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Abstract

We consider random subgraphs of a fixed graph G = (V,E) with large minimum
degree. We fix a positive integer k and let Gk be the random subgraph where each
v ∈ V independently chooses k random neighbors, making kn edges in all. When
the minimum degree δ(G) ≥ ( 1

2 + ε)n, n = |V | then Gk is k-connected w.h.p. for
k = O(1); Hamiltonian for k sufficiently large. When δ(G) ≥ m, then Gk has a
cycle of length (1−ε)m for k ≥ kε. By w.h.p. we mean that the probability of non-
occurrence can be bounded by a function φ(n) (or φ(m)) where limn→∞ φ(n) = 0.

1 Introduction

The study of random graphs since the seminal paper of Erdős and Rényi [2] has by and
large been restricted to analysing random subgraphs of the complete graph. This is not
of course completely true. There has been a lot of research on random subgraphs of the
hypercube and grids (percolation). There has been less research on random subgraphs
of arbitrary graphs G, perhaps with some simple properties.

In this vain, the recent result of Krivelevich, Lee and Sudakov [8] brings a refreshing
new dimension. They start with an arbitrary graph G which they assume has minimum
degree at least k. For 0 ≤ p ≤ 1 we let Gp be the random subgraph of G obtained by
independently keeping each edge of G with probability p. Their main result is that if
p = ω/k then Gp has a cycle of length (1 − ok(1))k with probability 1 − ok(1). Here
ok(1) is a function of k that tends to zero as k →∞. Riordan [11] gave a much simpler
proof of this result. Krivelevich and Samotij [10] proved the existence of long cycles
for the case where p ≥ 1+ε

k and G is H-free for some fixed set of graphs H. Frieze and
Krivelevich [6] showed that Gp is non-planar with probability 1 − ok(1) when p ≥ 1+ε

k
and G has minimum degree at least k. In related works, Krivelevich, Lee and Sudakov
[9] considered a random subgraph of a “Dirac Graph” i.e. a graph with n vertices and
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1 INTRODUCTION

minimum degree at least n/2. They showed that if p ≥ C logn
n for suffficently large n

then Gp is Hamiltonian with probability 1− on(1).

The results cited above can be considered to be generalisations of classical results on
the random graph Gn,p, which in the above notation would be (Kn)p. In this paper we
will consider generalising another model of a random graph that we will call Kn(k−out).
This has vertex set V = [n] = {1, 2, . . . , n} and each v ∈ V independently chooses k
random vertices as neighbors. Thus this graph has kn edges and average degree 2k. This
model in a bipartite form where the two parts of the partition restricted their choices to
the opposing half was first considered by Walkup [13] in the context of perfect matchings.
He showed that k ≥ 2 was sufficient for bipartite Kn,n(k − out) to contain a perfect
matching. Matchings in Kn(k − out) were considered by Shamir and Upfal [12] who
showed that Kn(5− out) has a perfect matching w.h.p., i.e. with probability 1− o(1) as
n→∞. Later, Frieze [4] showed that Kn(2−out) has a perfect matching w.h.p. Fenner
and Frieze [5] had earlier shown that Kn(k−out) is k-connected w.h.p. for k ≥ 2. After
several weaker results, Bohman and Frieze [1] proved that Kn(3− out) is Hamiltonian
w.h.p. To generalise these results and replace Kn by an arbitrary graph G we will define
G(k− out) as follows: We have a fixed graph G = (V,E) and each v ∈ V independently
chooses k random neighbors, from its neighbors in G. It will be convenient to assume
that each v makes its choices with replacement. To avoid cumbersome notation, we
will from now on assume that G has n vertices and we will refer to G(k − out) as
Gk. We implicitly consider G to be one of a sequence of larger and larger graphs with
n→∞. We will say that events occur w.h.p. if their probability of non-occurrence can
be bounded by a function that tends to zero as n→∞.

For a vertex v ∈ V we let dG(v) denotes its degree in G. Then we let δ(G) =
minv∈V dG(v). We will first consider what we call Strong Dirac Graphs (SDG) viz
graphs with δ(G) ≥

(
1
2 + ε

)
n where ε is an arbitrary positive constant.

Theorem 1. Suppose that G is an SDG. Suppose that the k neighbors of each vertex
are chosen without replacement. Then w.h.p. Gk is k-connected for 2 ≤ k = o(log1/2 n).

If the k neighbors of each vertex are chosen with replacement then there is a prob-
ability, bounded above by 1− e−k2

that Gk will have minimum degree k − 1, in which
case we can only claim that Gk will be (k − 1)-connected.

Theorem 2. Suppose that G is an SDG. Then w.h.p. there exists a constant kε such
that if k ≥ kε then Gk is Hamiltonian.

