graphs in
linear expected time

Michael Anastos and Alan Frieze∗

November 12, 2018

Abstract

In a seminal paper on finding large matchings in sparse random graphs, Karp and
Sipser [12] proposed two algorithms for this task. The second algorithm has been
intensely studied, but due to technical difficulties, the first algorithm has received less
attention. Empirical results in [12] suggest that the first algorithm is superior. In this
paper we show that this is indeed the case, at least for random cubic graphs. We show
that w.h.p. the first algorithm will find a matching of size n/2−O(log n) on a random
cubic graph (indeed on a random graph with degrees in {3, 4}). We also show that the
algorithm can be adapted to find a perfect matching w.h.p. in O(n) time, as opposed
to O(n3/2) time for the worst-case.

1 Introduction

Given a graph G = (V,E), a matching M of G is a subset of edges such that no vertex is
incident to two edges in M . Finding a maximum cardinality matching is a central problem
in algorithmic graph theory. The most efficient algorithm for general graphs is that given
by Micali and Vazirani [13] and runs in O(|E||V |1/2) time.

In a seminal paper, Karp and Sipser [12] introduced two simple greedy algorithms for finding
a large matching in the random graph Gn,m,m = cn/2 for some positive constant c > 0. Let
us call them Algorithms 1 and 2 as they are in [12]. Algorithm 2 is simpler than Algorithm 1
and has been intensely studied: see for example Aronson, Frieze and Pittel [1], Bohman and
Frieze [3], Balister and Gerke [2] or Bordenave and Lelarge [6]. In particular, [1] together
with Frieze and Pittel [9] shows that w.h.p. Algorithm 2 finds a matching that is within
Θ̃(n1/5) of the optimum, when applied to Gn,m. Subsequently, Chebolu, Frieze and Melsted
[5] showed how to use Algorithm 2 as a basis for a linear expected time algorithm, when c
is sufficiently large.

∗Research supported in part by NSF Grant DMS1363136

1

Algorithm 2 proceeds as follows (a formal definition of Algorithm 1 is given in the next
section). While there are isolated vertices it deletes them. After which, while there are
vertices of degree one in the graph, it chooses one at random and adds the edge incident
with it to the matching and deletes the endpoints of the edge. Otherwise, if the current
graph has minimum degree at least two, then it adds a random edge to the matching and
deletes the endpoints of the edge.

In the same paper Karp and Sipser proposed another algorithm for finding a matching that
also runs in linear time. This was Algorithm 1. The algorithm sequentially reduces the
graph until it reaches the empty graph. Then it unwinds some of the actions that it has
taken and grows a matching which is then output. Even though it was shown empirically
to outperform Algorithm 2, it has not been rigorously analyzed. In this paper we analyze
Algorithm 2 in the special case where the graph is random with a fixed degree sequence
3 ≤ d(i) ≤ 4 for i = 1, 2, . . . , n. We prove the following:

Theorem 1. Let G be a random graph with degree sequence 3 ≤ d(i) ≤ 4 for i = 1, 2, . . . , n.
Then

(a) Algorithm 1 finds a matching of size n/2−O(log n), w.h.p.

(b) Algorithm 1 can be modified to find a (near) perfect matching in O(n) time w.h.p. and
in expectation.

A (near) perfect matching is one of size bn/2c. Note that in the case of cubic graphs, it is
known that they have (near) perfect matchings w.h.p., see Bollobás [4]. Note also that it
was shown by Frieze, Radcliffe and Suen [10] that w.h.p. Algorithm 2 finds a matching of
size n/2− Θ̃(n1/5). 1

2 The Algorithm

The algorithm that is given in [12] can be split into two parts. The first part sequentially
reduces the graph until it reaches the empty graph. Then the second part reverses part of
this reduction and grows a matching which is then output.

To reduce the graph,

(1) First, while there are vertices of degree 0 or degree 1 the algorithm removes them along
with any edge incident to them. The edges removed at this stage will be part of the
output matching.

(2) Second, while there are vertices of degree 2 the algorithm contracts them along with
their two neighbors. That is the induced path (x, y, z) is replaced by a single contracted
vertex yc whose neighbors are those of x, z other than y. The description in [12] does

1Recently, the junior author has extended Theorem 1 to random r-regular graphs for all 3 ≤ r = O(1).

2

not explicitly say what to do with loops or multiple edges created by this process. In
any case, such creations are very rare. We say a little more on this in Section 2.2.

In the unwinding, if we have so far constructed a matching containing an edge {yc, ξ}
incident with yc and ξ is a neighbor of x then in our matching we replace this edge by
{x, ξ} and {y, z}. If there is no matching edge so far chosen incident with yc then we
add an arbitrary one of {x, y} or {y, z} to our matching.

(3) Finally if the graph has minimum degree 3 then a random vertex is chosen among those
of maximum degree and then a random edge incident to that vertex is deleted. These
edges will not be used in the unwinding.

2.1 Idea of proof:

No mistakes are made while handling vertices of degree 0,1 or 2. Each mistake decreases
the size of the final matching produced by one from the maximum size. We will show that
mistakes occur only at parts of the graph that have become denser than is likely.

We show that w.h.p. the maximum degree remains O(log2 ν) where ν is the number of
vertices remaining and so as long as ν log n, say, then w.h.p. there will be no dense subgraphs
and the algorithm will not make any mistakes. This explains the O(log n) error term. Finally,
we assert that removing an edge incident to a vertex of a maximum degree will help to control
the maximum degree, explaining this choice of edge to delete.

2.2 Details

The precise algorithm that we analyze is called reduce-construct The algorithm de-
scription given in [12] is not explicit in how to deal with loops and multiple edges, as they
arise. We will remove loops immediately, but keep the multiple edges until removed by other
operations.

We assume that our input (multi-)graph G = G([n], E) has degree sequence d and is gener-
ated by the configuration model of Bollobás [4]. Let W = [2ν], 2ν =

∑n
i=1 d(i), be our set

of configuration points and let Φ be the set of configurations i.e. functions φ : W 7→ [n] that
such that |φ−1(i)| = d(i) for every i ∈ [n]. Given φ ∈ Φ we define the graph Gφ = ([n], Eφ)
where Eφ = {{φ(2j − 1), φ(2j)} : j ∈ [ν]}. Choosing a function φ ∈ Φ uniformly at random
yields a random (multi-)graph Gφ with degree sequence d.

It is known that conditional on Gφ being simple, i.e. having no loops or multiple edges, it
is equally likely to be any graph that has degree sequence d. Also, if the maximum degree
is O(1) then the probability that Gφ is simple is bounded below by a positive quantity that
is independent of n. Thus results on this model can be translated immediately to random
simple graphs.

We split the reduce-construct Algorithm into the reduce and construct algorithms

3

which we present separately.

Algorithm Reduce:

The input G0 = Gφ where we condition on there being no loops.
i = τ̂ = 0.
While Gi = (Vi, Ei) 6= (∅, ∅) do:

If δ(Gi) = 0: Perform a vertex-0 removal: choose a vertex of degree 0 and remove
it from Vi.

Else if δ(Gi) = 1: Perform a vertex-1 removal: choose a random vertex v of degree
1 and remove it along with its neighbor w and any edge incident to w.

Else if δ(Gi) = 2: Perform a contraction: choose a random vertex v of degree
2. Then replace {v} ∪ N(v) (v and its neighbors N(v)) by a single vertex vc. For
u ∈ V \ ({v} ∪N(v)), u is joined to vc by as many edges as there are in Gi from u to
{v} ∪N(v). Remove any loops created.

Else if δ(Gi) ≥ 3: Perform a max-edge removal: choose a random vertex of
maximum degree and remove a random edge incident with it.
End if

If the last action was a max-edge removal, say the removal of edge {u, v} and in the
current graph we have d(u) = 2 and u is joined to a single vertex w by a pair of
parallel edges then perform an auto correction contraction: contract u, v and w
into a single vertex. Remove any loops created.
End If

Set i = i+ 1 and let Gi be the current graph.

