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Abstract

Random walks in graphs have been applied to various network exploration and
network maintenance problems. In some applications, however, it may be more
natural, and more accurate, to model the underlying network not as a graph
but as a hypergraph, and solutions based on random walks require a notion of
random walks in hypergraphs. At each step, a random walk on a hypergraph
moves from its current position v to a random vertex in a randomly selected
hyperedge containing v. We consider two definitions of cover time of a hyper-
graph H. If the walk sees only the vertices it moves between, then the usual
definition of cover time, C(H), applies. If the walk sees the complete edge
during the transition, then an alternative definition of cover time, the inform
time I(H) is used. The notion of inform time models passive listening which
fits the following types of situations. The particle is a rumor passing between
friends, which is overheard by other friends present in the group at the same
time. The particle is a message transmitted randomly from location to location
by a directional transmission in an ad-hoc network, but all receivers within the
transmission range can hear.

In this paper we give an expression for C(H) which is tractable for many
classes of hypergraphs, and calculate C(H) and I(H) exactly for random r-
regular, s-uniform hypergraphs. We find that for such hypergraphs, whp,
C(H)/I(H) ∼ s(r − 1)/r, if rs = O((log log n)1−ε). For random r-regular,
s-uniform multi-hypergraphs, constant r ≥ 2, and 3 ≤ s ≤ O(nε), we also prove
that, whp, I(H) = O((n/s) log n), i.e. the inform time decreases directly with
the edge size s.
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1. Introduction

The idea of a random walk on a hypergraph is a natural one. The particle
making the walk picks a random edge incident with the current vertex. The
particle enters the edge, and exits via a random endpoint, other than the vertex
of entry. Two alternative definitions of cover time are possible for this walk.
Either the particle sees only the vertices it visits, or it inspects all vertices of
the hyperedge during the transition across the edge.

A random walk on a hypergraph models the following process. The vertices
of a network are associated into groups, and these groups define the edges of the
network. In the simplest case, the network is a graph so the groups are exactly
the edges of the graph. In general, the groups may be larger, and represent
friends, a family, a local computer network, or all receivers within transmission
range of a directed transmission in an ad-hoc network. In this case the network
is modeled as a hypergraph, the hyperedges being the group relationships. An
individual vertex can be in many groups, and two vertices are neighbours if they
share a common hyperedge. Within the network a particle (message, rumor,
infection, etc.) is moving randomly from vertex to neighbouring vertex. When
this transition occurs all vertices in a given group are somehow affected (infected,
informed) by the passage of the particle within the group. Examples of this
type of process include the following. The particle is an infection passed from
person to person and other family members also become infected with some
probability. The particle is a virus traveling on a network connection in an
intra-net. The particle is a message transmitted randomly from location to
location by a directional transmission in an ad-hoc network, and all receivers
within the transmission range can hear. The particle is a rumor passing between
friends, which may be overheard by other friends present in the group at the
same time.

Let H = (V (H), E(H)) be a hypergraph. For v ∈ V = V (H) let d(v) be the
degree of v, i.e. the number of edges e ∈ E = E(H) incident with v, and let
d(H) =

∑
v∈V d(v) be the total degree of H. For e ∈ E, let |e| be the size of

hyperedge e, i.e. the number of vertices v ∈ e, respecting multiplicity. Let N(v)
be the neighbour set of v, N(v) = {w ∈ V : ∃e ∈ E, e ⊇ {v, w}}. We regard
N(v) as a multi-set in which each w ∈ N(v) has a multiplicity equal to the
number of edges e containing both v and w. A hypergraph is r regular if each
vertex is in r edges, and is s-uniform if every edge is of size s. A hypergraph
is simple if no edge contains a repeated vertex, and no two edges are identical.
We assume a particle or message originated at some vertex u and, at step t, is
moving randomly from a vertex v to a vertex w in N(v). We model the problem
conceptually as a random walk Wu = (Wu(0),Wu(1), . . . ,Wu(t), . . .) on the
vertex set of hypergraph H, where Wu(0) = u, Wu(t) = v and Wu(t+ 1) = w ∈
N(v).

Several models arise for reversible random walks on hypergraphs. Assume
that the walk W is at vertex v, and consider the transition from that vertex.
In the first model (Model 1), an edge e incident with v is chosen proportional
to |e| − 1. The walk then moves to a random endpoint of that edge, other than
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v. This is equivalent to v choosing a neighbour w u.a.r. (uniformly at random)
from N(v), where vertex w is chosen according to its multiplicity in N(v). The
stationary distribution of v in Model 1 is given by

πv =

∑
e:v∈e(|e| − 1)∑

e∈E(H) |e|(|e| − 1)
.

In the case of graphs this reduces to πv = d(v)/2m, where m is the number of
edges in the graph. Alternatively (Model 2) when W is at v, edge e is chosen
u.a.r. from the hyperedges incident with v, and then w is chosen u.a.r. from the
vertices w ∈ e, w 6= v. The stationary distribution of v in Model 2 is given by

πv =
d(v)∑

u∈V (H) d(u)
,

which corresponds to the familiar formula for graphs. If the hypergraph is
uniform (all edges have the same size) then the models are equivalent.

Random walks on graphs are a well studied topic, for an overview see e.g.
[1, 11]. Random walks on hypergraphs were used in [5] to cluster together
electronic components which are near in graph distance for physical layout in
circuit design. For that application, edges were chosen inversely proportional to
their size, and then a random vertex within the edge was selected. A random
walk model is also used for generalized clustering in [13]. As before, the aim is
to partition the vertex set, and this is done via the Laplacian of the transition
matrix. This technique has applications in data mining (see [10]) and clustering
images from the www (see [15] and references therein). The paper [3] directly
considers notions of cover time for random walks on hypergraphs, using Model
2. A further discussion of [3] is given below.

For a hypergraph H, we define the (vertex) cover time C(H), the edge cover
time CE(H), and the inform time I(H). The (vertex) cover time C(H) =
maxu Cu(H), where Cu(H) is the expected time for the walk Wu to visit all
vertices of H. Similarly, the edge cover time CE(H) = maxu Cu,E(H), where
Cu,E(H) is the expected time to visit all hyperedges starting at vertex u.

Suppose that the walk Wu is at vertex v. Using e.g. Model 2, the walk
first selects an edge e incident with v and then makes a transition to w ∈ e.
The vertices of e are said to be informed by this move. The inform time I(H),
introduced in [3] as the radio cover time, is the maximum over start vertices
u, of the expected time at which all vertices of the graph are informed. More
formally, let Wu(t) = (Wu(0),Wu(1), ...,Wu(t)) be the trajectory of the walk.
Let e(j) be the edge used for the transition from W (j) to W (j+1) at step j. Let
Su(t) = ∪t−1

j=0e(j) be the set of vertices spanned by the edges of Wu(t). Let Iu
be the step t at which Su(t) = V for the first time, and let I(H) = maxu E(Iu).
We use the name “inform time” rather than “radio cover time” in [3] to indicate
the relevance of this term beyond the radio networks.

Several upper bounds on the cover time C(H) are readily obtainable, for
example an analogue of the O(nm) bound for graphs [2] based on a twice round
the spanning tree argument. For Model 1, replace each edge e by a clique of size
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(|e|
2

)
to obtain an upper bound of O(nms2) for connected hypergraphs. Here s2

is the expected squared edge size (
∑
e∈E(H) |e|2)/m. Thus C(H) = O(n3m). A

better bound of O(nms) = O(n2m) was shown in [3] for Model 2.
Similarly, a Matthews type bound of O(log n ·maxu,v E(Hu,v)) on the cover

time exists, where E(Hu,v) is the expected hitting time of v starting from u.
We contribute a bound on the cover time of a hypergraph given in Theorem 1,
which allows us to calculate C(H) for many classes of hypergraphs. To prove
this bound, we first observe that E(Hu,v) = O(T + Eπ(Hv)), where T is a
suitable mixing time (defined in the statement of the theorem) and Eπ(Hv) is
the expected hitting time of vertex v from stationarity. Then we bound Eπ(Hv)
and apply Matthews’ bound [12].

Theorem 1. Let H be a connected hypergraph. Let P denote the transition
matrix of an aperiodic random walk on H with stationary distribution πv, v ∈ V .

Let T be a mixing time such that |P (t)
u (v)−πv| ≤ δπv, for all u, v ∈ V and t ≥ T .

Assume further that maxv Tπv = o(1), and that Tδ = o(1). For a walk starting
from v, let Rv(T ) be the expected number of returns to v during T steps. Then

C(H) = log n ·O
(
T + max

v

Rv(T )

πv

)
. (1)

The bound (1) for C(H) can be evaluated directly for many classes of random
hypergraphs. For example, for random r-regular, s-uniform (simple) hyper-
graphs G(n, r, s), and random s-uniform hypergraphs Gn,p,s where each edge
occurs independently with probability p. Let r ≥ 2 and s ≥ 3 in G(n, r, s), and
let p ≥ C log n/

(
n−1
s−1

)
in Gn,p,s, where C > 1. Then, whp, there is a mixing

time T = O(logk n) for some constant k which satisfies the above conditions, and
where moreover πv = Θ(1/n), and Rv(T ) = 1 + O(1). In this case Theorem 1
implies that whp C(H) = O(n log n).

The calculation of inform time I(H) seems more challenging. Avin et al. [3]
show that Matthews’ bound extends to I(H): for any n-vertex hypergraph
H, maxu,v E(H̃u,v)) ≤ I(H) ≤ O(log n · maxu,v E(H̃u,v), where E(H̃u,v) is

the expected time when vertex v is informed starting from vertex u (E(H̃u,v)
is called the radio hitting time in [3]). For a random walk on an s-uniform
hypergraph, in each period of 2 ·maxx E(H̃x,v) steps, the walk traverses an edge
containing v with probability at least 1/2, so visits vertex v with probability at
least 1/(2s). Hence E(Hu,v) = O(s · maxx E(H̃x,v)), implying that C(H) =
O(s log n · I(H)). Thus the speed-up of the inform time over the cover time is
at most O(s log n).