We get essentially the same result if the k neighbors of each vertex are chosen with
replacement.

Note that we need ε > 0 in order to prove these results. Consider for example the
case where G consists of two copies of Kn/2 plus a perfect matching M between the

copies. In this case there is a probability greater than or equal to
(
1− 2k

n

)n/2 ∼ e−k

that no edge of M will occur in Gk.

We note the following easy corollary of Theorem 2.

Corollary 3. Let kε be as in Theorem 2. Suppose that G is an SDG and we give each
edge of G a random independent uniform [0, 1] edge weight. Let Z denote the length of

the shortest travelling salesperson tour of G. Then E(Z) ≤ 2(kε+1)
1+2ε .
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2 CONNECTIVITY: PROOF OF THEOREM 1

We will next turn to graphs with large minimum degree, but not necessarily SDG’s.
Our proofs use Depth First Search (DFS). The idea of using DFS comes from Krivele-
vich, Lee and Sudakov [8].

Theorem 4. Suppose that G has minimum degree m where m→∞ with n. For every
ε > 0 there exists a constant kε such that if k ≥ kε then w.h.p. Gk contains a path of
length (1− ε)m.

Using this theorem as a basis, we strengthen it and prove the existence of long cycles.

Theorem 5. Suppose that G has minimum degree m where m→∞ with n. For every
ε > 0 there exists a constant kε such that if k ≥ kε then w.h.p. Gk contains a cycle of
length (1− ε)m.

We finally note that in a recent paper, Frieze, Goyal, Rademacher and Vempala [3]
have shown that Gk is useful in the construction of sparse subgraphs with expansion
properties that mirror those of the host graph G.

2 Connectivity: Proof of Theorem 1

In this section we will assume that each vertex makes its choices without replacement.
Let G = (V,E) be an SDG. Let c = 1/(8e). We need the following lemma.

Lemma 6. Let G be an SDG and let C = 48/ε. Then w.h.p. there exists a set L ⊆ V ,
where |L| ≤ C log n, such that each pair of vertices u, v ∈ V \ L have at least 12 log n
common neighbors in L.

Proof. Define Lp ⊆ V by including each v ∈ V in Lp with probability p = C log n/2n.
Since δ(G) ≥ (1/2 + ε)n, each pair of vertices in G has at least 2εn common neighbors
in G. Hence, the number of common neighbors in Lp for any pair of vertices in V \ Lp
is bounded from below by a Bin(2εn, p) random variable.

Pr {∃u, v ∈ V \ Lp with less than 12 log n common neighbors in L}
≤ n2Pr {Bin(2εn, p) ≤ 12 log n}
= n2Pr {Bin(2εn, p) ≤ εnp}
≤ n2e−εnp/8

= o(1).

The expected size of Lp is 1
2C log n and so the Chernoff bounds imply that w.h.p.

|Lp| ≤ C log n. Thus there exists a set L, |L| ≤ C log n, with the desired property.

Let L be a set as provided by the previous lemma, and let G′k denote the subgraph
of Gk induced by V \ L.

Lemma 7. Let c = 1/(8e). If k ≥ 2 then w.h.p. all components of G′k are of size at
least cn. Furthermore, removing any set of k − 1 vertices from G′k produces a graph
consisting entirely of components of size at least cn, and isolated vertices.
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2 CONNECTIVITY: PROOF OF THEOREM 1

Proof. We first show that w.h.p. G′k contains no isolated vertex. The probability of G′k
containing an isolated vertex is bounded by

Pr {∃v ∈ V \ L which chooses neighbors in L only} ≤ n

[
C log n

1
2n

]k
= o(1),

where L and C are as in Lemma 6.

We now consider the existence of small non-trivial components S after the removal
of at most k − 1 vertices A. Then,

Pr {∃S,A, 2 ≤ |S| ≤ cn, |A| = k − 1, such that S only chooses neighbors in S ∪ L ∪A}

≤
cn∑
l=2

∑
|S|=l

∑
|A|=k−1

[
l + k − 2 + C log n(

1
2 + ε

)
n

]lk

≤
cn∑
l=2

(
n

l

)(
n− l
k − 1

)[
l + C log n

1
2n

]lk

≤
cn∑
l=2

(ne
l

)l
nk−1

[
l + C log n

1
2n

]lk

= 2ke
cn∑
l=2

[
2ke(l + C log n)k

nk−1l

]l−1
(l + C log n)k

l
.

Now when 2 ≤ l ≤ log2 n we have

2ke(l + C log n)k ≤ log3k n and
(l + C log n)k

l
≤ log3k n.