End While
Set τ̂ = i.

Observe that we only reveal edges (pairs of the form (φ(2j − 1), φ(2j)) : j ∈ [ν]) of Gφ

as the need arises in the algorithm. Moreover the algorithm removes any edges that are
revealed. Thus if we let d(i) be the degree sequence of Gi then, given d(i) and the actions
performed by reduce until it generates Gi we have that Gi is uniformly distributed among
all configurations with degree sequence d(i) and no loops.

Call a contraction that is performed by reduce and involves only 2 vertices bad i.e. one
where we contract u, v to a single vertex given that G contains a parallel pair of the edge
{u, v} and u has degree 2. Otherwise call it good. Observe that a bad contraction can
potentially be a mistake while a good contraction is never a mistake. By introducing the auto
correction contraction we replace the bad contraction of the vertex set {u,w}, as presented
in the description of reduce, with the good contraction of the vertex set {v, u, w}. Note
that we do not claim that all bad contractions can be dealt with in this way. We only show
later that other instance of bad contractions are very unlikely.

4

We now describe how we unwind the operations of reduce to provide us with a matching.

Algorithm construct:

Input: G0, G1, ..., Gτ̂ - the graph sequence produced by reduce, an integer j ∈ {0, 1, ..., τ̂}
and a matching Mj of Gj. (We allow the possibility of stopping reduce before it has
finished. If we do so when |V (Gj)| = Θ(n2/3) then, given that Gj has a perfect matching
w.h.p., we can use the O(|E||V |1/2) algorithm of [13] applied to Gj to find a perfect matching
Mj of Gj in O(n) time. Thereafter we can use construct to extend Mj to a matching of
G0.)
For i = 1 to j do:

If δ(Gj−i) = 0: Set Mj−i = Mj−i+1

Else if δ(Gj−i) = 1: Let v be the vertex of degree 1 chosen at the (j − i)th step
of reduce and let e be the edge that is incident to v in Gj−i. Then, Set Mj−i =
Mj−i+1 ∪ {e}.

Else if δ(Gj−i) = 2: Let v be the vertex of degree 2 selected in Gj−i. If |N(v)| = 1
i.e. v is joined to a single vertex by a double edge in Gj−i, set Mj−i = Mj−i+1. Else
let N(v) = {u,w} and vc be the new vertex resulting from the contraction of {v, u, w}.
If vc is not covered by Mj−i+1 then set Mj−i = Mj−i+1 ∪ {v, u}. Otherwise assume
that {vc, z} ∈ Mj−i+1 for some z ∈ V (Gj−i). Without loss of generality assume that
in Gj−i, z is connected to u. Set Mj−i = (Mj−i+1 ∪ {{v, w}, {u, z}}) \ {vc, z}.

Else if : δ(Gj−i) ≥ 3: Set Mj−i = Mj−i+1

End For

For a graph G and j ∈ {0, 1, ..., τ̂} denote by R0(G, j) and R2b(G, j) the number of times
that reduce has performed a vertex-0 removal and a bad contraction respectively until it
generates Gj. For a graph G and a matching M denote by κ(G,M) the number of vertices
that are not covered by M . The following Lemma determines the quality of the output of
the reduce-construct algorithm.

Lemma 2. Let G be a graph and M be the output of the Reduce-Backtrack algorithm applied
to G. Then, for j ≥ 0,

κ(G,M) = R0(G, j) +R2b(G, j) + κ(Gj,Mj). (1)

Proof. Let G = G0, G1, ..., Gτ̂ be the sequence of graphs produced by reduce and let
Mj,Mj−1, ...,M0 = M be the sequence of matchings produced by construct. LetR0(G, j, i)
and R2b(G, j, i) be the number of vertex-0 removals and bad contractions performed by re-
duce going from Gj−i to Gj. We will prove that for every 0 ≤ i ≤ j,

κ(Gj−i,Mj−i) = R0(G, j, i) +R2b(G, j, i) + κ(Gj,Mj). (2)

Taking i = j yields the desired result.

5

For i = 0, equation (1) holds as R0(G, j, 0) = R2b(G, j, 0) = 0. Assume inductively that
(1) holds for i = k − 1 where k satisfies 0 < k ≤ j. For i = k, if a max-edge deletion was
performed on Gj−k then |Vj−k| = |Vj−k+1|. Furthermore, R0(G, j, k) = R0(G, j, k − 1) and
R2b(G, j, k) = R2b(G, j, k − 1) and hence (1) continues to hold. If a vertex-0 deletion or a
bad contraction was performed on Gj−k then |Vj−k| = |Vj−k+1| + 1 and Mj−k = Mj−k+1. In
the case of a vertex-0 deletion we have R0(G, j, k) = R0(G, j, k − 1) + 1 and R2b(G, j, k) =
R2b(G, j, k − 1) and both sides of (2) increase by one. In the case of a bad contraction we
have R0(G, j, k) = R0(G, j, k−1) and R2b(G, j, k) = R2b(G, j, k−1)+1 and again both sides
of (2) increase by one. Finally if a good contraction or a vertex-1 removal was performed
on Gj−k then R0(G, j, k) = R0(G, j, k − 1) and R2b(G, j, k) = R2b(G, j, k − 1). At the same
time we have that κ(Gj−i,Mj−i) = κ(Gj−i+1,Mj−i+1), completing the induction.

2.3 Organizing the actions taken by reduce

We do not analyze the effects of each action taken by reduce individually. Instead we group
together sequences of actions, into what we call hyperactions, and we analyze the effects of
the individual hyperactions.

We construct a sub-sequence Γ0 = G,Γ1, . . . ,Γτ of G0, G1, ..., Gτ̂ . Every hyperaction, starts
with a max-edge removal and it consists of all the actions taken until the next max-edge
removal. We let Γi be the graph that results from performing the first i hyperactions. Thus
Γi is the ith graph in the sequence G0, G1, ..., Gτ̂ that has minimum degree at least 3 and
going from Γi to Γi+1 reduce performs a max-edge removal followed by a sequence of vertex-
0, vertex-1 removals and contractions. Thus Γ0,Γ1, ...,Γτ consists of all the graphs in the
sequence G0, G1, ..., Gτ̂ with minimum degree at least 3.

2.4 Excess and Proof Mechanics

The central quantity of this paper is the excess which we denote by ex`(·). For a graph G
and a positive integer ` we let

ex`(G) :=
∑

v∈V (G)

[d(v)− `]I(d(v) > `).

Hyperactions of Interest
For the analysis of reduce we consider 7 distinct hyperactions (sequences of actions) which
we call hyperactions of Type 1,2,3,4,5,33 and 34 respectively. In the case that the maximum
degree is larger than 3 we consider the following hyperactions: we have put some diagrams
of these hyperactions at the end of the paper.

Type 1: A single max-edge removal,

Type 2: A max edge-removal followed by an auto correction contraction.

6

Type 3: A single max-edge removal followed by a good contraction.

Type 4: A single max-edge removal followed by 2 good contractions. In this case
we add the restriction that there are exactly 6 distinct vertices v, u, x1, x2, w1, w2 in-
volved in this hyperaction and they satisfy the following: (i) v is a vertex of maxi-
mum degree, it is adjacent to u and {u, v} is removed during the max-edge removal,
(ii) d(u) = d(x1) = d(x2) = 3, (iii) N(u) = {v, x1, x2}, N(x1) = {u, x2, w1} and
N(x2) = {u, x1, w2}. (Thus {u, x1, x2} form a triangle.) The two contractions have the
same effect as contracting {u, x1, x2, w1, w2} into a single vertex.

In the case that the maximum degree equals 3 we also consider the following hyperactions:

Type 5: A max-edge removal followed by 2 good contractions that interact. In
this case the 5 vertices u, v, x1, x2, z involved in the hyperaction satisfy the follow-
ing: (i) {u, v} is the edge removed by the max-edge removal, (ii) N(v) = {u, x1, x2},
N(u) = {v, x1, z}, (so {u, v, x1} form a triangle), (iii) |(N(x1) ∪ N(x2) ∪ N(z)) \
{u, v, x1, x2, z} | ≥ 3. This hyperaction has the same effect as contracting all of
{u, v, x1, x2, z} into a single vertex.