Avin et al. [3] consider a special type of directed hypergraphs, called ra-
dio hypergraphs, and analyse I(H) on one- and two-dimensional mesh radio
hypergraphs, which are induced by a cycle and a square grid on a torus, re-
spectively. Their result for the two-dimensional mesh can be stated in the
following way. For a random walk on a

√
n ×
√
n grid such that in each step

all vertices within distance k from the current vertex are informed and the
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walk moves to a random vertex in this k-neighbourhood, the inform time is
I(H) = O((n/k2) log(n/k2) log n).

In this paper we calculate precisely C(H), I(H) and CE(H) for the case
of simple random r-regular, s-uniform hypergraphs H. As far as we know,
the first analysis of cover time and inform time for random walks on classes
of general (undirected) hypergraphs. The proof of the following theorem is
the main technical contribution of this paper. Throughout the paper “log”
stands for the natural logarithm, and from now on G(n, r, s) denotes either the
family of all simple n-vertex r-regular s-uniform hypergraphs, or the uniform
distribution on such hypergraphs, depending on the context. The term “with
high probability,” abbreviated to whp, means with probability 1 − o(1), that
is, with probability approaching 1 when n (in our case, the number of vertices)
tends to infinity.

Theorem 2. Suppose that r ≥ 2 and s ≥ 3 are constants and H is chosen
u.a.r. from the set G(n, r, s) of all simple r-regular, s-uniform hypergraphs with
n vertices. Then whp as n→∞,

C(H) ∼
(

1 +
1

(r − 1)(s− 1)− 1

)
n log n,

I(H) ∼
(

1 +
s− 1

(r − 1)(s− 1)− 1

)
n

s− 1
log n,

CE(H) ∼
(

1 +
s− 1

(r − 1)(s− 1)− 1

)
rn

s
log n.

In the case of graphs, I(H) = C(H), and CE(H) ≥ C(H). For hypergraphs,
clearly I(H) ≤ C(H). However there is the possibility that CE(H) ≤ C(H), as
every edge can be visited without visiting every vertex. We must have I(H) ≤
CE(H) as a vertex is informed whenever the walk covers an edge containing that
vertex. Indeed, intuitively we should have CE(H) about r times I(H), if every
vertex has degree r. We note that our theorem gives CE(H) ∼ r((s−1)/s)I(H).

Our proof of Theorem 2 also applies when s and/or r grow (slowly) with n.
More specifically, checking all elements of the proof reveals that all assumptions
on the values of r and s are satisfied, if rs = O((log log n)1−ε), for a constant
ε > 0. Therefore we have the following corollary.

Corollary 3. If r ≥ 2, s→∞, rs = O((log log n)1−ε) and ε > 0 is a constant,
then

C(H) ∼ n log n and I(H) ∼ r

r − 1

n

s
log n.

Thus in this case, seeing s vertices at each step of the walk leads to an Θ(s)
speed up in cover time.

Corollary 3 gives the asymptotic value of inform time I(H) for the case
when s → ∞, but allows s to increase only very slowly with n. For random
multi-hypergraphs, and for r constant, we can give an order of magnitude result
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for I(H) for much faster growing s, requiring only that s = O(nδ), for some
suitably small constant δ > 0. A multi-hypergraph allows loops (the same vertex
appearing two or more times in the same hyperedge) and parallel hyperedges.
Obviously, as s increases it is difficult to avoid this condition. A standard way to
generate random multi-hypergraphs is to use the configuration (pairing) model,
described in Section 3.2. For random multi-hypergraphs M(n, r, s) generated
using the configuration model we have the following result, which is proved in
Section 9.

Theorem 4. Let r ≥ 2 and 3 ≤ s = O(nδ), for a suitably small constant δ > 0.
Then whp for H ∈M(n, r, s) the inform time I(H) satisfies

I(H) = O
(n
s

log n
)
.

2. Proof of Theorem 1

To prove Theorem 1, we use the bound C(H) = O(log n ·maxu,v E(Hu,v)),
the observation that E(Hu,v) = O(T +Eπ(Hv)), and the bound on Eπ(Hv) in
Lemma 5 below. The quantity Eπ(Hv) is the expected hitting time of a vertex
v from the stationary distribution π. The value of Eπ(Hv) is given by

Eπ(Hv) = Zvv/πv, (2)

where

Zvv =

∞∑
t=0

(P (t)
v (v)− πv), (3)

and P
(t)
v (v) is the probability that the random walk starting from vertex v is

back at v at step t. A proof of this can be found in e.g. Lemma 11 in [1, Chapter
2]. For a walk Wv starting from v define

Rv(T ) =

T−1∑
t=0

P (t)
v (v). (4)

Thus Rv(T ) is the expected number of returns made byWv to v during T steps,

in the hypergraph H. We note that Rv(T ) ≥ 1, as P
(0)
v (v) = 1.

Lemma 5. Let T be a mixing time of a random walk Wu on H satisfying

|P (t)
u (v)− πv| ≤ δπv for all u, v ∈ V , and t ≥ T . Assuming that Tδ = o(1), and

Tπv = o(1), then

Eπ(Hv) ≤ (1 + o(1))
Rv(T )

πv
. (5)
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Proof. LetD(t) = 1
2 maxu

∑
x∈V |P

(t)
u (x)−πx|. From [1] Chapter 2 Lemma 20,

we have that D(s+ t) ≤ 2D(s)D(t). Hence, as D(T ) ≤ δ, then D(kT ) ≤ (2δ)k.

Zvv =

∞∑
t=0

(P (t)
v (v)− πv) ≤

∑
t<T

(P (t)
v (v)− πv) + T

∑
k≥1

(2δ)k

≤ Rv(T ) + Tπv +O(Tδ) = (1 + o(1))Rv(T ).

�

3. Proof of Theorem 2: preliminaries

We explain the proof of the value of C(H) of Theorem 2; the proofs of I(H)
and CE(H) are similar. We reduce the walk WH,u on the hypergraph H to an
equivalent walk WG,u on an associated graph G(H) = (V, F ), as explained in
Section 3.3, and then apply some techniques developed for random walks on
graphs.

In Section 3.1 we state Lemma 6 on which the proof of Theorem 2 is based.
This lemma, proven in [7], gives a precise estimate of the probability that a
random walk Wu on a graph G does not visit a given vertex v within t steps
after a suitably defined mixing time T . The general idea is to apply Lemma 6
to the associated graph G(H), but to do so, we have to derive a bound on
the mixing time of G(H) and calculate the parameter pv of the random walk in
G(H) defined in (12). We can calculate pv, if v is a tree-like vertex in hypergraph
H, which means, informally, that there are no short cycles nearby v. In Section
3.2 we define formally this property of being a tree-like vertex, and show that
it holds for most vertices of a random H ∈ G(n, r, s) whp.

In Section 3.4, we establish the conductance of the graph G(H) to obtain a
bound on the mixing time (via the relation between the conductance and the
mixing time given in Section 3.1). We also prove that the conditions of Lemma
6 hold for the tree-like vertices in G(H), and derive the parameter pv for such
vertices. Using the tools presented in Section 3, we prove then in Section 4 the
formula for C(H) stated in Theorem 2, establishing matching upper and lower
bounds on C(H) in Sections 4.1 and 4.2, respectively. In Section 5 we sketch
how the calculations of C(H) can be adapted to derive the formulas for I(H)
and CE(H). The analysis of I(H) and CE(H) follows the analysis of C(H),
but with the following added difficulty. Instead of dealing with graph G(H),
we need to defined a special contraction Γ of G(H) and to consider the random
walk in Γ.

3.1. Random walk background

Let G = (V,E) denote a fixed connected graph with n vertices and m edges.
Let P be the matrix of transition probabilities of the random walk. We consider

the random walkWu which starts from a vertex u, and let P
(t)
u (v) = Pr(Wu(t) =
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v). We assume the random walkWu is ergodic, so it has stationary distribution
π, where πv = d(v)/(2m). Let ΦG be the conductance of G, defined as

ΦG = min
S⊆V,πS≤1/2

ΦG(S),

ΦG(S) =

∑
x∈S

∑
y∈S̄ πxPx(y)

πS
. (6)

Then, (see e.g. [14]) with Φ = ΦG,

|P (t)
u (x)− πx| ≤ (πx/πu)1/2e−Φ2t/2. (7)

From now on, T will stand for a mixing time t ≥ T which satisfies the
following condition for all t ≥ T :

max
u,x∈V

|P (t)
u (x)− πx| ≤ n−3. (8)

If (8) holds, we say the distribution of the walk is in near stationarity. In our
analysis we need low, logarithmic mixing times for some auxiliary graphs which
we will derive from the random hypergraph H. We show such mixing times by
bounding the conductance of those graphs and using (7). In particular, if ΦG =
Ω(1) and minv∈V πv ≥ n−2, then there exists T = O(log n) which satisfies (8).
The graphs which we consider have O(rsn) edges, so πv = Ω((rsn)−1) ≥ n−2

(we consider only simple, unweighted random walks).
We consider the returns to vertex v made by a walkWv, starting at v. Define

Rv(T, z) =

T−1∑
t=0

P (t)
v (v)zt, (9)

where z is a complex variable. Thus Rv(T, 1) is equal to Rv(T ) in (4): the
expected number of returns to v in steps 0, 1, . . . , T − 1.