And when log2 n ≤ l ≤ cn we have

2ke(l + C log n)k ≤ (2 + o(1))kelk and
(l + C log n)k

l
= (1 + o(1))lk−1,

which implies that

[
2ke(l + C log n)k

nk−1l

]l−1
(l + C log n)k

l
≤ ((2 + o(1))ke)l−1ll(k−1)

n(k−1)(l−1)
≤

((2 + o(1))ke)l−1cl(k−1)nk−1 = ((2 + o(1))ke)l−1cl(k−1),

since nk−1 = (n(k−1)/(l−1))l−1 = (1 + o(1))l−1.

Continuing, we get a bound of

2ke

log2 n∑
l=2

[
log6k n

nk−1

]l−1

+

cn∑
l=log2 n

((2 + o(1))keck−1)l−1

 = o(1).

4



2 CONNECTIVITY: PROOF OF THEOREM 1

This proves that w.h.p. G′k consists of r ≤ 1/c components J1, J2, ..., Jr and that
removing any k − 1 vertices will only leave isolated vertices and components of size at
least cn.

Lemma 8. W.h.p., for any i 6= j, there exist k vertex-disjoint paths (of length 2) from
Ji to Jj in Gk.

Proof. Let X be the number of vertices in L which pick at least one neighbor in J1 and
at least one in J2. Furthermore, let Xuvw be the indicator variable for w ∈ L picking
u ∈ J1 and v ∈ J2 as its neighbors. Note that these variables are independent of G′k.
Let c = 1/(8e) as in Lemma 7 and let C = 24/ε as in Lemma 6. For w ∈ L we let

Xw =
∑

(u,v)∈J1×J2

w∈NG(J1)∩NG(J2)

Xuvw.

These are independent random variables with values in {0, 1, . . . , k} and X =
∑

w∈LXw.
Then,

EX =
∑
u∈J1

∑
v∈J2

∑
w∈L

w∈N(J1)∩N(J2)

EXuvw

=
∑
u∈J1

∑
v∈J2

∑
w∈L

w∈N(J1)∩N(J2)

(dG(w)
k−2

)(dG(w)
k

)
≥

∑
u∈J1

∑
v∈J2

∑
w∈L

w∈N(J1)∩N(J2)

1

n2

≥ 24(cn)2 log n

n2

= 24c2 log n.

We apply the following inequality, Theorem 1 of Hoeffding [7]: Let Z1, Z2, . . . , ZM be
independent and satisfy 0 ≤ Zi ≤ 1 for i = 1, 2, . . . ,M . If Z = Z1 +Z2 + · · ·+ZM then
for all t ≥ 0,

Pr {|Z −EZ| ≥ t} ≤ e−2t2/M . (1)

Putting Zw = Xw/k for w ∈ L and Z = X/k and applying (1), we get

Pr {X ≤ k} = Pr {Z ≤ 1} ≤ Pr

{
Z ≤ EZ

2

}
≤ exp

{
−(EZ)2

2|L|

}
= exp

{
−(EX)2

2k2|L|

}
= o(1). (2)

Now for w1 6= w2 ∈ L let E(w1, w2) be the event that w1, w2 make a common choice.
Then

Pr {∃w1, w2 : E(w1, w2)} = O

[
k2 log2 n

n

]
= o(1). (3)

To see this, observe that for a fixed w1, w2 and a choice of w2, the probability this choice
is also one of w1’s is at most k

n/2 . Now multiply by the number k of choices for w2.

Finally multiply by |L|2 to account for the number of possible pairs w1, w2.
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3 HAMILTON CYCLES: PROOF OF THEOREM 2

Equations (2) and (3) together show that w.h.p., there are k node-disjoint paths
from J1 to J2. Since the number of linear size components is bounded by a constant,
this is true for all pairs Ji, Jj w.h.p.

We can complete the proof of Theorem 1. Suppose we remove l vertices from L and
k− 1− l vertices from the remainder of G. We know from Lemma 6 that V \L induces
components C1, C2, . . . , Cr of size at least cn. There cannot be any isolated vertices in
V \ L as Gk has minimum degree at least k. Recall that each vertex makes k choices
without replacement. Lemmas 6, 7 and 8 imply that r = 1 and that every vertex in L
is adjacent to C1. 2

3 Hamilton cycles: Proof of Theorem 2

Let G be a graph with δ(G) ≥ (1/2 + ε)n, and let k be a positive integer.

Let D(k, n) = {D1, D2, ..., DM} be the M =
∏
v∈V

(dG(v)
k

)
≤
(
n−1
k

)n
directed graphs

obtained by letting each vertex x of G choose k G-neighbors y1, ..., yk, and includ-
ing in Di the k arcs (x, yi). Define ~Ni(x) = {y1, ..., yk} and for S ⊆ V let ~Ni(S) =⋃
x∈S

~Ni(x) \ S. For a digraph D we let G(D) denote the graph obtained from D by
ignoring orientation and coalescing multiple edges, if necessary. We let Γi = G(Di) for
i = 1, 2, . . . ,M . Let G(k, n) = {Γ1,Γ2, ...,ΓM} be the set of k-out graphs on G. Below,
when we say that Di is Hamiltonian we actually mean that Γi is Hamiltonian. (It will
occasionally enable more succint statements).