Type 33: A max-edge removal followed by 2 good contractions that do not interact.
There are 6 distinct vertices involved v, v1, v2, u, u1, u2. During the max-edge removal
{u, v} is removed. Thereafter each of the 2 sets of vertices {v, v1, v2} and {u, u1, u2} is
contracted to a single vertex.

Type 34: A max-edge removal followed by 3 good contractions. There are 8 distinct
vertices involved v, v1, v2, v, u, u1, u2, w1, w2. During the max-edge removal {u, v} is
removed. The conditions satisfied by v, u, u1, u2, w1, w2 and the actions that are per-
formed on them are similar to the ones in a hyperaction of Type 4. The difference now
is that v has degree 3 before the hyperaction. In addition {v, v1, v2} is contracted into
a single vertex.

We divide Hyperactions of Type 3 into three classes. Assume that during a Hyperaction of
Type 3 the set {v, a, b} is contracted, v is the contracted vertex and vc is the new vertex.
We say that such a Hyperaction is of Type 3a if d(vc) = d(a) + d(b)− 2, is of Type 3b if
d(vc) = d(a) + d(b)− 4 and is of Type 3c if d(vc) < d(a) + d(b)− 4. Note that in general,
d(vc) = d(a) + d(b)− 2− 2ηa,b, where ηa,b is the number of edges joining a, b plus the number
of edges joining {u, v} after the max-edge removal.

With the exception of a Hyperaction of Type 3c, where ηa,b ≥ 2, we refer to the Hyperactions
of interest as good Hyperactions. We call any Hyperaction that is not good, including a
Hyperaction of Type 3c, bad.

We next state three lemmas, whose proofs will be deferred to Section 3.

Lemma 3. Let i ≥ 0 and assume that Γi satisfies ex`(Γi) ≤ log2 |V (Γi)| for some 3 ≤
` = O(1). Then with probability 1 − o(|V (Γi)|−1.9) the hyperaction that reduce applies to

7

Γi is good. In addition, it only applies a Hyperaction of Type 2, 3b or 4 with probability
o(|V (Γi)|−0.9).

The fact that w.h.p. we perform one hyperaction out of a small set of possibilities helps in
controlling ex`. Namely we have

Lemma 4. Suppose that Γi satisfies ex4(Γ) ≤ log2 |V (Γi)|. Then either ex4(Γi) = 0 or

E(ex4(Γi+1)− ex4(Γi)|Γi) ≤ −
1

3
.

Moreover with probability 1− o(|V (Γi)|−1.9) we have that

|ex4(Γi)− ex4(Γi+1)| ≤ 2.

Lemma 5. Suppose that ω ≥ log n. Then for every i ∈ {0, 1, .., τ}, |V (Γi)| ≥ ω implies that
with probability 1 − O(ω−0.8), we have ex4(Γi) ≤ log2 |V (Γi)|. Furthermore with probability
1−O(ω−0.8) there exists Γ ∈ {Γ0,Γ1, ..,Γτ} that satisfies ω ≤ |V (Γ)| ≤ 2ω and ex4(Γ) = 0.

Lemma 3 states that as long as ex` stays small then w.h.p. we perform only specific hyper-
actions. Lemmas 4 and 5 imply that as long we perform only those hyperactions then w.h.p.
ex4 stays small. Furthermore, as none of those hyperactions consist of a vertex-0 removal or
a bad contraction making we can appeal to Lemma 2. We use the above three lemmas to
prove the following:

Lemma 6. Let Γh be as promised by Lemma 5 that is, Γh ∈ {Γ0,Γ1, ..,Γτ} and it satisfies
log n ≤ ω ≤ V (Γh) ≤ 2ω and ex4(Γ) = 0. Then with probability 1 − O(ω−0.8), for any
matching Mh of Γh, the matching M generated by construct with j = h, Mh as an input
satisfies

κ(G,M) = κ(Γh,Mh). (3)

Proof. For i < h, Lemma 5 states that w.h.p. ex4(Γi) ≤ log2 |V (Γi)|. Lemma 3 then implies
that for i < h with probability

1−
h∑
i=1

o(|V (Γi)|−1.9) ≥ 1−
h∑
i=1

o((2|E(Γi)|/3)−1.9) ≥ 1−
∞∑
i=ω

o(2i−1.9/3) = 1− o(ω−0.9)

only good hyperactions take place. For the first inequality we used the fact that Γi has
minimum degree 3. For the second we used the fact that any Hyperaction decreases the
number of edges, hence |E(Γi)| is decreasing with respect to i.

Hence w.h.p., until reduce generates Γh it performs no vertex-0 removals or bad contrac-
tions. Let ĥ ∈ {0, 1, , ..., τ̂} be such that Gĥ = Γh. Then from the above R0(G, ĥ) =

R2b(0, ĥ) = 0. Finally in this case, Lemma 2 implies that

κ(Γ,Mh) = κ(Gĥ,Mh) = κ(Γh,Mh).

8

Observe that by a straightforward application of Lemma 6 with ω = log n and Mh being the
matching produced by construct in the case j = τ̂ we have that the matching M output
by the reduce-construct algorithm satisfies

κ(G,M) = κ(Γh, h) ≤ |V (Γh)| ≤ 2 log n.

This proves Part (a) of Theorem 1.

2.5 Finding a perfect matching in linear time

Lemma 6 suggests that when we run construct we should finish our algorithm by finding
a maximum matching M ′ of Γh. The final ingredient for the proof of Theorem 1(b) is given
by the next Theorem which implies that Γh has a parfect matching w.h.p.

Theorem 7. Let d be a degree sequence where 3 ≤ d(i) ≤ 4 for all i. Let G be a random
graph with degree sequence d and no loops. Then G has a (near)-perfect matching with
probability 1−O(n−3/4).

We defer the proof of Theorem 7 to Section 4. To prove Part (b) of Theorem 1, we run
algorithm Reduce until we find Γh as promised in Lemma 5. Here we take ω = n2/3. We
know from Lemma 6 and Lemma 7 that Γh has a (near)-perfect matching with probability
1−O(ω−0.8)−O(ω−3/4) = 1−O(n−1/2) that can be expanded to a (near)-perfect matching
of the original graph G. Moreover since |V (Γh)| ≤ 2ω, such a matching can be found in
O(ω3/2) = O(n) time. The rest of the algorithm can be executed in O(n) time and this
completes the high probability part of the proof of Part (b). Also, if reduce-construct
fails, then we can resort to an O(n3/2) time algorithm. This only happens with probability
O(n−1/2) and this yields the claim in Part (b) about the expected running time.

3 Proofs of Lemmas 3, 4 and 5

Notation 8. We sometimes write A ≤O B in place of A = O(B) for aesthetic purposes.

Notation 9. Let K be an arbitrary positive integer and b ∈ {0, 1}. For a random graph G
and v ∈ V (G), let BK(G, v, b) be the event that G spans a subgraph that contains v, spans
a ≤ K vertices and a+ ` edges.

We show that reduce either performs one of the good hyperactions given in Section 2.4 or
BK(G, v, 1) occurs where v is the vertex of maximum degree chosen by reduce. We will
also use the following standard notation: For a graph G, j, ` ∈ N we let:

• n(G) := |V (G)|, e(G) := |E(G),

• δ(G) and ∆(G) be the minimum and maximum degree of G respectively,

9

• nj(G) be the number of vertices of G of degree j,

• pj(G) :=
jnj(G)

2|E(G)| and p>j(G) :=
∑

h>j ph(G),

• ex`(G) :=
∑

v∈V (G)[d(v)− `]I(d(v) > `),

We denote by ni, ei, nj,i, pj,i, p>j,i and ex`,i the corresponding quantities in relation to Γi.