Lemma 6, given below and proven in [7], is the main tool in our analysis.
Let v ∈ V . We list the conditions required by Lemma 6.
(o) T is such that (8) holds for each t ≥ T .
(i) For some (small) constant θ > 0 and some (large) constant K > 0 we have:

min
|z|≤1+1/KT

|Rv(T, z)| ≥ θ, (10)

(ii) Tπv = o(1) and Tπv = Ω(n−2).

Lemma 6. [7] Assume conditions (o), (i) and (ii) above hold for a graph G
and a vertex v in G. Let Av(t) be the event that the random walk Wu on graph
G does not visit vertex v at steps T, T + 1, . . . , t. Then,

Pr(Av(t)) =
(1 +O(Tπv))

(1 + pv)t
+O(T 2πve

−t/KT ), (11)

where pv is given by the following formula, with Rv = Rv(T ):

pv =
πv

Rv(1 +O(Tπv))
. (12)
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3.2. Configuration model and tree-like vertices in random hypergraphs

To prove required structural properties of random hypergraphs, we need
a workable model of an r-regular s-uniform hypergraph. We use a hypergraph
version of the configuration model of Bollobás [4]. A configuration C = C(n, r, s)
consists of a partition of rn labeled points {a1,1, ..., a1,r, ..., an,1, ..., an,r} into
unordered sets Ei, i = 1, ..., rn/s of size s. We assume naturally that s divides
rn. We refer to these sets as the hyperedges of the configuration, and to the sets
vi = {ai,1, ..., ai,r} as the vertices. By identifying the points of vi, we obtain an
r-regular, s-uniform multi-hypergraph H(C): it may have parallel hyperedges
(hyperedges containing exactly the same vertices) and loops (hyperedges with
two or more points from the same vertex). In general, many configurations map
to the same underlying hypergraph H(C).

The set C(n, r, s) of all configurations C(n, r, s) with the uniform measure
defines the measure µ on r-regular s-uniform multi-hypergraphs, where µ(H)
is the probability that H = H(C) for a random configuration C ∈ C(n, r, s).
We denote by M(n, r, s) the family of all n-vertex r-regular s-uniform multi-
hypergraphs with the probability distribution µ. The measure µ(H) depends
only on the number of parallel edges and loops at each vertex in H, and as an
example all simple hypergraphs, i.e. those without parallel edges or loops, have
equal measure µ. ThusM(n, r, s) restricted to simple hypergraphs is the family
G(n, r, s) of r-regular s-uniform simple hypergraphs with uniform probability
distribution.

The probability a u.a.r. sampled configuration gives a simple hypergraph
is bounded below by a number dependent only on r and s. For the val-
ues of r, s considered in this paper, the probability that H(C) is simple is
Ω(e−(r−1)(s−1)/2) [6]. This and the fact that all simple hypergraphs have equal
measure µ imply that if some property of multi-hypergraphs holds with proba-
bility at most p(n, r, s) in the configuration model (i.e., for the probability space
M(n, r, s)), then this property holds with probability O(p(n, r, s)e(r−1)(s−1)/2)
for simple r-regular s-uniform random hypergraphs (i.e., for the probability
space G(n, r, s)).

To use Lemma 6, we need the parameter Rv for (12). To calculate Rv, the
expected number of returns made by Wv to vertex v during T steps, we need
to identify the local structure of a typical vertex of a random hypergraph H. A
sequence v1, v2, . . . , vk ∈ V is said to define a path of length k − 1 if there are
distinct edges e1, e2, . . . , ek−1 ∈ E such that {vi, vi+1} ⊆ ei for 1 ≤ i ≤ k− 1. A
sequence v1, v2, . . . , vk ∈ V , k ≥ 3, is said to define a cycle of length k if there
are distinct edges e1, e2, . . . , ek ∈ E such that {vi, vi+1} ⊆ ei for 1 ≤ i ≤ k,
with vk+1 = v1. A path/cycle is short if its length is at most ω. A vertex
v ∈ V (H) is said to be locally-tree-like to depth k if there does not exist a path
from v of length at most k to a cycle of length at most k. An edge e ∈ E(H) is
locally-tree-like to depth k, if it contains only vertices which are locally-tree-like
to depth k. We introduce the threshold parameter

ω = (log log n)1−ε,
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where ε is any constant such that 0 < ε < 1, and say that a vertex, or en edge,
is tree-like, if it is locally-tree-like to depth ω. We argue that almost all vertices
of H are tree-like.

Lemma 7. If rs ≤ ω, then, whp, there are at most (rs)3ω vertices in a hyper-
graph H ∈ G(n, r, s) that are not tree-like.

Proof. We work with the configuration model H(C). The expected number
of vertices on cycles of length k ≤ ω can be bounded above by

ω∑
k=3

sknk
(rs
n

)k
≤ O (sω(rs)ω) .

The Markov inequality implies that the probability that there are more than
(rs)2ω vertices on short cycles is at most (rs)−ω/2. Thus the probability
that there are more than (rs)2ω vertices on short cycles in H ∈ G(n, r, s) is
O((rs)−ω/2ers/2), which is o(1) since rs ≤ ω. For each such vertex there are
at most (rs)ω vertices reachable by a walk of length ω. Therefore, whp there
are at most (rs)3ω vertices which are within short (at most ω) distance from a
short cycle. �

Lemma 8. If rs ≤ ω, then, whp, there are no short paths joining distinct short
cycles in a hypergraph H ∈ G(n, r, s).

Proof. If such a structure exists then there exists a walk v1, v2, . . . , vk of length
at most 3ω and a pair i, j ∈ [k] and edges f1, f2 ∈ E such that v1, vi ∈ f1 and
vk, vj ∈ f2. The probability of this is at most

3ω∑
k=5

s2k2nk
(rs
n

)k+1

= O

(
s3ω3(rs)3ω

n

)
in the configuration model, so o(1) in the G(n, r, s) probability distribution. �

We use the configuration model for hypergraphs also in Section 6 to bound
the conductance of associated graphs.

3.3. Construction of contracted graph

To calculate C(H), I(H) and CE(H), we replace the hypergraph H with a
clique graph G(H), and using G(H), for a given tree-like vertex v or edge e
of G(H) we construct contraction graphs Γ(v) and Γ(e).

Clique graph G(H) is obtained from H by replacing each hyperedge e ∈
E(H) with a clique of size |e| on the vertex set of e. Observe that G(H) is
actually a multi-graph. Formally, G(H) = (V, F ) where F =

⋃
e∈E(H)

(
e
2

)
. We

can think of the walk Wu on H as a walk on G(H). Thus, the cover time of
G(H) is the cover time of H. Graph G(H) is regular with degree r(s − 1),
so d(G(H)) = r(s − 1)n. To estimate the cover time C(H), we use Lemma 6
applied to graph G(H).
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Inform-contraction graph Γ(v) is used in the analysis of the inform time
I(H). Let Sv be the multi-set of edges {w, x} in G(H), not containing v, but
which are contained in hyperedges incident with vertex v in H i.e.

Sv = {{w, x} : ∃e ∈ E(H), v ∈ e, and w, x ∈ e \ {v}} .

Since H is r-regular and s-uniform, each Sv has size r
(
s−1

2

)
.

A vertex v is informed if either v is visited or Sv is visited by Wu (viewing
Wu as a random walk on G(H)). To compute the probability that v or Sv are
visited we subdivide each edge f = {w, x} of Sv by introducing an artificial
vertex af . Thus f is replaced by {w, af}, {af , x}. This transforms multi-graph
G(H) into multi-graph Gv(H). Next let Dv = {v} ∪ {af : f ∈ Sv} and note
that Dv is an independent set in Gv(H). Now contract Dv to a single vertex
γ = γ(Dv), retaining all parallel edges. This transforms multi-graph Gv(H)
into multi-graph Γ(v). It is easy to check that the degree of vertex γ in Γ(v) is
d(γ) = r(s− 1)2. Furthermore,

d(Γ(v)) = d(Gv(H)) = r(s− 1)n+ r(s− 1)(s− 2).

For a random walk in Γ(v) the stationary distribution of γ is thus

πΓ(v)
γ =

(s− 1)

(n+ s− 2)
. (13)

Suppose now that Wu is a random walk in G(H) starting from a vertex
u 6= v, and Xu is a random walk in Γ(v) starting from the same vertex u (thus,
in Γ(v), u 6= γ). The paths in G(H) which start from u, do not contain vertex
v and do not contain any edge from Sv, are exactly the same as the paths in
Γ(v) which start from u and do not contain vertex γ. Moreover, for any such
path P , the probability that Wu follows path P in G(H) is exactly the same as
the probability that Xu follows the same path P in Γ(v), because the transition
probabilities of the edges on P are the same in G(H) and in Γ(v). Thus, viewing
Wu as a random walk on in both H and G(H), we have

Pr(Wu doesn’t inform v in steps 0, 1, . . . , t; H)

= Pr(Wu doesn’t visit Sv ∪ {v} in steps 0, 1, . . . , t; G(H))

= Pr(Xu doesn’t visit γ in steps 0, 1, . . . , t; Γ(v))

= Pr(Xu(σ) 6= γ, 0 ≤ σ ≤ t; Γ(v)). (14)

To estimate the inform time I(H), we use Lemma 6 applied to graph Γ(v),
and the following lemma.

Lemma 9. Let v ∈ V , and consider a random walk Wx in H (viewing Wx also
as a random walk on G(H)) and a random walk Xu in Γ(v). Let T be a mixing
time satisfying (8) in both G(H) and Γ(v). For t ≥ T , let Bv(t) be the event
that the random walk Wx does not inform vertex v at steps T, T + 1, . . . , t, and

11



let Aγ(t) be the event that the random walk Xu in Γ(v) does not visit vertex γ
at steps T, T + 1, . . . , t. Then

Pr(Bv(t);G(H)) = Pr(Aγ(t); Γ(v))
(

1 +O
( s
n

))
, (15)

where the probabilities are those derived from the walk in the given graph.