For each Di, let Di1, Di2, ..., Diκ be the κ = kn different edge-colorings of Di in
which each vertex has k − 1 outgoing green edges and one outgoing blue edge. Define
Γij to be the colored (multi)graph obtained by ignoring the orientation of edges in Dij .
Let Γgij be the subgraph induced by green edges.

~N(S) refers to ~Ni(S) when i is chosen uniformly from [M ], as it will be for Gk.

Lemma 9. Let k ≥ 5. There exists an α > 0 such that the following holds w.h.p.: for
any set S ⊆ V of size |S| ≤ αn, | ~N(S)| ≥ 3|S|.

Proof. The claim fails if there exists an S with |S| ≤ αn such that there exists a T ,
|T | = 3|S| − 1 such that ~N(S) ⊆ T . The probability of this is bounded from above by

αn∑
l=1

(
n

l

)(
n− l
3l − 1

)∏
v∈S

[(
4l − 2

k

)/(
dG(v)

k

)]

≤
αn∑
l=1

(ne
l

)l ( ne

3l − 1

)3l−1 [ 4le

n/2

]kl

≤
αn∑
l=1

[
e4(8e)k

(
l

n

)k−4
]l

= o(1),

for α = 2−16e−9.
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3 HAMILTON CYCLES: PROOF OF THEOREM 2

We say that a digraph Di expands if | ~Ni(S)| ≥ 3|S| whenever |S| ≤ αn, α = 2−16e−9.
Since almost all Di expand, we need only prove that an expanding Di almost always
gives rise to a Hamiltonian Γi. Write D′(k, n) for the set of expanding digraphs in
D(k, n) and let G′(k, n) = {Γi : Di ∈ D′(k, n)}.

Let H be any graph, and suppose P = (v1, ..., vk) is a longest path in H. If t 6= 1, k−1
and {vk, vt} ∈ E(H), then P ′ = (v1, ..., vt, vk, vk−1, ..., vt+1) is also a longest path of H.
Repeating this rotation for P and all paths created in the process, keeping the endpoint
v1 fixed, we obtain a set EP (v1) of other endpoints.

For S ⊆ V (H) we let NH(S) = {w /∈ S : ∃v ∈ S s.t. vw ∈ E(H)}.

Lemma 10 (Pósa). For any endpoint x of any longest path in any graph H, |NH(EP (x))| ≤
2|EP (x)| − 1.

We say that an undirected graph expands if |NH(S)| ≥ 2|S| whenever |S| ≤ αn,
assuming |V (H)| = n. Note that the definition of expanding slightly differs from the
digraph case.

Lemma 11. Consider a green subgraph Γgij. W.h.p., there exists an α > 0 such that
for every longest path P in Γgij and endpoint x of P , |EP (x)| > αn.

Proof. Let H = Γgij . We argue that if Di expands then so does H. If | ~Ni(S)| ≥ 3|S|,
then |NH(S)| ≥ 2|S|, since each vertex of S picks at most one blue edge outside of S.
Thus H expands. In particular, Lemma 9 implies that if |S| ≤ αn, then | ~N(S)| ≥ 3|S|
and hence |NH(S)| ≥ 2|S|. By Lemma 10, this implies that |EP (x)| > αn for any
longest path P and endpoint x.

Define aij to be 1 if G(Γi,j) is connected and Γgij contains a longest path of Γij ,
1 ≤ i ≤M1 (i.e. Γij is not Hamiltonian), and 0 otherwise.

Let M1 be the number of expanding digraphs Di among D1, ..., DM for which G(Di)
is connected and Γi is not Hamiltonian. We aim to show that M1/M → 0 as n tends
to infinity. W.l.o.g. suppose N (k, n) = {D1, ..., DM1} are the connected expanding
digraphs which are not Hamiltonian.

Lemma 12. For 1 ≤ i ≤M1, we have
∑κ

j=1 aij ≥ (k − 1)n.