Lemma 10. Let K be an arbitrary fixed positive integer. Let d be a degree sequence of length
n that satisfies ex`(G) ≤ log2 n for some 3 ≤ ` = O(1). Let G be a random graph with degree
sequence d and no loops. Let b ∈ {0, 1}, then Pr(BK(G, v, b)) = o(n−0.9−b).

Proof. Let G be a random graph with degree sequence d. The fact that ex`(G) ≤ log2 n
implies that G has no loops with probability bounded below by a positive constant (see for
example [7]). Hence the condition of having no loops can be ignored in the proof that events
have probability o(1). Also it implies that ∆ = ∆(G) ≤ `+ ex`(G) ≤ `+ log2 n.

Let 2m =
∑n

i=1 d(i) ≤ `n+ex`(G) = Θ(n). Then for vertex v and for b = 0, 1 the probability
that G spans a subgraph that covers v, spans a ≤ K vertices and a+b edges can be bounded
above by

≤O
K∑
a=2

(
n

a− 1

)
(∆a)2(a+b)

(2m− 2(a+ b))!

2m−(a+b)[m− (a+ b)]!
× 2mm!

(2m)!

≤O
K∑
a=2

na−1∆2(a+b) m(m− 1)...(m− (a+ b) + 1)

2m(2m− 1)...(2m− 2(a+ b) + 1)

≤O
K∑
a=2

na−1∆2(a+b)m−(a+b)

= o(n−0.9−b).

We will drop the subscript K from B. Taking K = 20 will easily suffice for the rest of the
proof. Thus B(G, v, b) = B20(G, v, b).

3.1 Proof of Lemma 3

Let v be the vertex of maximum degree chosen by reduce and let u be the vertex adjacent
to v such that {u, v} is chosen for removal. We will show that if B(Γi, v, 1) does not occur
then reduce performs one of the hyperactions given in Section 2.4. Also observe that if
a Hyperaction of Type 2,3b,4,5 or 34 occurs then B(Γi, v, 0) occurs. Lemma 10 states that
Pr(B(Γi, v, 0)) = o(|V (Γi)|−0.9) thus proving the second part of Lemma 3. Also note that
if a Hyperaction of Type 3c, occurs, corresponding to a bad Hyperaction, then B(Γi, v, 1)
occurs. Lemma 10 states that Pr(B(Γi, v, 1)) = o(|V (Γi)|−1.9).

10

Case A: d(v) ≥ 4.
If d(u) ≥ 4 then a hyperaction of Type 1 is performed. Thus assume d(u) = 3 and consider
the cases where |N(u)| = 1, 2, 3, (recall that we allow parallel edges but not self-loops).

Case A1: |N(u)| = 1.
u is connected to v by 3 parallel edges and so B(Γi, v, 1) occurs.

Case A2: |N(u)| = 2.
Let N(u) = {v, u′} and S = {u, u′, v}. Let T = (N(u′) ∪ N(v)) \ S. If |T | ≤ 2 then we
have d(S) ≥ 10 and either S spans more than 3 edges or S ∪ T spans at least 7 edges. In
both cases B(Γi, v, 1) occurs. Assume then that |T | ≥ 3. Now exactly one of {u, u′}, {u, v}
is repeated, else B(Γi, v, 1) occurs. If {u, u′} is repeated then we perform an auto correction
contraction resulting to a Hyperaction of Type 2 . If {u, v} is repeated then we contract the
remaining path (u′, u, v). Hence we have performed a Hyperaction of Type 3b.

Case A3: |N(u)| = 3.
Let N(u) = {v, x1, x2} and T = (N(x1) ∪N(x2)) \ {u, x1, x2}.

Sub-case A3a: |T | ≤ 1.
{u, x1, x2}cupT spans at least (d(u)− 1 + d(x1) + d(x2) + |T |)/2 ≥ 4 + |T |/2 edges and the
event B(Γi, v, 1) occurs.

Sub-case A3b: T = {w1, w2}.
If v is at distance less than 6 from {u}∪N(u) in Γ\{u, v} then B(Γi, v, 1) occurs. To see this
consider the subgraph H spanned by {u, v, x1, x2, w1, w2, y} and the vertices on the shortest
path P from v to u in Γi \ {u, v}. Here y is the neighbor of v on P . It must contain at least
two distinct cycles. One contained in {u, x1, x2, w1, w2} and u, v, P . If there is no edge from
x1 to x2 then {v, u, x1, x2, w1, w2} spans at least 7 edges and so B(Γi, v, 1) occurs.

Thus we may assume that N(x1) = {u, x2, w1}, N(x2) = {u, x1, w2} and v /∈ {w1, w2} ∪
N(w1) ∪ N(w2). We may also assume that {w1, w2} is not an edge of Γ, for otherwise
{u, x1, x2, w1, w2} contains two distinct cycles and B(Gi, v, 1) occurs. The algorithm Reduce
proceeds by contracting u, x1, x2 into a single vertex x′. x′ has degree 2 and the algorithm
proceeds by performing a contraction of x′, w1, w2 into a new vertex w′. Let S = N{w1, w2}\
{x1, x2}. If |S| ≤ 3 then B(Γi, u, 1) occurs. To see this observe that w1, w2 must then have
a common neighbor w3 say. Consider the subgraph H spanned by {u, x1, x2, w1, w2, w3}. H
contains at least 7 edges and 6 vertices. If |S| ≥ 4 then the new vertex has degree 4 and the
sequence of actions taken by reduce corresponds to a hyperaction of Type 4.

Sub-case A3c: |T | ≥ 3. After the removal of {v, u} we contract {u, x1, x2} into a single
vertex of degree at least 3, hence a hyperaction of Type 3 is performed.

Case B: d(v) = d(u) = 3.
Let Γ′ = Γi \ {e} where e = {v, u}.

Case B1: In Γ′, u and v are at distance at least 4.
If |N(N(u))| and |N(N(v))| ≤ 3 then B(Γi, v, 1) occurs. Thus we can assume that either
|N(N(u))| = 4 and/or |N(N(v))| = 4. If both |N(N(u))|, |N(N(v))| = 4 then Reduce will

11

perform 2 good contractions and this amounts to a hyperaction of Type 33. Assume then
that |N(N(u))| = 4 and that |N(N(v))| ≤ 3. If |N(N(v))| = 3 then again Reduce will
perform 2 good contractions amounting to a hyperaction of Type 33. If |N(N(v))| = 2
and so v is in a triangle then Reduce will perform a hyperaction of Type 34. Finally, if
|N(N(v))| = 1 then B(Γi, v, 1) occurs.

Case B2: In Γ′, u and v are at distance 3.
In Γi there is a cycle C of length 4 containing u, v. If in Γ′ we find that |N(N(u))| ≤ 3 or
|N(N(v))| ≤ 3 or |N(u) ∩ N(N(v))| > 1 or |N(v) ∩ N(N(u))| > 1 then B(Γi, v, 1) occurs.
This is because the graph spanned by {u, v} ∪ N(u) ∪ N(v) ∪ N(N(u) ∪ N(N(v)) in Γi
will contain a cycle distinct from C. Assume this is not the case. Then after the max-edge
removal of {u, v} we have a contraction of {u}∪N(u) followed by a contraction of {u}∪N(u).
Observe that neither contraction reduces the size of N(N(u)) or N(N(v)). Thus reduce
performs a hyperaction of Type 33.

Case B3: In Γ′, u and v are at distance 2.
In the case that u, v have 2 common neighbors in Γ′ we see that B(Γi, v, 1) occurs. Assume
then that they have a single common neighbor x1. Let z, x2 be the other neighbors of u, v
respectively. Then either B(Γi, v, 1) occurs or reduce performs a hyperaction of Type 5.

Case B4: In Γ′, u and v are at distance 1.
So here we have that {u, v} is a double edge in Γi. Let x, y be the other neighbors of u, v
repectively in Γ. Assuming that B(Γi, v, 1) does not occur, reduce performs a max-edge
removal followed by a single good contraction and this will be equivalent to a hyperaction
of Type 3, involving the contraction of one of x, u, v or u, v, y.