Proof. Using (8) and (14), we have

Pr(Aγ(t); Γ(v)) =

=
∑
y 6=γ

P (T )
u (y; Γ(v)) Pr(Xy(σ) 6= γ, 0 ≤ σ ≤ t− T ; Γ(v))

=
∑
y 6=γ

πΓ(v)
y (1 +O(n−2)) Pr(Xy(σ) 6= γ, 0 ≤ σ ≤ t− T ; Γ(v))

= (1 +O(n−2))
d(G(H))

d(Γ(v))

×
∑
y 6=γ

πG(H)
y Pr(Wy 6∈ Sv ∪ {v} in steps 0, 1, . . . , t− T ; G(H)). (16)

Using (8) and (14), we also get

Pr(Bv(t);H) =

=
∑
y 6=v

P (T )
u (y;H) Pr(Wy doesn’t inform v in steps 0, 1, . . . , t− T ; H)

=
∑
y 6=v

P (T )
u (y;G(H)) Pr(Wy 6∈ Sv ∪ {v} in steps 0, 1, . . . , t− T ; G(H))

= (1 +O(n−2))

×
∑
y 6=γ

πG(H)
y Pr(Wy 6∈ Sv ∪ v in steps 0, 1, . . . , t− T ; G(H)). (17)

Comparing (16) and (17), and checking that d(Γ(v))/d(G(H) =
(1 +O(s/n)), we get (15). �

Edge-Contraction graph Γ(e) is used in the analysis of the edge cover time
CE(H). For a given hyperedge e ∈ E(H), first transform multi-graph G(H) into
a multi-graph Ge(H) as follows. For each of the edges f = {u, v} in the clique
e in G(H) (the clique corresponding to the hyperedge e), subdivide f using a
new vertex af . Thus each such f is replaced by edges {u, af} and {af , v}, and
the resulting graph is referred to as Ge(H). Let De = {af : f ⊆ e ∈ E(H)}.
Contract De to a vertex γ to transform multi-graph Ge(H) into a multi-graph
Γ(e), similarly to Γ(v). The degree of γ in Γ(e) is d(γ) = s(s− 1). Furthermore,

d(Γ(e)) = d(Ge(H)) = r(s− 1)n+ s(s− 1).

For a random walk in Γ(e) the stationary distribution of γ is thus

πΓ(e)
γ =

s

rn+ s
. (18)
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Suppose now that Wu is a random walk in G(H) starting from a vertex
u ∈ V (H), and Yu is a random walk in Γ(e) starting from the same vertex
u (thus, in Γ(e), u 6= γ). The paths in G(H) which start from u and do not
contain any edge from the clique e, are exactly the same as the paths in Γ(e)
which start from u and do not contain vertex γ. Moreover, for any such path
P , the probability that Wu follows path P in G(H) is exactly the same as the
probability that Yu follows the same path P in Γ(e) (the transition probabilities
of the edges on P are the same in G(H) and in Γ(e)). Thus, viewing Wu as a
random walk also on H, we have

Pr(Wu doesn’t traverse hyperedge e in steps 0, 1, . . . , t; H)

= Pr(Wu doesn’t traverse an edge of clique e in steps 0, 1, . . . , t; G(H))

= Pr(Yu(σ) 6= γ, 0 ≤ σ ≤ t; Γ(e)) (19)

To estimate the edge cover time CE(H), we use Lemma 6 applied to graph
Γ(e), and the following lemma, which can be proven in an analogous way as
Lemma 9.

Lemma 10. Let e ∈ E(H), and consider a random walk Wx in H (viewing Wx

also as a random walk on G(H)) and a random walk in Yu in Γ(e). Let T be a
mixing time satisfying (8) in both G(H) and Γ(e). For t ≥ T , let Be(t) be the
event that the random walkWx does not visit hyperedge e at steps T, T+1, . . . , t,
and let Aγ(t) be the event that the random walk Yu in Γ(e) does not visit vertex
γ at steps T, T + 1, . . . , t. Then

Pr(Be(t);H) = Pr(Aγ(t); Γ(e))
(

1 +O
( s
n

))
. (20)

3.4. Conditions and parameters for Lemma 6

Our proof of Theorem 2 is based on applying Lemma 6 to graphs G(H),
Γ(v) and Γ(e). To apply Lemma 6, we need suitable upper bounds on the
mixing times in these graphs. We obtain such bounds from the lower bounds
on conductance given in the following lemma, which is proven in Section 6.

Lemma 11. Let r ≥ 2, s ≥ 3, and rs = o(log n). For a random hypergraph
H ∈ G(n, r, s), the conductance of each of the graphs G(H), Γ(v), and Γ(e) is
Ω(1) whp.

We use Lemma 11 and Inequality (7) in a straightforward verification of the
following lemma.

Lemma 12. Let r ≥ 2, s ≥ 3, and rs = o(log n). There is T = O(log n) which
whp satisfies the mixing time condition (8) in each of the graphs G(H), Γ(v)
and Γ(e), if H is a random hypergraph H ∈ G(n, r, s).

The next steps towards applying Lemma 6 to graphsG(H), Γ(v) and Γ(e) are
to obtain precise estimates of the parameters Rv for the values pv in (12), and to
check that the technical condition (i) of this lemma holds. We summarize these
parts of the analysis in the two lemmas below, which are proven in Section 7.
We note that the condition (ii) of Lemma 6 clearly holds since T = O(log n).
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Lemma 13.

(i) Let v be tree-like in H, then in G(H) the value of pv is given by

pv = (1 + o(1))
1

n

(r − 1)(s− 1)− 1

(r − 1)(s− 1)
. (21)

(ii) Let v be tree-like in H, then in Γ(v) the value of pγ(v) is given by

pγ(v) = (1 + o(1))
s− 1

n

(r − 1)(s− 1)− 1

r(s− 1)− 1
. (22)

(iii) Let e be tree-like in H, then in Γ(e) the value of pγ(e) is given by

pγ(e) = (1 + o(1))
s

rn

(r − 1)(s− 1)− 1

r(s− 1)− 1
. (23)

Lemma 14. Let v (resp. e) be a tree like vertex (resp. edge) in H. Then v
(resp. γ(v), γ(e)) satisfies the condition (i) of Lemma 6 in G(H) (resp. Γ(v),
Γ(e)).

4. Proof of Theorem 2: estimate the cover time C(H)

4.1. Upper bound on the cover time C(H)

We are assuming from now on that the hypergraph H satisfies the conditions
stated in Lemmas 7 and 8, and that the mixing time T = O(log n) satisfies (8)
(see Lemma 12). We view the random walk Wu in H as a random walk in the
clique graph G = G(H).

Let

t0 = (1 + o(1))
(r − 1)(s− 1)

(r − 1)(s− 1)− 1
n log n,

where the o(1) term is large enough so that all inequalities below are satisfied.
Let TG(u) be the time taken to visit every vertex of G by the random walk
Wu. Let Ut be the number of vertices of G which are not visited by Wu in the
interval [T, t]. We note the following:

Cu = Cu(H) = Cu(G) = ETG(u) =
∑
t≥0

Pr(TG(u) > t), (24)

Pr(TG(u) > t) = Pr(Ut ≥ 1) ≤ EUt. (25)

It follows from (24) and (25) that for all t ≥ T

Cu ≤ t+
∑
σ≥t

EUσ = t+
∑
v∈V

∑
σ≥t

Pr(Av(σ)), (26)

where Av(σ) is the event that vertex v is not visited in the interval [T, σ] (as
defined in the statement of Lemma 6). Let V1 be the set of tree-like vertices
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and let V2 = V − V1. We apply Lemma 6. For v ∈ V1, from (21) we have
t0pv = (1 + o(1)) log n and (pv)

−1 ≤ (2 + o(1))n. Hence,∑
σ≥t0

Pr(Av(σ)) ≤ (1 + o(1))
∑
σ≥t0

(
(1 + pv)

−σ +O
(
eσ/(KT )

))
≤ (1 + o(1))(1 + pv)

−t0
∑
%≥0

(1 + pv)
−% +O

(
et0/(2KT )

)
≤ (1 + o(1))n−1p−1

v ≤ 3.

Furthermore, also from Lemma 6,

Pr(Av(3n)) ≤ (1 + o(1))(1 + pv)
−3n ≤ e−1. (27)

Suppose next that v ∈ V2. It follows from Lemmas 7 and 8 that we can find
w ∈ V1 such that dist(v, w) ≤ ω. Hence from (27), with ν = 3n+ ω, we have

Pr(Av(ν)) ≤ 1− (1− e−1)(rs)−ω, (28)

since if our walk visits w, it will with probability at least (rs)−ω visit v within
the next ω steps. Thus if ζ = (1− e−1)(rs)−ω,∑

σ≥t0

Pr(Av(σ)) ≤
∑
σ≥t0

(1− ζ)bσ/νc ≤
∑
σ≥t0

(1− ζ)σ/(2ν)

=
(1− ζ)t0/(2ν)

1− (1− ζ)1/(2ν)
≤ 3νζ−1. (29)

Thus for all u ∈ V , recalling that |V2| ≤ (rs)3ω (lemma 7) and assuming that
(rs)4ω = o(log n),

Cu ≤ t0 + 3|V1|+ 3|V2|νζ−1 = t0 +O((rs)4ωn) = t0 + o(t0). (30)

We conclude that
C(H) = max

v∈V
Cu ≤ (1 + o(1))t0.