Proof. Fix 1 ≤ i ≤M1 and a longest path Pi of Γi. Uniformly picking one of Di1, ..., Diκ,
we have

Pr {aij = 1} ≥ Pr
{
E(Pi) ⊆ E(Γgij)

}
≥

(
1− 1

k

)|E(Pi)|

≥
(

1− 1

k

)n
The lemma follows from the fact that there are kn colorings of Di.
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3 HAMILTON CYCLES: PROOF OF THEOREM 2

Let ∆ ∈ D(k − 1, n) be expanding and non-Hamiltonian and for the purposes of
exposition consider its edges to be colored green. Let D ∈ D(k, n) be the random
digraph obtained by letting each vertex of ∆ randomly choose another edge, which will
be colored blue. Let B∆ be the event (in the probability space of randomly chosen blue
edges to be added to ∆):

D has an edge between the endpoints of a longest path of G(∆), or

D has an edge from an endpoint of a longest path of ∆ to the complement of the path.

Note that the occurrence of B∆ implies that the corresponding aij = 0. If aij = 1 then
the connectivity of Γij imlies that G(D) has a longer path than G(∆). Let B∆ be the
complement of B∆ and for Hamiltionian ∆ let B∆ = ∅.

Let N∆ be the number of i, j such that Γgij = ∆. We have∑
i,j:Γg

ij=∆

aij = N∆Pr {B∆} (4)

The number of non-Hamiltonian graphs is bounded by

M1 ≤
M∑
i=1

κ∑
j=1

aij
(k − 1)n

≤
∑

∆N∆Pr {B∆}
(k − 1)n

≤ Mkn max∆ Pr {B∆}
(k − 1)n

= M
max∆ Pr {B∆}

(1− 1/k)n
(5)

Fix a ∆ ∈ N (k−1, n) and a longest path P∆ of G(∆). Let EP be the set of vertices
which are endpoints of a longest path of G(∆) that is obtainable from P∆ by rotations.
For x ∈ EP , say x is of Type I if x has at least εn/2 neighbors outside P∆, and Type II
otherwise. Let E1 be the set of Type I endpoints, and E2 the set of Type II endpoints.

Partition the set of expanding green graphs by

D′(k − 1, n) = H(k − 1, n) ∪N1(k − 1, n) ∪N2(k − 1, n) (6)

where H(k − 1, n) is the set of Hamiltonian graphs, N1(k − 1, n) the set of non-
Hamiltonian graphs with |E1| ≥ αn/2 and N2(k − 1, n) the set of non-Hamiltonian
graphs with |E1| < αn/2. Here α > 0 is provided by Lemma 11.

Lemma 13. For ∆ ∈ N1(k − 1, n), Pr {B∆} ≤ e−εαn/4.

Proof. Let each x ∈ E1 choose a neighbor y(x). The event B∆ is included in the event
{∀x ∈ E1 : y(x) ∈ P∆}. We have

Pr {B∆} ≤ Pr {∀x ∈ E1 : y(x) ∈ P∆}

=
∏
x∈E1

dP∆
(x)

dG(x)

≤
(

1− ε

2

)αn/2
8



3 HAMILTON CYCLES: PROOF OF THEOREM 2

where dP∆
(x) denotes the number of neighbors of x inside P∆.

Lemma 14. For ∆ ∈ N2(k − 1, n), Pr {B∆} ≤ e−εα
2n/129.

Proof. Let X ⊆ E2 be a set of αn/4 Type II endpoints. X exists because |EP | ≥ αn
and at most αn/2 vertices in EP are of type I. For each x ∈ X, let Px be a path
obtained from P∆ by rotations that has x as an endpoint. Let A(x) be the set of Type
II vertices y /∈ X such that a path from x to y in ∆ can be obtained from Px by a
sequence of rotations with x fixed. By Lemma 11 we have |A(x)| ≥ αn/4 for each x,
since A(x) = EP (x) \ (E1 ∪X).

Let Px,y be a path with endpoints x ∈ X, y ∈ A(x) obtained from Px by rotations
with x fixed, and label the vertices on Px,y by x = z0, z1, ..., zl = y. Suppose y chooses
some zi on the path with its blue edge. If {zi+1, x} ∈ E(G), let By(x) = {zi+1}. Write
v(y) for zi+1. If {zi+1, x} /∈ E(G), or if y chooses a vertex outside P , let By(x) = ∅.

x zi zi+1 y

Figure 1: Suppose y chooses zi. The vertex zi+1 is included in B(x) if and only if
{x, zi+1} ∈ E(G).

There will be at least 2
(

1
2 + ε

2

)
n− n = εn choices for i for which {x, zi+1} ∈ E(G).