3.2 Proof of Lemma 4

The inequality ex4,i ≤ log2 ni implies that pj,i ≤ log2 ni/2ei = o(n−0.95i) for 5 ≤ j ≤ ∆. It
also implies that the maximum degree ∆ of Γ satisfies ∆ = O(log2 n).

In the case that B(G, v, 1) occurs, i.e. with probability O(n−1.9i) (see Lemma 3)

|ex4,i − ex4,i+1| ≤ 2ei ≤ 4ni + ex4,i ≤ 5ni.

Observe that if an action of Type 2,3b,4,5 or 34 takes place then v lies on a subgraph with
a < 12 vertices and a edges. Lemma 3 states that this occurs with probability o(n−0.9).
For all the above hyperactions we have |ex4,i+1 − ex4,i| ≤ 2. This follows from the fact
that performing a contraction can increase ex4 by at most 2. This is because the initial
vertices with degrees say 2, d1, d2 contributed max{0, (d1 − 4) + (d2 − 4)} to ex4,i while the
new contracted vertex has degree d1 + d2 − 2 and contributes max{0, d1 + d2 − 2 − 4)} to
ex4,i+1. Moreover observe that if a hyperaction of Type 5, 33 or 34 occurs then all the
vertices involved have degree 3. If B(Γ, v, 1) does not occur then a hyperaction of Type 5
will increase ex4,i by 1 (since there will be one new vertex of degree 5). Hyperactions of Type
33 or Type 34 do not change ex4. Thus it remains to examine the effects of a hyperaction
of Type 1 or of Type 3a.

12

If ex4,i = 0 then a hyperaction of Type 1 does not increase ex4,i while a hyperaction of Type
3 could increase it by 2.

If ex4(Γ) > 0 then the ith hyperaction starts with a max-edge removal.
Case 1: If the smaller degree vertex involved is of degree larger than 3, then this results in
a hyperaction of Type 1. This happens with probability (1 + o(1))(1− p3,i). Furthermore in
this case ex4,i − 2 ≤ ex4,i+1 ≤ ex4,i − 1. (The (1 + o(1)) factor arises because of O(1) degree
changes during the hyperaction.)
Case 2: If the smaller degree vertex v involved is of degree 3 then a contraction is performed.
And this occurs with probability (1+o(1))p3,i. If the contraction results in a vertex of degree
at least 3 then we have a hyperaction of Type 3a, and not of Type 1. Also this is the only way
for a hyperaction of Type 3a to occur. Let the other two vertices involved in the contraction
be a, b and have degrees da, db respectively. Now da = db = 3 with probability (1 + o(1))p23,i,
resulting in a new vertex that has degree at most 4. In this case, ex4,i+1 − ex4,i = −1
(the -1 here originates from the max-edge removal). Else if da = 3, db = 4 then we have
−1 ≤ ex4,i − ex4,i ≤ −1 + 1 = 0. And this occurs with probability (1 + o(1))2p3,ip4,i. Else if
da = db = 4 then we have −1 ≤ ex4,i+1 − ex4,i ≤ −1 + 2 = 1 (this occurs with probability
p3,ip

2
4,i. Otherwise a vertex of degree at least 5 is involved and given our upper bound on

ex4,i, this happens with probability o(1). If the event B(Γ, v, 1) does not occur then the new
contracted vertex has degree da + db − 2. Hence −1 ≤ ex4,i − ex4,i ≤ −1 + 2 = 1.

Thus in all cases |ex4,i − ex4,i| ≤ 2 and if ex4,i > 0 then

E[ex4,i+1 − ex4,i|Γi] ≤ −(5ni) · o(n−1.9i) + 2n−0.95i − (1− p3,i)− p33,i + p3,ip
2
4,i + o(1)

≤ −(1− p3,i)− p33,i + p3,i(1− p3,i)2 + o(1) ≤ −1

3

(The final expression in p3,i is maximized at p3,i = 1/2, for p3,i ∈ [0, 1].)

3.3 Proof of Lemma 5

We start by proving the following Lemma:

Lemma 11. Let Γh be such that ex4,h = 0. Then with probability 1 − o(n−1.8j) there exists

1 ≤ j ≤ 0.25 log2 nh satisfying ex4,h+j = 0. Furthermore ex4,h+i ≤ log2 nh+i for i ≤ j.

Proof. If ex4,h+1 = 0 then we are done. Otherwise Lemma 4 implies that ex4,h+1 ∈ {1, 2}
with probability 1− o(n−1.9h).

Let ET be the event that for j ≤ 0.25 log2 nh reduce performs only hyperactions of Type
1,2,3,4,5,33 or 34. Such a hyperaction reduces the vertex set by at most 8. Lemma 3 implies
that ET occurs with probability 1− o(n−1.8h). Moreover if ET occurs for j < 0.25 log2 nh then
|nh+j| ≥ nh − 8 · 0.25 log2 nh. In addition from Lemma 4 we have that with probability
1 − o(n−1.8), |ex4,h+j − ex4,h+j−1| < 2 for j < 0.25 log2 n hence ex4,h+j ≤ 2 · 0.25 log2 nh ≤
log2 nh+j. Finally conditioned on ET since ex4,h+1 = 1 or 2, the probability that there is no
2 ≤ j ≤ 0.25 log2 nh satisfying ex4,h+j = 0 is bounded by the probability that the sum of

13

0.25 log2 n− 2 independent random variables with magnitude at most 2 and expected value
smaller than −1/3 (see Lemma 4) is positive. From Hoeffding’s inequality [11] we have that

the later probability is bounded by exp
{
−2(1

3
log2 nh−3)2

log2 nh

}
= o(n−2h).

Now let Γ0,Γi1 , ...,Γi` be the subsequence of Γ0,Γ1, ..,Γτ that includes all the graphs that
have ex4 = 0 and at least ω vertices. Then since Γi has minimum degree 3 and ei is decreasing
with respect to i using Lemma 11 we have that with probability

1−
∑
i:ni≥ω

o(n−1.8i) ≥ 1−
∑
i:ni≥ω

2e−1.8i /3 ≥ 1−
∞∑
i=ω

i−1.8 = 1− o(ω−0.8)

we have that for j < ` we have nij − nij+1
≤ 8 · 0.25 log2 nij = 2 log2 nij and all the graphs

Γi preceding Γi` in Γ0,Γ1, ...,Γτ satisfy ex4,i ≤ log2 ni. Suppose now that ni` > 2ω. Then
the above argument implies that w.h.p. there is j > i` such that ex4,j = 0 and nj ≥
ni` − 2 log2 ni` ≥ ω and this contradicts the definition of i`. Thus, w.h.p., ω ≤ ni` ≤ 2ω and
hhis completes the proof of Lemma 5.

4 Existence of a Perfect Matching

We devote this section to the proof of Lemma 7. As discussed in the previous section it is
enough to prove that given a degree sequence d = (d(1), ..., d(n)) consisting only of 3’s and
4’s, if we let G be a random configuration (multi)-graph with degree sequence d, then w.h.p.
G has a (near)-perfect matching (i.e we can lift the condition that G has no loops). We
will first assume that n is even and verify Tutte’s condition. That is for every W ⊂ V the
number of odd components induced by V \W , q(V/W), is not larger that |W |. We split the
verification of Tutte’s condition into two lemmas.

Lemma 12. Let W ⊂ V be a set of minimum size that satisfies q(V/W) > |W |. Then with
probability 1−O(n−3/4), |W | > 10−5n.

Lemma 13. Let W ⊂ V be a set of maximum size that satisfies q(V/W) > |W |. Then with
probability 1−O(n−3/4), |W | < 10−5n.

Lemmas 12 and 13 together imply Tutte’s condition as there exists no set with size that is
both strictly larger and strictly smaller than 10−5n. In the proof of these lemmas we use the
following estimates.

Lemma 14. The number of distinct partitions of a set of size 2r into 2-element subsets,

denoted by φ(2r), satisfies φ(2r) = Θ
((

2r
e

)r)
. Also for ` < r we have φ(2r) ≤ 2rr−`

(
2`
e

)`
.