4.2. Lower bound on the cover time C(H)

For any vertex u, we can find a set of vertices S, such that at time t1 =
t0(1− o(1)), the probability the set S is covered by the walk Wu tends to zero.
Hence TG(u) > t1 whp which implies that C(H) ≥ (1− o(1))t0. We construct
S as follows. Let S ⊆ V1 be some maximal set of locally tree-like vertices all of
which are at least distance 2ω + 1 apart. Thus |S| ≥ (n− (rs)3ω)(rs)−(2ω+1).

Let S(t) denote the subset of S which has not been visited by Wu in the
interval [T, t]. Now, using Lemma 6,

E|S(t)| = (1− o(1))
∑
v∈S

(
1 + o(1)

(1 + pv)t
+ o(n−2)

)
.
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Setting t1 = (1− ε)t0 where ε = 2ω−1, we have

E|S(t1)| = (1 + o(1))|S|e−(1−ε)t0pv ≥ (1 + o(1))
n2/ω

(rs)2ω+1
≥ n1/ω. (31)

Let Yv,t be the indicator for the event thatWu has not visited vertex v at time t.
Thus

∑
v∈S Yv,t = |S(t)|. Let Z = {v, w} ⊂ S. It can be shown, by merging v

and w into a single node Z and using Lemma 6, that

E(Yv,t1Yw,t1) =
1 + o(1)

(1 + pZ)t1+2
+ o(n−2), (32)

where pZ ∼ pv + pw. Thus

E(Yv,t1Yw,t1) = (1 + o(1))E(Yv,t1)E(Yw,t1). (33)

Using (31) and (33), it can be shown that

Pr(|S(t1)| > T ) ≥ (E|S(t1)| − T )2

E((|S(t1)| − T )2)
= 1− o(1).

Since at most T of S(t1) can be visited in the first T steps, the probability that
not all vertices are covered at time t1 is equal to 1− o(1), so C(H) ≥ t1.

5. Proof of Theorem 2: estimate I(H) and CE(H)

The estimation of I(H) and CE(H) is done very similarly as in Sections 4.1
and 4.2. We briefly outline only the upper bound proof for I(H). Let Iu(H)
be the expected time for Wu to inform all vertices. Then for t ≥ T , similarly
to (26),

Iu(H) ≤ t+
∑
v∈V

∑
σ≥t

Pr(Bv(σ))

where Bv(σ) is the event that vertex v is not informed in the interval [T, σ] (as
defined in the statement of Lemma 9). Let

t0 = (1 + o(1))

(
1 +

s− 1

(r − 1)(s− 1)− 1

)
n

s− 1
log n.

For tree-like vertices v we use Lemma 6, applied to graph Γ(v) and vertex
γ(v) with pγ(v) from (22), and Lemma 9. For non-tree-like vertices we use the
argument as in (27)-(29) and obtain Iu(H) ≤ t0 + o(t0).

The estimation of CE(H) is based on Lemma 6, applied to graph Γ(e) for a
tree-like edge e with pγ(e) from (23), and Lemma 10.
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6. Conductance of graphs G(H), Γ(v) and Γ(e): proof of Lemma 11

In this section we estimate the conductance of graphs G(H), Γ(v) and Γ(e).
We first show in Lemma 15 a bound, in the configuration model, on the number
of hyperedges which are almost fully contained within the same set of at most
n/2 vertices. This lemma will imply an Ω(1) bound on the conductance of each
of the graphs G(H), Γ(v) and Γ(e), as stated in Lemma 11.

Lemma 15. Suppose that r ≥ 2, s ≥ 3. There exist constants δ > 0 and
ε > 0 such that if s = O(nδ) and a configuration C is sampled u.a.r. from
C(n, r, s), then the probability that the following property holds is o(n−1/8): there
is a subset S of t ≤ n/2 vertices and a subset F of rt(1 − ε)/s hyperedges in
the multi-hypergraph H(C) such that each hyperedge in F has at least (1 − ε)s
vertices in S.

Proof. Let N(t, k, r, s) be the expected number of sets S of configuration ver-
tices of size t such that the number of hyperedges containing at least (1 − ε)s
vertices from S is at least k = rt(1− ε)/s. We will prove the lemma by showing
that

n/2∑
t=1

N(t, k, r, s) = o(n−1/8). (34)

For a given subset of ks points, the probability that these points form k hyper-
edges is equal to

F (ks)F (rn− ks)
F (rn)

,

where F (a) = a!/((a/s)!(s!)(a/s)), for s | a, is the number of partitions of a
elements into pairwise-disjoint unordered sets of size s.

Consider a fixed subset S of t vertices. To form k hyperedges which have
large intersection with S, we first select (1 − ε)ks points from the rt points
corresponding to the vertices in S, and then we select the remaining εks points.
Thus we have the following bound.

N(t, k, r, s) ≤
(
n

t

)(
rt

(1− ε)ks

)(
rn− (1− ε)ks

εks

)
F (ks)F (rn− ks)

F (rn)

≤
(
n

t

)(
rt

ks

)(
ks

εks

)(
rn

εks

)
F (ks)F (rn− ks)

F (rn)
. (35)

Inequality (35) holds because for p ≥ q ≥ j ≥ 0,(
p

j

)
≤
(
p

q

)(
q

q − j

)
.

Note that if s | a, b and a > b, then

F (b)F (a− b)
F (a)

=

(
a/s
b/s

)(
a
b

) = Θ(
√
s)

(
b

a

)b(s−1)/s(
1− b

a

)(a−b)(s−1)/s

. (36)
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The second equality in (36) follows from the fact that Stirling’s formula for the
factorial gives the following approximation for the binomial coefficients, where
p ≥ q ≥ 1 are integers:(

p

q

)
= Θ(1)

√
p

q(p− q)

(
p

q

)q (
1− q

p

)q−p
. (37)

We will use also the following bound on the binomial coefficients, which can be
derived using Stirling’s formula.(

p

q

)
≤
(
pe

q

)q
. (38)

Using (36), (37) and (38) we get the following bounds on the factors of the
right-hand side of (35):

F (ks)F (rn− ks)
F (rn)

= Θ(
√
s)

(
ks

rn

)k(s−1)(
1− ks

rn

)(rn−ks)(s−1)/s

(
n

t

)
= Θ(1)

√
n

t(n− t)

(n
t

)t(
1− t

n

)t−n
(
rt

ks

)
= Θ(1)

√
rt

ks(rt− ks)

(
rt

ks

)ks(
1− ks

rt

)ks−rt
(
ks

εks

)
≤

(e
ε

)εks
(
rn

εks

)
≤

(rne
εks

)εks
Thus, assuming t ≤ n/2 and that ks = rt(1− ε) where ε > 0 constant,

N(t, k, r, s) =O(
√
s)
(rn
ks

)k (n
t

)t−ks (e
ε

)εks (rne
εks

)εks
×
(

1− ks

rn

)(rn−ks)(s−1)/s(
1− ks

rt

)ks−rt(
1− t

n

)t−n
=O(
√
s)

(
n

(1− ε)t

)rt(1−ε)/s(
t

n

)rt(1−ε)−t (e
ε

)2εtr
(

1

1− ε

)εtr (n
t

)εtr
×
(

1− t(1− ε)
n

)r(n−t(1−ε))(s−1)/s(
1

ε

)εrt(
1− t

n

)t−n
=O(
√
s) (Ψt)

tr

(
(1− t(1− ε)/n)r(1−1/s)

1− t/n

)n−t
, (39)

where

Ψt = e2ε

(
1

1− ε

)(1−ε)/s+ε(
1

ε

)3ε(
1− t(1− ε)

n

)ε(1−1/s)(
t

n

)(1−2ε)(1−1/s)−1/r−ε

.

(40)
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To establish an upper bound, we first consider the third (last) factor in (39).
We write

(1− t(1− ε)/n)r(1−1/s)

1− t/n
=

(
1 +

εt

n− t

)r(1−1/s)(
1− t

n

)r(1−1/s)−1

≤ exp

{
t

n
(1− r(1− 1/s)(1− 2ε))

}
.

Now r(1 − 1/s) ≥ 4/3 and so if ε < 1/8 we find that the contribution of the
third factor in (39) is less than one. Hence

N(t, k, r, s) = O(
√
s) (Ψt)

tr
. (41)

Considering the factor (Ψt)
tr

in (39), we have

Ψt ≤ e2ε

(
1

1− ε

)(1−ε)/s+ε(
1

ε

)3ε(
t

n

)(1−ε)(1−1/s)−1/r−ε

(42)

≤ e2ε

(
1

1− ε

)(1−ε)/3+ε(
1

ε

)3ε(
t

n

)(1−ε)(2/3)−1/2−ε

(43)

≤ e2ε

(
1

1− ε

)(1−ε)/3+ε(
1

ε

)3ε(
1

2

)(1−ε)(2/3)−1/2−ε

. (44)

Inequality (42) follows from (40). For Inequality (43), we use r ≥ 2 and s ≥ 3,
and assume that ε is small enough so that (1− ε)(2/3)− 1/2− ε > 0. Inequal-
ity (44) holds because t ≤ n/2. The expression in (44) tends to (1/2)1/6 < 1 as
ε tends to 0, so for some constant c < 1 and sufficiently small ε, Ψt ≤ c. Thus
for t0 = log n/ log(1/c),

n/2∑
t=t0

N(t, k, r, s) ≤ O(
√
s)

n/2∑
t=t0

Ψtr
t = O

(√
s crt0

)
= O

(√
s

n2

)
= O(n−1). (45)

For t = O(log n), Inequality (43) implies

Ψt ≤ O(1)

(
1

n

)(1−o(1))((1−ε)(2/3)−1/2−ε)

≤ o(n−1/7),

with the last inequality holding for sufficiently small constant ε > 0. Thus, if
s = O(nδ) for a suitably small constant δ > 0,

t0∑
t=1

N(t, k, r, s) = o
(√

s n−1/7 log n
)

= o(n−1/8). (46)

The bounds (45) and (46) give the bound (34). �

Lemma 15 and the relation between the configuration model and random
simple hypergraphs discussed in Section 3.2 give the following corollary.
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Corollary 16. For r ≥ 2, s ≥ 3, and rs = o(log n), there exists ε > 0 such that
whp a random simple r-regular s-uniform hypergraph does not have a subset
S of t ≤ n/2 vertices and a subset F of (1 − ε)rt/s hyperedges such that each
hyperedge in F has at least (1− ε)s vertices from S.