Let Yx be the number of y ∈ A(x) such that By(x) is nonempty. This variable is bounded
stochastically from below by a binomial Bin(αn/4, ε) variable, and by a Chernoff bound
we have that

Pr
{
∃x : Yx ≤

εαn

8

}
≤ n exp

{
−εαn

32

}
(7)

Define B(x) =
⋃
y∈A(x)By(x). If x chooses a vertex in B(x) then B∆ occurs. Condi-

tional on Yx ≥ εαn/8 for all x ∈ X, let y1, y2, ..., yr be r = εαn/8 vertices whose choice
produces a nonempty By(x). Let Zx = |B(x)|, and for i = 1, ..., r define Zi to be 1 if
v(yi) is distinct from v(y1), ..., v(yi−1) and 0 otherwise. We have Zx =

∑r
i=1 Zi, and

each Zi is bounded from below by a Bernoulli variable with parameter 1− α/8. To see
this, note that yi has at least εn choices resulting in a nonempty Byi(x) since x and yi
are of Type II, so

Pr {∃j < i : v(yj) = v(yi)} ≤
i− 1

εn
≤ εαn/8

εn
=
α

8
(8)

Since α/8 < 1/2, Zx is bounded stochastically from below by a binomial Bin(εαn/8, 1/2)
variable, and so

Pr
{
∃x : Zx <

εαn

32

}
≤ n exp

{
−εαn

128

}
(9)

Each x for which Zx ≥ εαn/32 will choose a vertex in B(x) with probability

|B(x)|
dG(x)

≥ εαn/32

n
=
εα

32
(10)
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4 LONG PATHS: PROOF OF THEOREM 4

Hence we have

Pr {B∆} ≤
(

1− εα

32

)αn/4
+ n exp

{
−εαn

32

}
+ n exp

{
−εαn

128

}
≤ e−εα2n/129. (11)

We can now complete the proof of Theorem 2. From Lemmas 13 and 14 we have

Pr {B∆} ≤ max
{
e−εαn/4, e−εα

2n/129
}
.

Going back to (5) with k = C/ε we have

Pr {Gk is non-Hamiltonian} = o(1) +
M1

M

≤ o(1) +
max∆ Pr {B∆}

(1− 1/k)n

= o(1) +

[
e−εα

2/129

1− ε/C

]n
≤ o(1) + exp

{
−ε
(
α2

129
− 2

C

)
n

}
= o(1),

for C = 259/α2. 2

We can now prove Corollary 3. We follow an argument based on Walkup [14]. If Xe

is the length of edge e = uv of G then we can write Xe = min {Yuv, Yvu} where Yuv, Yvu
are independent copies of the random variable Y where Pr {Y ≥ y} = (1− y)1/2. The
density of Y is close to y/2 for y close to zero. Now consider Gkε where the choices
{v1, v2, . . . , vkε} of vertex u are the kε edges of lowest weight Yuv among uv ∈ E(G).
Now consider the total weight of the Hamilton cycle H posited by Theorem 2. The
expected weight of an edge of H is at most 2× kε+1

2( 1
2

+ε)n
and the corollary follows.

4 Long Paths: Proof of Theorem 4

Let Dk denote the directed graph with out-degree k defined by the vertex choices.
Consider a Depth First Search (DFS) of Dk where we construct Dk as we go. At all
times we keep a stack U of vertices which have been visited, but for which we have
chosen fewer than k out-edges. T denotes the set of vertices that have not been visited
by DFS. Each step of the algorithm begins with the top vertex u of U choosing one new
out-edge. If the other end of the edge v lies in T (we call this a hit), we move v from T
to the top of U .

When DFS returns to v ∈ U and at this time v has chosen all of its k out-edges, we
move v from U to S. In this way we partition V into

S - Vertices that have chosen all k of its out-edges.

U - Vertices that have been visited but have chosen fewer than k edges.

10
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T - Unvisited vertices.

Key facts: Let h denote the number of hits at any time and let κ denote the number of
times we have re-started the search i.e. selected a vertex in T after the stack S empties.

P1 |S ∪ U | increases by 1 for each hit, so |S ∪ U | ≥ h.

P2 More specifically, |S ∪ U | = h+ κ− 1.

P3 At all times S ∪ U contains a path which contains all of U .

The goal will be to prove that |U | ≥ (1− 2ε)m at some point of the search, where ε
is some arbitrarily small positive constant.

Lemma 15. After εkm steps, i.e. after εkm edges have been chosen in total, the number
of hits h ≥ (1− ε)m w.h.p.

Proof. Since δ(Gk) ≥ k, each tree component of Gk has at least k vertices, and at least
k2 edges must be chosen in order to complete the search of the component. Hence,
after εkm edges have been chosen, at most εkm/k2 ≤ εm/2 tree components have been
found. This means that if h ≤ (1 − ε)m after εkm edges have been sent out, then P2
implies that |S ∪ U | ≤ (1− ε/2)m.

So if h ≤ (1 − ε)m each edge chosen by the top vertex u has probability at least
d(u)−|S∪U |

d(u) ≥ ε/2 of making a hit. Hence,

Pr {h ≤ (1− ε)m after εkm steps} ≤ Pr {Bin(εkm, ε/2) ≤ (1− ε)m} = o(1), (12)

for k ≥ 2/ε2, by the Chernoff bounds.