Proof. To generate a matching we first choose a permutation of the 2r items and then we
pair the (2i − 1)th item with the 2ith item. Therefore, using Stirling’s approximation we
have

φ(2r) =
(2r)!

2rr!
=

Θ(
√

2r
(
2r
e

)2r
)

Θ(2r
√
r
(
r
e

)r
)

= Θ

((
2r

e

)r)
.

14

Also

φ(2r) =
(2r)!

2rr!
≤ (2r)r−`(2`)!

2r−`2``!
≤ 2rr−`

(
2`

e

)`
,

where we have used (2r)! ≤ (2r)2(r−`)(2`)!.

4.1 Proof of Lemma 12:

Let W be a set satisfying q(V \W) > |W | of minimum size and assume 2 ≤ w = |W | ≤ 10−5n.
We can rule out the case w = 1 from the fact that with probability 1 − O(1/n), G will be
3-connected, see e.g. the proof of Theorem 10.8 in [7] . Let Cz be a component spanned by
V \W of maximum size and let r = |Cz|.

Case 1: r = |Cz| ≤ 0.997n. In this case we can partition V \ W into two parts V1, V2
such that (i) each Vl, l = 1, 2 is the union of components of V \W , (ii) |V1| ≥ |V2|, and (iii)
|V2| ≥ (n− (r + w))/2 ≥ 10−3n.

Let d2 = d(V2) and dW = d(W). Out of the dW endpoints in W (i.e. configuration points
that correspond to vertices in W), ` ≤ dW are matched with endpoints in V2 and the rest
with endpoints in V1.

For fixed i, w, dW the probability that there are sets V1, V2,W with w = |W |, d(W) = dW
and |V2| = i satisfying 1 ≤ w ≤ 10−5n, 10−3n ≤ i ≤ 0.5n and dW ≤ 4w ≤ 0.04i, such that
V1 × V2 spans no edges is bounded by

p1 ≤
dW∑
`=0

(
n

i

)(
n− i
w

)(
dW
`

)
φ(d2 + `) · φ(2m− d2 − `)

φ(2m)

≤O
dW∑
`=0

(en
i

)i (en
w

)w
2dW

(
d2+`
e

)(d2+`)/2 (2m−d2−`
e

)(2m−d2−`)/2(
2m
e

)m
≤

dW∑
`=0

(en
i

)i(100en

i

)i/100
2i/25

(
d2 + `

2m

)(d2+`)/2(
1− d2 + `

2m

)(2m−d2−`)/2

≤O
dW∑
`=0

(
1600(en)101

i101

)i/100(
d2 + `

2m

)(d2+`)/2

exp

{
−d2 + `

2

(
1− d2 + `

2m

)}
For the third line we used the fact that w ≤ i/100 and dW ≤ 4w ≤ i/25.

Let f(x) = xxe−x(1−x) and L(x) = log f(x). Then L′′(x) = x−1 + 2 and so L and hence f is

convex for x > 0. Now d2+` ∈ J = [3i, 4.04i] and since
(
d2+`
2m

)(d2+`)/2
exp

{
−d2+`

2

(
1− d2+`

2m

)}
=

f
(
d2+`
2m

)m
we see that its maxima are at the endpoints of J . In general 3i ≤ 3n/2 ≤ m.

However when d2 + ` = 4.04i we have that

2m ≥ 4.04i+ 3(n− i− w) ≥ 4.04i+ 3(n− 1.01i) = 3n+ 1.01i. (4)

15

Case 1a: d2 + ` = 3i.
We have d2+`

2m
≤ 3i

3n
≤ 1

2
and (d2 + `)(1− d2+`

2m
) ≥ 3i/2. Therefore,

p1 ≤O w
(

1600(en)101

i101

)i/100(
i

n

)3i/2

e−3i/4

= w

[
1600e26

249

(
2i

n

)49]i/100
≤ w

[
e−1/2

(
2i

n

)49]i/100
≤ we−i/200.

Case 1b: d2 + ` = 4.04i.
It follows from (4) that d2+`

2m
≤ 4.04i

3n+1.01i
≤ 0.577 where the second inequality uses i ≤ n/2. It

follows from this that (d2 + `)(1− d2+`
2m

)/2 ≥ 0.85i. Hence,

p1 ≤O w
(

1600(en)101

i101

)i/100(
4.04i

3n+ 1.01i

)2.02i

e−0.85i

≤O w
[
1600e16

(
n

i

)101(
4.04i

3n

)101(
4.04i

3n+ 1.01i

)101]i/100
≤O w

[
1600e16

(
4.04

3
· 0.577

)101]i/100
≤O we−i/100.

Therefore the probability that Case 1 is satisfied is bounded by a constant times

10−5n∑
w=1

0.5n∑
i=10−3n

we−i/200 = O(n−3/4).

Case 2: r = |Cz| ≥ 0.997n. Let V1 = V (Cz), V2 = V \ (V1 ∪W). First note that V2 spans
at least w components. Therefore |V2| ≥ w. To lower bound e(V2 : W) we use the following
Claim.

Claim 1 Every vertex in W is adjacent to at least 3 distinct components in V \W , and
hence to at least 2 vertices in V2.

Proof of Claim 1: Let v ∈ W be such that it is adjacent to t ∈ {0, 1, 2} components in
V \W . Consider W ′ = W \{v}. Thus |W ′| = |W |−1 . If t = 0 then q(V \W ′) = q(V \W)+1.
If t = 1 then q(V \W ′) ≥ q(V \W) − 1. If t = 2 then if the both of the corresponding
components have odd size then the new component will also have odd side, while if only one
of them has odd size then the new one has even size. Finally if both have even size the new
one has odd size. In all three cases the inequality q(V \W ′) ≥ q(V \W) − 1 is satisfied.
Therefore q(V \ W ′) ≥ q(V \ W) − 1 > |W | − 1 = |W ′| contradicting the minimality of

16

W .

From Claim 1 it follows that W : V2 spans at least 2w edges. We also have that |V2| ≤
n−r−w ≤ 0.003n. For fixed 2 ≤ w ≤ 10−5n, 3w ≤ dW ≤ 4w and w ≤ i the probability that
there exist such sets V1, V2,W , |V2| = i, w = |W |, d(W) = dW and 2w ≤ ` = e(V2 : W) ≤ 4w
is bounded by

dW∑
`=2w

(
n

i

)(
n− i
w

)(
dW
`

)
φ(d2 + `) · φ(2m− d2 − `)

φ(2m)

≤O
dW∑
`=2w

(en
i

)i (en
w

)w
24w

(
d2+`
2

)(d2+`−2w)/2 (2w
e

)w (2m−d2−`
e

)(2m−d2−`)/2(
2m
e

)m
=

dW∑
`=2w

(en
i

)i (en
w

)w
24w

(
2w

2m

)w (
d2 + `

2m
· e

2

)(d2+`−2w)/2(
1− d2 + `

2m

)(2m−d2−`)/2

≤O w
(en
i

)i(16e

3

)w (
5i

3n
· e

2

)3i/2

≤O w

(
e2
(

16e

3

)2w/i
53i

33n

)i/2

.

For the second line we used the second inequality of Lemma 14. For the fourth line we used

that 2w ≤ `, d2 + ` ≤ 4|V2|+ 4w ≤ 0.01204n and so
(
d2+`
2m
· e
2

)(d2+`−2w)/2
is maximized when

d2, ` are as small as possible, that is d2 = 3i, ` = 2w. Furthermore note that d2 + `− 2w ≥
d2 ≥ 3i and i ≥ q(V \W) − 1 ≥ w. Therefore the probability that Case 2 is satisfied is
bounded by a constant times

10−5n∑
w=2

0.003n∑
i=w

(
e2
(

16e

3

)2w/i
53i

33n

)i/2

≤O
10−5n∑
w=2

2w∑
i=w

(
C1i

n

)i/2
+

10−5n∑
w=2

0.003n∑
i=2w

(
C2i

n

)i/2
where C1 = 16253e4/35, C2 = 16 · 53e3/34,

≤
n1/4∑
i=2

i

((
C1

n3/4

)i/2
+

(
C2

n3/4

)i/2)
+

2·10−5n∑
i=n1/4

i

(
2C1

105

)i/2
+

0.003n∑
i=n1/4

i

(
6C2

103

)i/2
= O(n−3/4).