. Proof of Lemma 11. Going back to (6) we see that if G is a d-regular

graph then ΦG(S) = e(S:S)
d|S| , were e(S : S) denotes the number of edges with one

endpoint in S and the other in S = V \ S. Note that in this case π(S) ≤ 1/2,
if |S| ≤ n/2.

Let H ∈ G(n, r, s) be a random hypergraph. For a subset S of vertices of H,
let FS be the set of all hyperedges which contain at least (1− ε)s vertices from
S, where the constant ε > 0 is from Corollary 16. Corollary 16 implies that
whp for each S of size t ≤ n/2, FS contains at most (1 − ε)rt/s hyperedges.
If FS contains at most (1− ε)rt/s hyperedges, then there are at most (1− ε)rt
pairs (v, e) such that v ∈ S, v ∈ e ∈ E(H), and |e ∩ S| ≥ (1− ε)s. This implies
that there are at least εrt pairs (v, e) such that v ∈ S, v ∈ e ∈ E(H), and
|e ∩ S| ≥ εs. Since each such pair (v, e) contributes at least εs to e(S : S) in
G(H), we have

ΦG(S) =
e(S : S)

d|S|
≥ ε2rts

r(s− 1)t
= Ω(1).

Thus whp the conductance of graph G(H) is Ω(1).
Considering the contracted graph Γ = Γ(v),Γ(e), note first that contracting

vertices cannot reduce conductance. This is because we minimise the same
Φ(S) value over a smaller collection of sets S. It is a simple matter to see that
subdividing at most r

(
s
2

)
edges within S increases the degree of S by at most

rs(s− 1) and thus ΦΓ = Ω(1) whp. �

The above proof of Lemma 11 repeated for a random multi-hypergraph H ∈
M(n, r, s), using directly Lemma 15 instead of Corollary 16, gives the constant
conductance and logarithmic mixing time for M(n, r, s).

Lemma 17. Let r ≥ 2 and 3 ≤ s = O(nδ), for a suitably small constant δ > 0.
For a random multi-hypergraph H ∈ M(n, r, s), whp the conductance of each
of the graphs G(H), Γ(v) and Γ(e) is Ω(1), and their mixing time satisfying
condition (8) is T = O(log n).

7. Returns to a tree-like vertex (proof of Lemma 13)

7.1. Returns in G(H)

We consider the random walk in G(H). For a vertex v and integer k ≥ 1, let
Nk(v) denote the set of vertices w for which there is a path of length at most
k from v to w. The following construction models an infinite extension of the
neighbourhood of v in G = G(H), for a tree-like vertex v. Let T ∗G be an infinite
graph (with a tree-like structure) defined recursively as a root h joined to each
vertex of r − 1 disjoint cliques C1, C2, . . . , Cr−1 of size s − 1. Each vertex in
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C1 ∪ · · · ∪ Cr−1 is the root of a further disjoint copy of T ∗G . For TG we take a
root vertex h and join it to each vertex of r disjoint cliques C1, C2, . . . , Cr of
size s− 1. Each vertex in C1 ∪ · · · ∪Cr is the root of a disjoint copy of T ∗G . If v
is tree-like in H, then provided k ≤ ω, the subgraph of G(H) induced by Nk(v)
is isomorphic to the first k levels of TG (that is, the root plus the k levels).

We first compute the expected number of returns RG to the root for a
random walk on TG. We can then argue as in the proof of Lemma 8 of [7] that
Rv = RG + o(1) for a tree-like vertex v of G(H). We can project a walk on TG
onto the non-negative integers by mapping a vertex v of TG to its distance ∆v

from the root. Each vertex v ∈ TG has degree (s − 1)r, and if v 6= h and the
walk is at v, then it moves to a neighbour w where

∆w =


∆v + 1 probability r−1

r

∆v probability s−2
r(s−1)

∆v − 1 probability 1
r(s−1)

(47)

Now RG is the expected number of returns to the origin of a random walk on
the non-negative integers, with probabilities defined as in (47).

We note the following result (see e.g. [9]), for a random walk on the non-
negative integers {0, 1, . . .} with transition probabilities at k > 0 of q < p
for moves left and right respectively. Starting at vertex 1, the probability of
ultimate return to the origin 0 is

ρ =
q

p
. (48)

Since the walk always moves to 1 from the origin, then the expected number of
returns R to the origin is given by

RG =
1

1− ρ
. (49)

For the random walk on TG, (47) gives p = (r − 1)/r and q = 1/(r(s− 1)), so

ρ =
1

(r − 1)(s− 1)
. (50)

For a tree-like vertex v and each t = 0, 1, . . . , ω, the probability that the random
walk on G(H) starting from v is at v at step t is the same as the probability
that the random walk on the non-negative integers starting from 0 is at 0 at
step t. For the random walk on the non-negative integers, it can be shown that
the expected number of returns to 0 after step ω is o(1). For the random walk
on G(H), the number of returns to v in steps ω, ω + 1, . . . , T − 1 is also o(1)
(this can be shown using (7) and the assumption that Tπv = o(1)). Thus we
have

Rv = RG + o(1) =
(r − 1)(s− 1)

(r − 1)(s− 1)− 1
+ o(1). (51)
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Finally, for tree-like vertices v we have that the value of pv in (12) is given
by

pv = (1 + o(1))
1

n

(r − 1)(s− 1)− 1

(r − 1)(s− 1)
. (52)

7.2. Returns in Γ(v)

The following construction models an infinite extension of the neighbourhood
of γ in Γ = Γ(v), for a tree-like vertex v. Let TΓ be an infinite multi-graph
consisting of a root h (corresponding to γ) joined to r(s − 1) distinct vertices
wi,j , i = 1, 2, . . . , r, j = 1, 2, . . . s − 1 (corresponding to the vertices in cliques
with v, which are neighbours of γ in Γ) and with s− 1 parallel edges between h
and each wi,j . Each vertex w = wi,j is the root of a disjoint copy of the infinite
tree T ∗G defined in Section 7.1.

Consider the random walk on TΓ starting from the root h. For the first
return to h to happen, the walk first moves from h to its neighbour w, then it
leaves vertex w and eventually comes back to w (not visiting h), repeating such
“looping” for k ≥ 0 times, and finally, on the k-th return to w, the walk goes
back to h for the first time. Thus the probability Pγ of a return to h of a walk
on TΓ starting at h is given by

Pγ =

∞∑
k=0

ρk(1− ρ̂)kρ̂ =
ρ̂

1− ρ(1− ρ̂)
(53)

where ρ is the probability of a return to the root w of a T ∗G given in (50), and

ρ̂ =
s− 1

s− 1 + (r − 1)(s− 1)
=

1

r
(54)

is the probability of moving from a wi,j to the root h in a single step. Plugging
the values (50) and (54) into (53) gives

Pγ =
s− 1

r(s− 1)− 1
.

Therefore, the number of returns to the root of TΓ is RΓ = 1/(1 − Pγ), and
using arguments as in Section 7.1, we get

Rγ = RΓ + o(1) =
r(s− 1)− 1

(r − 1)(s− 1)− 1
+ o(1). (55)

Thus for a tree-like vertex v, using (13), the value of pγ(v) in (12) is given by

pγ(v) = (1 + o(1))
s− 1

n

(r − 1)(s− 1)− 1

r(s− 1)− 1
. (56)
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7.3. Returns in Γ(e)

Let e be a tree-like hyperedge in H. Let T ′Γ be an infinite multi-graph
consisting of a root h (corresponding to γ(e) in Γ(e)) joined to s distinct vertices
wi, i = 1, 2, . . . s (corresponding to the vertices in the clique of edge e) and with
s − 1 parallel edges between h and each wi. Each vertex w = wi is the root of
a disjoint copy of the infinite tree T ∗G defined in Section 7.1.

The corresponding random walks on non-negative integers are exactly the
same for T ′Γ and for TΓ. Hence, for a tree-like hyperedge e, the expected number
Rγ of returns to γ in Γ(e) is as in (55). Therefore, using (18), the value of pγ(e)

in (12) is given by

pγ(e) = (1 + o(1))
s

rn

(r − 1)(s− 1)− 1

r(s− 1)− 1
. (57)

8. Technical condition (10) of Lemma 6

In our analysis of the cover and inform times of a random hypergraph H ∈
G(n, r, s), we apply Lemma 6 to graph G(H) and to a tree-like vertex v, to graph
Γ(v) for a tree-like vertex v and to vertex γ(v), and to graph Γ(e) for a tree-like
hyperedge e and to vertex γ(e). We show in this section that the condition (10)
of Lemma 6 holds in each of these three cases. (Thus this section contains the
proof of Lemma 14.)