We can now complete the proof of Theorem 4. By Lemma 15, after εkm edges have
been chosen we have |S∪U | ≥ (1−ε)m w.h.p. For a vertex to be included in S, it must
have chosen all of its edges. Hence, |S| ≤ εkm/k = εm, and we have |U | ≥ (1− 2ε)m.
Finally observe that U is the set of vertices of a path of Gk. 2

5 Long Cycles: Proof of Theorem 5

Suppose now that we consider G4k = LRk ∪ DRk ∪ LBk ∪ DBk where each for each
vertex v and for each c ∈ {“light red”, “dark red”, “light blue”,“dark blue”} the vertex
v makes k choices of neighbor Nc(v), distinct from any previous choices for this vertex.
The edges {v, w} , w ∈ Nc(v) are given the color c. Let LRk, DRk, LBk, DBk respec-
tively be the graphs induced by the differently colored edges. We have by Theorem 4
that w.h.p. there is a path P of length at least (1− ε)m in the light red graph LRk. At
this point we start using a modification of DFS (denoted by ∆ΦΣ) and the differently
colored choices to create a cycle.

We divide the steps into epochs T0, T00, T01, . . ., indexed by binary strings. We stop
the search immediately if there is a high chance of finding a cycle of length at least

11
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(1− 19ε)m. If executed, epoch Tιιι, ιιι = 0 ∗ ∗∗ will extend the exploration tree by at least
(1 − 5ε)m vertices, unless an unlikely failure occurs. Theorem 4 provides T0. In the
remainder, we will assume ιιι 6= 0.

Epoch Tιιι will use light red colors if i has odd length and ends in a 0, dark red if
i has even length and ends in a 0, light blue if i has odd length and ends in a 1, and
dark blue if i has even length and ends in a 1. Epochs Tιιι0 and Tιιι1 (where ιιιj denotes
the string obtained by appending j to the end of ιιι) both start where Tιιι ends, and this
coloring ensures that every vertex discovered in an epoch will initially have no adjacent
edges in the color of the epoch.

During epoch Tιιι we maintain a stack of vertices Sιιι. When discovered, a vertex is
placed in one of the three sets Aιιι, Bιιι, Cιιι, and simultaneously placed in Sιιι if it is placed
in Aιιι. Once placed, the vertex remains in its designated set even if it is removed from
Sιιι. Let dT (v, w) be the length of the unique path in the exploration tree T from v to
w. We designate the set for v as follows.

Aιιι - v has less than (1− 2ε)d(v) G-neighbors in T .

Bιιι - v has at least (1 − 2ε)d(v) G-neighbors in T , but less than εd(v) G-neighbors w
such that dT (v, w) ≥ (1− 19ε)m.

Cιιι - v has at least (1 − 2ε)d(v) G-neighbors in T , and at least εd(v) G-neighbors w
such that dT (v, w) ≥ (1− 19ε)m.

At the initiation of epoch Tιιι, a previous epoch will provide a set T 0
ιιι of 3εm vertices,

as described below. Starting with Aιιι = Bιιι = Cιιι = ∅, each vertex of T 0
ιιι is placed in

Aιιι, Bιιι or Cιιι according to the rules above. Let Sιιι = Aιιι, ordered with the latest discovered
vertex on top.

If at any point during Tιιι we have |Bιιι| = εm or |Cιιι| = εm, we immediately interrupt
∆ΦΣ and use the vertices of Bιιι or Cιιι to find a cycle, as described below.

An epoch Tιιι consists of up to εkm steps, and each step begins with a v ∈ Aιιι at the
top of the stack Sιιι. This vertex is called active. If v has chosen k neighbors, remove v
from the stack and perform the next step. Otherwise, let v randomly pick one neighbor
w from NG(v). If w /∈ T , then w is assigned to Aιιι, Bιιι or Cιιι as described above. If
w ∈ Aιιι, perform the next step with w at the top of Sιιι. If w ∈ Bιιι ∪Cιιι perform the next
step with the same v. If w ∈ T , perform the next step without placing w in Sιιι.

The exploration tree T is built by adding to it any vertex found during ∆ΦΣ, along
with the edge used to discover the vertex.

Note that unless |Bιιι| = εm or |Cιιι| = εm, we initially have |Aιιι| ≥ εm, guaranteeing
that εkm steps may be executed. Epoch Tιιι succeeds and is ended (possibly after fewer
than εkm steps) if at some point we have |Aιιι| = (1−2ε)m. If all εkm steps are executed
and |Aιιι| < (1− 2ε)m, the epoch fails.