Finally, since G has an even number of vertices, for W = ∅ we have |W | = q(V \W) = 0.

4.2 Proof of Lemma 13:

Let W be a set satisfying q(V \W) > |W | of maximum size and assume w = |W | ≥ 10−5n.

17

Claim 2 No component induced by V \W is a tree with more than one vertex.

Proof of Claim 2: Indeed assume that Ci is such a component. If |Ci| is even then let v
be a leaf of Ci and define W ′ = W ∪{v}. Then Ci \ {v} is an odd component in V \W ′ and
q(V \W ′) = q(V \W) + 1 > |W |+ 1 = |W ′| contradicting the maximality of W .

Thus assume that |Ci| is odd. Let L1 be the set of leaves of Ci and L2 be the neighbors of L1.
Set W ′ = W ∪ |L1|. Then |L1| ≥ |L2|. Furthermore every vertex in L1 is an odd component
in V \W ′ and in the case |L1| = |L2| then Ci \ (L1∪L2) is also an odd component in V \W ′.
Therefore,

q(V/W ′) = q(V/W)− 1 + |L1|+ I(|L1| = |L2|)
≥ q(V/W) + |L2|+ |L1| − |L2|+ I(|L1| = |L2|)− 1

> |W |+ |L2| = |W ′|,

contradicting the maximality of W .

We partition V \W into three sets, W1,W2 and W3, as follows. With the underlying graph
being the one spanned by V \W , W1 consists of the isolated vertices in V \W , W2 consists
of the vertices spanned by components that contain a cycle and have size s ≤ 1

10
log n and

W3 consists of the vertices that are spanned by a component of size at least 1
10

log n. Finally
let W4 = W2 ∪W3. To lower bound W1 we use the following claim.

Claim 3: W.h.p. W4 spans at most 11w
logn

components in V \W .

Proof of Claim 3: First observe that the number of components spanned by W2 is smaller
than the number of cycles of size at most 1

10
log n in G, which we denote by r.

Pr(r ≥ n0.3) ≤ n−0.3
0.1 logn∑
q=1

(
n

q

)
4qq!

φ(2q)φ(2m− 2q)

φ(2m)

≤O n−0.3
0.1 logn∑
q=1

(
en

q

)q
4q
(

2q

e

)q (e

2m

)q
≤O n−0.3

0.1 logn∑
q=1

(
8e

3

)q
≤O n−0.3(log n)80.1 logn = o(1).

Hence w.h.p. W2 spans at most n0.3 components. Moreover every component spanned by W3

has size at least 1
10

log n. Therefore W4 spans at most n0.3 + 10w
logn

= (1+o(1))10w
logn

components

in V \W .

Since W4 spans at most u = 11w
logn

components in V \W and no component is a tree it follows

that the rest of the components consist of at least q(V \W) − u > w − u isolated vertices
that lie in W1.

For convenience, we move |W1| − (w − u) vertices from W1 to W4. Therefore |W1| = w − u.
Let k1 be the number of vertices of degree 4 in W1 and d = d(W) − d(W1). Then 0 ≤ d ≤

18

4w− (3(w− u) + k1) = w + 3u− k1. For fixed 10−5n ≤ w ≤ 0.5n the probability that there
exist such sets W,W1,W4 is bounded by

p2 ≤
w−u∑
k1=0

w+3u−k1∑
d=0

(
n

2w

)(
2w

w

)(
w

u

)(
4w

d

)
Pr(d(W)− d(W1) = d) (5)

× (3(w − u) + k1)!×
[2m− [6(w − u) + 2k1]]!

2m−[3(w−u)+k1 [m− [3(w − u) + k1]]!
× 2mm!

(2m)!
. (6)

Explanation: We first choose the sets W,W1 and W4 of size w,w − u and n − 2w + u

respectively. This can be done in
(
n
2w

)(
2w
w

)(
w
u

)(
n−2w+u

u

)−1
ways, but we ignore the final

factor.

From the at most 4w copies of vertices in W we choose a set W ′′ ⊂ W be of size d. We let
W ′ = W/W ′′. These are the copies of vertices that will be matched with those in W1.

In the calculations that follow we let a = w/n ≥ 10−5. We also let k4 be the number of
vertices of degree 4 that lie in W4. We first bound the binomial coefficients, found in the
first line. (

n

2w

)(
2w

w

)(
w

u

)(
4w

d

)
=

(
n

2an

)(
2an

an

)(
an

u

)(
4an

d

)
≤ 2o(n)

(
1

2a

)2an(
1

1− 2a

)(1−2a)n

22an

(
4ean

d

)d
= 2o(n)

(
1

a

)2an(
1

1− 2a

)(1−2a)n(
4ean

d

)d
. (7)

For the second line we used that u ≤ u0 which implies that
(
an
u

)
= 2o(n). Observe that

2m = 6(w − u) + 2k1 + d+ 3(n− 2w + u) + k4 = 3n+ d+ 2k1 + k4 − 3u. (8)

Let m0 = d+ 2k1 + k4 − 3u. For the terms in line (6) we have

(2m)!

2mm!
=

(3n)!

21.5n(1.5n)!

∏m0

i=1(3n+ i)

2m0/2
∏m0/2

i=1 (1.5n+ i)
≥O

(
3n

e

)1.5n m0/2∏
i=1

[3n+ (2i− 1)].

≥
(

3n

e

)1.5n

e−o(n)(3n)−3u/2
d/2+k1+k4/2∏

i=1

[3n+ (2i− 1)]

Equation (8) implies that

2m− [6(w − u) + 2k1] = 3(1− 2a)n+ 3u+ k4 + d.

19

Thus,

[2m− [6(w − u) + 2k1]]!

2m−[3(w−u)+2k1][m− [3(w − u) + k1]]!
=

[3(1− 2a)n]!

21.5(1−2a)n[1.5(1− 2a)n]!
·

∏d
i=1 3(1− 2a)n+ i

2d/2
∏ d

2
j=1 1.5(1− 2a)n+ j

×
∏k4

i=1 3(1− 2a)n+ d+ i

2k4/2
∏k4/2

j=1 1.5(1− 2a)n+ d/2 + j
·

∏3u
i=1 3(1− 2a)n+ d+ k4 + i

23u/2
∏ 3u

2
j=1 1.5(1− 2a)n+ d/2 + k4/2 + j

≤O
(

3(1− 2a)n

e

)1.5(1−2a)n d/2∏
i=1

[3(1− 2a)n+ (2i− 1)]

k4/2∏
j=1

[3(1− 2a)n+ d+ (2j − 1)] · (2m)3u/2

≤O
(

3(1− 2a)n

e

)1.5(1−2a)n

[3(1− 2a)n+ an/2]d/2(2m)3u/2
k4/2∏
j=1

[3(1− 2a)n+ d+ (2j − 1)]

For the last inequality we used the Arithmetic Mean-Geometric Mean inequality and the
fact that d/2 ≤ an/2 + o(n), which follows from d ≤ w + 3u− k1.

For the first term of (6) we have

[3(w − u) + k1]! ≤
3w!

(3(w − u))3u

k1∏
i=1

(3(w − u) + i) ≤
(

3an

e

)3an
2o(n)

n3u

k1∏
i=1

(3(w − u) + i).