8.1. Graph G(H)

We consider a tree-like vertex v in graph G(H). Let rt = P
(t)
v (v), the

probability that the random walk which starts from vertex v is back at v at
step t. Thus Rv(T, z) =

∑T−1
t=0 rtz

t and Rv = Rv(T, 1) =
∑T−1
t=0 rt. Observe

first that the condition (10) holds whenever Rv ≤ 2− ε for some constant ε > 0.
Indeed, for |z| ≤ 1 + λ, where λ = 1/KT ,

|Rv(T, z)| ≥ r0 − (1 + λ)T
T−1∑
t=1

rt

= 1− (1 + λ)T (Rv − 1) ≥ 1− (1 + λ)T (1− ε) > ε/2. (58)

The last inequality above holds because K is a suitably large constant.
We consider graph G(H) and a tree-like vertex v. We write (51) as

Rv = 1 +
1

(r − 1)(s− 1)− 1
+ o(1)

and see that if r ≥ 3 or s ≥ 4, then Rv < 5/3, so we only need to consider the
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case r = 2 and s = 3. For any z,

|Rv(T, z)| ≥ |Rv| − |Rv −Rv(T, z)| = Rv −

∣∣∣∣∣∣
T−1∑
j=1

rj(z
j − 1)

∣∣∣∣∣∣
≥ Rv −

T−1∑
j=1

rj |zj − 1|. (59)

Now Rv ∼ 2 in our case, so to show that |Rv(T, z)| ≥ ε for some constant ε > 0

we only need to show that the sum
∑T−1
j=1 rj |zj − 1| is at most 2 − ε. Take z

such that |z| ≤ 1 + λ, write z = |z|z̃, where z̃ = eiθ, and obtain

T−1∑
j=1

rj |zj − 1| ≤
T−1∑
j=1

rj(|zj − z̃j |+ |z̃j − 1|) =

T−1∑
j=1

rj(|z|j − 1) +

T−1∑
j=1

rj |z̃j − 1|

≤ ((1 + λ)T − 1)(Rv − 1) +

T−1∑
j=1

|z̃j − 1|

≤ 2

K
+

T−1∑
j=1

|z̃j − 1|. (60)

We also have
|z̃j − 1| = (2(1− cos jθ))

1/2
= 2| sin(jθ/2)|,

so

T−1∑
j=1

rj |z̃j − 1| = 2

T−1∑
j=1

rj | sin(jθ/2)|. (61)

Note that r1 = 0, and use (47) to calculate that r2 = 1
4 and r3 = 1

16 . Suppose
first that θ /∈ I = [ 3π

8 ,
5π
8 ] ∪ [ 11π

8 , 13π
8 ]. Then | sin θ| ≤ sin 3π

8 and so

T−1∑
j=1

rj | sin(jθ/2)| ≤
T−1∑
j=1

rj − r2

(
1− sin

3π

8

)
≤ Rv − 1− 2ε ≤ 1− ε, (62)

for some constant ε > 0. On the other hand, if θ ∈ I then | sin(3θ/2)| ≤ sin 7π
16

and then

T−1∑
j=1

rj | sin(jθ/2)| ≤
T−1∑
j=1

rj − r3

(
1− sin

7π

16

)
≤ 1− ε. (63)

Inequality (60) with K = 2/ε, and (61), (62) and (63) imply that the sum in (59)
is at most 2− ε.
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8.2. Graphs Γ(v) and Γ(e)

We now consider the condition (10) of Lemma 6 for vertex γ in graph Γ(v),
where v is a tree-like vertex in H, and in graph Γ(e), where e is a tree-like
hyperedge in H. In both cases Rγ is the same (up to an additive term o(1))
and is given in (55). We write this Rγ as

Rγ = 1 +
s− 1

(r − 1)(s− 1)− 1
+ o(1),

and see that we only need to consider the case when r = 2, sinceRv < 7/4 for r ≥
3. Unfortunately, for r = 2, Rv is now strictly greater than 2 and we do not see
how the straightforward approach which we used for graph G(H) in Section 8.1
could work in this case. Instead, one could follow a more general approach
developed in [8] (see the proof of Lemma 14 in [8]). However, rather than
adapting the analysis from [8] to the random walks considered here, we introduce
in the following lemma a new result, which can be viewed as simplification and
further generalisation of the approach from [8]. This lemma immediately implies
that the condition (10) holds for vertex γ in graphs Γ(v) and Γ(e).

Lemma 18. Consider an arbitrary n-vertex graph G and a vertex v in G. Let
T be a mixing time satisfying (8). If T = o(n3), Tπv = o(1) and Rv is bounded
from above by a constant, then the condition (10) holds for θ = 1/4 and any
constant K ≥ 3Rv.

Proof. For a random walk Wv on G starting from v, let βt be the probability
that the first return to vertex v is at time t. We consider functions

β(z) =

T−1∑
t=1

βtz
t,

α(z) =

∞∑
t=0

αtz
t = 1 + β(z) + β2(z) + β3(z) + · · · =

1

1− β(z)
.

We have α0 = 1 and for t ≥ 1,

αt =
∑
k≥1

∑
1 ≤ t1, t2, . . . , tk ≤ T − 1
t1 + t2 + ·+ tk = t

βt1βt2 · · ·βtk .

Thus αt is the probability of the event Υt that the random walk which started
at vertex v is at v at time t and has never left v for T − 1 steps. This means
that αt = rt for t ≤ T − 1, so

Rv(T, z) = α(z)−
∞∑
t=T

αtz
t.

We show that the condition (10) holds for θ = 1/4 and any constant K ≥ 3Rv
by showing that for every z such that |z| ≤ 1 + 1/(KT ), we have |α(z)| ≥ 1/3
and |

∑∞
t=T αtz

t| = o(1).
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For integer τ ≥ 1, we denote Rτ = Rv(τ, 1); in particular, RT = Rv. Let

BT = β(1) =
∑T−1
t=1 βt be the probability that the walk returns to v within T

steps; 0 < BT < 1. We use the fact that RT (1−BT ) ∼ 1, which can be shown
in the following way. Since

RT = 1 +

T−1∑
t=1

βtRT−1−t ≤ 1 +BTRT ,

R2T = 1 +

2T−1∑
t=1

βtR2T−1−t ≥
T−1∑
t=1

βtRT = 1 +BTRT ,

R2T −RT =

2T−1∑
t=T

rt ≤ T (πv + n−3) = o(1),

we have
RT + o(1) = 1 +BTRT .

This implies that

BT = 1− 1

(1 + o(1))RT
. (64)

Denoting λ = 1/(KT ), for each z such that |z| ≤ 1 + λ, we have

|α(z)| =

∣∣∣∣ 1

1− β(z)

∣∣∣∣ ≥ 1

1 + |β(z)|
≥ 1

1 + β(|z|)

≥ 1

1 +BT (1 + λ)T
≥ 1

1 + (1 + λ)T
≥ 1

2 + 1/K + o(1)
≥ 1

3
.

Next we show that in the circle |z| ≤ 1 + λ, the sum
∑∞
t=T αtz

t, which is
the difference between Rv(T, z) and α(z), is o(1). Let 0 = t0 < t1 < t2 < · · · be
the steps when the random walk is at vertex v, and let t ≥ T . The event Υt is
the union

⋃
j≥1 Υt,j of pairwise disjoint events

Υt,j = {tj = t, and ti − ti−1 < T for i = 1, 2, . . . , j}. (65)

For j ≥ 1, we define pairwise disjoint events

Ψt,j = {tj = t, and ti − ti−1 < T for i = 1, 2, . . . , bt/T c − 1}. (66)

That is, Ψt,j is the event that each of the first bt/T c − 1 returns takes fewer
than T steps, and the j-th return occurs at step t. We have Υt,j = Ψt,j = ∅, for
j < bt/T c − 1 (because for such j, tj < t), and comparing the definitions (65)
and (66), we see that Υt,j ⊆ Ψt,j , for j ≥ bt/T c − 1. Therefore, with q =
bt/T c − 1,

αt = Pr [Υt] = Pr
[⋃

j≥q Υt,j

]
≤ Pr

[⋃
j≥q Ψt,j

]
≡ σt. (67)

We now bound σt. We have

Ψt ≡
⋃
j≥q Ψt,j = {Wv(t) = v} ∩ {ti − ti−1 < T , for i = 1, 2, . . . , q}.
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We denote
Ψ̂t = {ti − ti−1 < T , for i = 1, 2, . . . , q}.

We assume first that t ≥ 2T , so q ≥ 1. The step tq when the q-th return to
vertex v occurs is such that q ≤ tq < qT ≤ t−T . Considering all possible values

of tq, we express Ψ̂t as the union of pairwise disjoint events:

Ψ̂t =
⋃t−T
τ=q Ψ̂t,τ ,

Ψ̂t,τ = {ti − ti−1 < T , for i = 1, 2, . . . , q, and tq = τ}.

Using the above notation, we have

σt = Pr[Ψt] = Pr
[
(Wv(t) = v) ∩ Ψ̂t

]
= Pr

[
Ψ̂t

]
×Pr

[
Wv(t) = v | Ψ̂t

]
≤ (BT )q × max

q≤τ≤t−T

{
Pr
[
Wv(t) = v | Ψ̂t,τ

]}
(68)

= (BT )q × max
q≤τ≤t−T

{Pr [Wv(t) = v | Wv(τ) = v]} (69)

= (BT )q × max
q≤τ≤t−T

{Pr [Wv(t− τ) = v]}

≤ (BT )q(πv + n−3). (70)

Inequality (68) holds because Ψ̂t is the event that each of the first q returns to
vertex v takes fewer than T steps. The differences ti − ti−1 are independent of

each other and, by definition, Pr[ti − ti−1 < T ] = BT , so Pr
[
Ψ̂t

]
= (BT )q.

Equation (69) holds because the random walk is a Markov chain, so the only

relevant property of the condition Ψ̂t,τ is that the walk is at vertex v at step τ .
Finally, Inequality (70) follows from (8), because t− τ ≥ T .

If T ≤ t < 2T , then q = 0 and we simply have Ψt = {Wv(t) = v}, so in this
case the bound (70) holds as well.

Using (67) and (70), if |z| ≤ 1 + λ, then∣∣∣∣∣
∞∑
t=T

αtz
t

∣∣∣∣∣ ≤
∞∑
t=T

αt|z|t ≤
∞∑
t=T

σt(1 + λ)t ≤
∑
q≥0

(q+2)T−1∑
t=(q+1)T

σt(1 + λ)t

≤
∑
q≥0

T (BT )q(πv + n−3)(1 + λ)(q+2)T

≤ T (πv + n−3)(1 + λ)2T
∑
q≥0

(
BT (1 + λ)T

)q
≤ o(1)

∑
q≥0

(
BT e

1/K
)q

(71)

= o(1)
1

1−BT e1/K

≤ o(1)
1

1− e1/K(1− 1/(2RT ))
= o(1). (72)
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Inequality (71) follows from the assumption that Tπv = o(1) and T = o(n3).
The inequality on line (72) follows from (64). The final o(1) bound on line (72)
holds for any constant K ≥ 3RT . �

9. Proof of Theorem 4

Let Eπ(Hv) denote the expected hitting time of a vertex v from the sta-
tionary distribution π. The quantity Eπ(Hv) can be expressed as Eπ(Hv) =

Zvv/πv, where the value of Zvv > 1 is given by Zvv =
∑∞
t=0(P

(t)
v (v) − πv).

These relationships were stated in (2) and (3), but we repeat them here for
convenience.

Let At(v) = At,u(v) denote the event that a random walk Wu does not visit
vertex v in steps 0, ..., t (as before, but now looking at all steps, including the
initial T steps). Our proof of Theorem 4 uses the following crude bound for
Pr(At(v)) in terms of Eπ(Hv).

Lemma 19. Let T be a mixing time of a random walk Wu on G satisfying (8).
Then

Pr(At(v)) ≤ exp (−bt/(T + 3Eπ(Hv))c) .

Proof. Let ρ ≡ P
(T )
u be the distribution of Wu on G after T steps, and let

Eρ(Hv) be the expected time to hit v starting from ρ. As πx = Ω(1/n2) for
any connected graph, it follows from (8) that

Eρ(Hv) = (1 + o(1))Eπ(Hv). (73)

Let Hv(ρ) be the time to hit v starting from ρ, and let τ = T + 3Eπ(Hv).
Then

Pr(At(v)) ≤ Pr[Hv(ρ) ≥ 3Eπ(Hv)] ≤
1

e
.

By restarting the process Wu at W(0) = u,W(τ),W(2τ), . . . ,W(bt/τcτ) we
obtain

Pr(Aτ (v)) ≤ e−bt/τc.
�

Lemma 20. Let T be a mixing time of a random walk Wu on a graph G with
conductance ΦG, and satisfying (8). Let vertex v ∈ V be such that T ·πv = o(1),
then

Eπ(Hv) = O

(
1

Φ2
Gπv

)
. (74)

Proof. Using (7) with x = u = v, then

|P tv(v)− πv| ≤ e−Φ2
Gt/2,

and

Zvv =
∑
t≥0

(P tv(v)− πv) ≤
∑
t≥0

e−Φ2
Gt/2 = O

(
1

Φ2
G

)
. (75)

The bound (74) follows from (75) and (2). �
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We are now completing the proof of Theorem 4. Let H be a random multi-
hypergraph from M(n, r, s). As usual we replace the random walk on H with
a walk on the multi-graph G(H). To estimate I(H) we consider the inform
contraction graph Γ(v), with contracted vertex γ.

From Lemma 17 have that whp ΦG(H), ΦΓ(v) ≥ c, for some constant c > 0,
and the mixing time of a random walk on H, G(H), and Γ(v) is T = O(log n).
Assume that H has these properties. In H and G(H), πu = 1/n for all u, and
in Γ(v), πγ = (s− 1)/(n+ s− 2). Thus for any x, and s ≤ n,

|P (t)
u (x)− πx| ≤ n1/2e−Φ2t/2.

From Lemma 20, as ΦΓ(v) > c constant we have, for some constant B > 0,

Eπ(Hγ) ≤ Bn

s
, (76)

From Lemma 19 we have, for a random walk Wu on Γ(v) that

Pr(At(γ)) ≤ exp(−bt/(T + 3Eπ(Hγ))c). (77)

Let t∗ = 3(T + 3Bn/s) log n = O((n/s) log n); recall that s = O(nδ) for a
positive constant δ < 1. Then (76) and (77) imply

Pr(At∗(γ)) ≤ e−b3 lognc ≤ n−2,

and
Pr(there exists a vertex v not informed at t∗) ≤ n−1.

Finally, for each vertex u in H, the inform time Iu(H) when walks start from u is

Iu(H) =
∑
t≥0

Pr(there exists a vertex v not informed at t)

≤ t∗ + t∗
∑
k≥1

Pr(there exists a vertex v not informed at kt∗)

≤ t∗ + t∗
∑
k≥1

n−k = (1 + o(1))t∗.

10. Conclusions

We have considered random walks on hypergraphs and the following scenario:
when the walk passes in the current step from a vertex v to a vertex u inside
a hyperedge e, then all vertices in e are aware that something is happening,
say, they all become “informed.” This scenario leads to a natural question of
calculating, or estimating, for a given hypergraph H its inform time I(H), that
is, the expected number of steps needed to inform all vertices. In particular,
we would like to calculate the speed-up of the inform time over the traditional
cover time, when vertices become aware of the activity only when the walk
passes directly through them.
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We have derived precise estimations of the cover time and inform time (and
the edge cover time) for random r-regular s-uniform hypergraphs, where r ≥ 2
and s ≥ 3 are constants. Our formulas show that for such hypergraphs the
speed-up of the inform time is roughly s(1−1/r), for a large s. It seems natural
to hope for a Ω(s) speed-up for s-uniform hypergraphs, since the “informing pro-
cess” affects up to s−1 new vertices in each step, while the traditional “covering
process” affects at most one new vertex in each step. Our precise estimations of
the cover and inform times, and the speed-up, for random hypergraphs extend
to the case of slowly growing r and s, but requiring that rs is O((log log n)1−ε),
for an arbitrary constant ε > 0. For random multi-hypergraphs we have been
able to consider the case of a faster growing s, and have shown an Ω(s) speed-up
of the inform time, if s = O(nδ) for a small positive constant δ.

An immediate open question is whether our analysis of the inform and cover
times of random hypergraphs can be extended to larger values of s. More
generally, are there other classes of hypergraphs for which formulas for the
inform and cover times can be derived? It would be especially interesting to
be able to say something about geometric hypergraphs, where hyperedges are
defined somehow by geometric proximity of vertices. However, to proceed in this
direction, first a good model of such hypergraphs would need to be developed.

[1] D. Aldous and J. Fill: Reversible Markov Chains and Random Walks on
Graphs.
http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html.

[2] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovász and C. Rackoff: Random
Walks, Universal Traversal Sequences, and the Complexity of Maze Prob-
lems. In Proc. 20th Annual IEEE Symp. Foundations of Computer Science,
pp. 218-223 (1979).

[3] C. Avin, Y. Lando, and Z. Lotker: Radio cover time in hyper-graphs. In
Proc. DIALM-POMC, Joint Workshop on Foundations of Mobile Comput-
ing, pp. 3-12(2010).

[4] B. Bollobás: A probabilistic proof of an asymptotic formula for the number
of labelled regular graphs. European Journal on Combinatorics 1, 311-316
(1980).

[5] J. Cong, L. Hagen and A. Kahng: Random walks for circuit clustering. In
Proc. 4th IEEE Intl. ASIC Conf., 14.2.1 - 14.2.4 (1991).

[6] C. Cooper, A. M. Frieze, M. Molloy and B. Reed: Perfect matchings in
random r-regular s-uniform hypergraphs. Combinatorics, Probability and
Computing, 5.3, 1-14 (1996).

[7] C. Cooper and A. M. Frieze: The cover time of random regular graphs.
SIAM Journal on Discrete Mathematics, 18, 728-740 (2005).

[8] C. Cooper and A. M. Frieze: The cover time of the giant component of
Gn,p. Random Structures and Algorithms, 32, 401-439 (2008).

30



[9] W. Feller: An Introduction to Probability Theory, Volume I, (Second edi-
tion) Wiley (1960).

[10] H. Liu, P. LePendu, , R. Jin and D Dou: A Hypergraph-based Method
for Discovering Semantically Associated Itemsets. Proc. ICDM’11. IEEE
Conference on Data Mining, 398-406, (2011).

[11] L. Lovász: Random walks on graphs: A survey. Bolyai Society Mathemat-
ical Studies, 2:353–397, Budapest (1996).

[12] P. Matthews: Covering Problems for Brownian Motion on Spheres. Annals
of Probability, 16:1, 189-199, Institute of Mathematical Statistics (1988).

[13] D. Zhou, J. Huang and B. Schölkopf: Learning with Hypergraphs: Clus-
tering, Classifcation, and Embedding. In Advances in Neural Information
Processing Systems (NIPS) 19, 1601-1608. MIT Press, Cambridge, MA
(2007).

[14] A. Sinclair: Improved bounds for mixing rates of Markov chains and multi-
commodity flow. Combinatorics, Probability and Computing 1(4):351-370,
(1992).

[15] F. Wu, Y. Han and Y. Zhuang: Multiple hypergraph clustering of Web
images by mining Word2Image correlations. Journal of Computer Science
and Technology. 24(4):750-760, (2010).

31