Thus the expression in (6) is bounded by

2o(n)
(

3an

e

)3an
1

n3u

k1∏
i=1

(3(w − u) + i)

×
(

3(1− 2a)n

e

)1.5(1−2a)n

[3(1− 2a)n+ an/2]d/2(2m)3u/2
k4/2∏
j=1

[3(1− 2a)n+ d+ 2j − 1]

×
[(

3n

e

)1.5n

(3n)−3u/2
d/2+k1+k4/2∏

i=1

[3n+ (2i− 1)]

]−1

= 2o(n)a3an[(1− 2a)n]1.5(1−2a)n
(

6m

n

)3u/2 d/2∏
i=1

3(1− 2a)n+ an/2

3n+ (2i− 1)

×
k1∏
i=1

3(w − u) + i

3n+ d+ (2i− 1)

k4/2∏
i=1

3(1− 2a)n+ d+ 2i− 1

3n+ d+ 2k1 + 2i− 1

≤O 2o(n)a3an[(1− 2a)n]1.5(1−2a)n
d/2∏
i=1

3(1− 2a)n+ an/2

3n

k1∏
i=1

3(w − u) + i

3n+ d+ (2i− 1)

k4/2∏
i=1

1

≤O 2o(n)a3an[(1− 2a)n]1.5(1−2a)n[(1− 2a) + a/6]d/22−k1 (9)

Finally we consider the term Pr(d(W)− d(W1) = d) and assume that h vertices of degree 4
were chosen to be included in W ∪W1, so that d = h + 3u − 2k1. Then, because there are

20

(
h
k1

)(
2w−u−h
(w−u)−k1

)
out of

(
2w
w−u

)
ways to distribute the k1 vertices of degree 4,

p3 = Pr(d(W)− d(W1) = d) =

(
h

k1

)(
2w − u− h

(w − u)− k1

)/(
2w − u
w − u

)
≤
(
h

k1

)(
2w − u− h
w − u

)/(
2w − u
w − u

)
≤
(
h

k1

) h−1∏
i=0

w − i
2w − i

≤ 2hH(k1/h)−h = 2k12−k1+h·H(k1/h)−h.

Here H(x) = −x log2(x) − (1 − x) log2(1 − x) is the entropy function. For fixed d we have
h = d+ 2k1 + o(n). Thus

p3 ≤ 2o(n)+k1+df(k1/d), where f(x) = −x+ (1 + 2x)H

(
x

1 + 2x

)
− (1 + 2x).

f(x) has a unique maximum at x∗, the solution to 8x(1+x) = (1+2x)2 and f(x∗) ≤ −0.771.
Hence

p3 ≤ 2−0.771d+k1+o(n). (10)

Multiplying the bounds in (7), (9), (10) together we have a bound

p2 ≤ 2o(n)−0.771d+k1
(

1

a

)2an(
1

1− 2a

)(1−2a)n(
4ean

d

)d
× a3an(1− 2a)1.5(1−2a)n

(
1− 2a+

a

6

)d/2
2−k1

= 2o(n)
(

21.229ean

d

)d
aan(1− 2a)0.5(1−2a)n

(
1− 11a

6

)d/2
Thus p2 = o(1) when d = o(n). Let d = ban for some 0 < b ≤ 1. Then,

p2 ≤
{

2o(1)
[

21.229e

b

(
1− 11a

6

)0.5]b
a(1− 2a)0.5(1−2a)/a

}an

Let g(a) = 21.229e

(
1 − 11a

6

)0.5

. When g(a) < e then
(
g(a)
b

)b
is maximized when b = g(a)

e

which yields

p2 ≤
{

2o(1) e2
1.229(1− 11a

6
)0.5a(1− 2a)0.5(1−2a)/a

}an
≤
(

99

100

)an
.

The last inequality is most easily verified numerically.

When g(a) > e then
(
g(a)
b

)b
is maximized at b = 1. Hence

p2 ≤
{

2o(1) 21.229e

(
1− 11a

6

)0.5

a(1− 2a)0.5(1−2a)/a
}an
≤
(

19

20

)an
.

21

The last inequality is most easily verified numerically. Thus the probability that there exists
a set W satisfying q(V \W) > |W | of size w = |W | ≤ 10−5n is bounded by

0.5n∑
w=10−5n

(
99

100

)w
= o(1).

This only leaves the case of n odd. The reader will notice that in none of the calculations
above, did we use the fact that n was even. The Tutte-Berge formula for the maximum size
of a matching ν(G) is

ν(G) = min
W⊆V

1

2
(|V |+ |W | − q(V \W)).

We have shown that the above expression is at least |V |/2 for W 6= ∅ and so the case of n
odd is handled by putting W = ∅ and q(W) = 1.

5 Conclusions and open questions

The paper of Karp and Sipser [12] has been a springboard for research on matching algorithms
in random graphs. Algorithm 1 of that paper has not been the subject of a great deal of
analysis, mainly because of the way it disturbs the degree sequences of the graphs that it
produces along the way. In this paper we have shown that if the original graph has small
maximum degree then the maximum degree is controllable and the great efficiency of the
algorithm can be verified.

It is natural to try to extend the analysis to random regular graphs with degree more than
four and we are in the process of trying to overcome some technical problems. It would also
be of interest to analyse the algorithm on Gn,p, as originally intended.

6 Diagrams of Hyperactions of interest

Type 2.

w u v

x

y

z

a

b

wuv

a

b

x

y

z

y

z

Type 3.

22

u v

x

y

z

a

b

c

d

e

f

avb
u

x

y

z

c

d

e

f

We allow the edge {a, b} to be a single edge in this construction. This gives us a Type 3b
hyperaction.

Type 4.

v

a

b

c

u

x1

x2

w1

w2

p

q

r

s

v

a

b

c

u, x1, x2, w1, w2

p

q

r

s

Type 5.

a

b

z u
v

x1

x2

p

q

r

z, u, v, x1, x2

b

a p

r

q

Type 33.

u1

u2

u v

a

b

c

d

v2

v2

p

q

r

s

p

q

r

s

a

b

c

d

u, u1, u2 v, v1, v2

23

Type 34.

v1

v2

v u

a

b

c

d

u2

u1

w2

w1

p

q

r

s

v, v1, v2 u, u1, u2, w1, w2

a

b

c

d

p

q

r

s

References

[1] J. Aronson, A.M. Frieze and B. Pittel, Maximum matchings in sparse random graphs:
Karp-Sipser revisited, Random Structures and Algorithms 12 (1998) 111-178.

[2] P. Balister and S. Gerke, Controllability and matchings in random bipartite graphs,
Surveys in Combinatorics 424 (2015) 119-145.

[3] T. Bohman and A.M. Frieze, Karp-Sipser on random graphs with a fixed degree sequence,
Combinatorics, Probability and Computing 20 (2011) 721-742.

[4] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs, European Journal on Combinatorics 1 (1980) 311-316.

[5] P. Chebolu, A.M. Frieze and P. Melsted, Finding a Maximum Matching in a Sparse
Random Graph in O(n) Expected Time, Journal of the ACM 57 (2010) 1-27.

[6] C. Bordenave and M. Lelarge, The rank of diluted random graphs, Annals of Probability
39 (2011) 1097-1121.

[7] A.M. Frieze and M. Karoński, Introduction to Random Graphs, Cambridge University,
Press 2015.

[8] David A. Freedman, On Tail Probabilities for Martingales, The Annals of Probability 3
(1975), 100-118.

24

[9] A.M. Frieze and B. Pittel, Perfect matchings in random graphs with prescribed minimal
degree, Trends in Mathematics, Birkhauser Verlag, Basel (2004) 95-132.

[10] A.M. Frieze, J. Radcliffe and S. Suen, Analysis of a simple greedy matching algorithm
on random cubic graphs, Combinatorics, Probability and Computing 4 (1995) 47-66.

[11] W. Hoeffding, W. Hoeffding, Probability inequalities for sums of bounded random vari-
ables, Journal of the American Statistical Association 58 (1963) 13-30.

[12] R.M. Karp and M. Sipser, Maximum matchings in sparse random graphs, Proceedings
of the 22nd Annual IEEE Symposium on Foundations of Computing (1981) 364-375.

[13] S. Micali and V. Vazirani, An O(V 1/2E) algorithm for finding maximum matching in
general graphs, 21st Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, New York. (1980) 1727.

25