Lemma 16. Epoch Tιιι succeeds with probability at least 1 − e−ε2m/8, unless |Bιιι| = εm
or |Cιιι| = εm is reached.

12
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Proof. An epoch fails if less than (1− 3ε)m steps result in the active vertex choosing a
neighbor outside T . Since the active vertex is always in Aιιι, we have

Pr {Tιιι finishes with |Aιιι| < (1− 2ε)m} ≤ Pr {Bin(εkm, 2ε) < (1− 3ε)m} ≤ e−ε2m/8

for k ≥ 1/2ε2, by Hoeffding’s inequality. This proves the lemma.

Ignoring the colors of the edges, an epoch produces a tree which is a subtree of T .
Let Pιιι be the longest path of vertices in Aιιι, and let Rιιι be the set of vertices discovered
during Tιιι which are not in Pιιι. If the epoch succeeds, Pιιι has length at least (1− 6ε)m,
and at most 3εm vertices discovered during Tιιι are not on the path. Indeed, a vertex
of Aιιι is outside Pιιι if and only if it has chosen all its k neighbors. Thus, the number of
vertices not on the path is bounded by

|Rιιι| ≤
εkm

k
+ |Bιιι|+ |Cιιι| < 3εm.

If the epoch fails, the path Pιιι may be shorter, but |Rιιι| is still bounded by 3εm.

If Tιιι succeeds, the epochs Tιιι0 and Tιιι1 will be initiated at the end of Tιιι, by letting
T 0
ιιι0 and T 0

ιιι1 be the last 3εm vertices discovered during Tιιι. If Tιιι fails, Tιιι0 and Tιιι1 will not
be initiated. The exploration tree T will resemble an unbalanced binary tree, in which
each successful epoch gives rise to up to two new epochs. Epochs are ordered and Tιιι1
is initiated before Tιιι2 if and only if ιιι1 < ιιι2. Here let ιιιi = xyxyxyi, i = 1, 2 where xxx is the
longest common substring of ιιι1, ιιι2. We will have ιιι1 < ιιι2 if either y1y1y1 is the empty string
or if y1y1y1 starts with 0 and y2y2y2 starts with 1.

Lemma 17. W.h.p., ∆ΦΣ will discover an epoch Tιιι having |Bιιι| = εm or |Cιιι| = εm.

Proof. Suppose that no epoch ends with |Bιιι| = εm or |Cιιι| = εm. Under this assump-
tion, each successful epoch Tιιι gives rise to X ′ιιι new epochs. By Lemma 16, X ′ιιι can be
stochastically bounded from below by Xιιι, where for some c > 0, Xιιι = 0 with prob-
ability e−2cm, Xιιι = 1 with probability 2e−cm(1 − e−cm) and Xιιι = 2 with probability
(1− e−cm)2. The number of successful epochs is then bounded from below by the total
number of offspring in a Galton-Watson branching process with offspring distribution
described by Xιιι. The offspring distribution for this lower bound has generating function

Gm(s) = e−2cm + 2se−cm(1− e−cm) + s2(1− e−cm)2.

Let sm be the smallest fixed point Gm(sm) = sm. We have, with ξ = e−cm,

sm =
1− 2ξ(1− ξ)− [(1− 2ξ(1− ξ))2 − 4(1− ξ)2ξ2]1/2

2(1− ξ)2
→ 0, as m→∞.

Hence, the probability that the branching process never expires is at least 1−sm, which
tends to 1.

The number of epochs is bounded by a finite number. Hence, the branching process
cannot be infinite. This contradiction finishes the proof.
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We may now finish the proof of the theorem. Condition first on ∆ΦΣ being stopped
by an epoch Tιιι having |Cιιι| = εm. In this case, let each v ∈ Cιιι choose k neighbors using
edges with the epoch’s color. Each choice has probability at least ε of finding a cycle of
length at least (1− 19ε)m, by choosing a neighbor w such that dT (v, w) ≥ (1− 19ε)m.
The probability of not finding a cycle of length at least (1− 19ε)m is bounded by

(1− ε)εkm → 0.

Now condition on ∆ΦΣ being stopped by an epoch Tιιι having |Bιιι| = εm. Note
that we must have ιιι = ιιι′1 for some ιιι′. Indeed, if ιιι = ι′ι′ι′0, then any v discovered in ιιι
must have at least 11εd(v) G-neighbors at distance at least (1 − 19ε)m, at its time of
discovery. If not, and v /∈ Aιιι then it has at most 2εd(v) G-neighbors outside T , at most
3εd(v) + 3εd(v) G-neighbors in Rιιι ∪ Rιιι′ . There are at most (1− 19ε)d(v) G-neighbors
in T \ (Rιιι ∪ Rιιι′) at distance less than (1 − 19ε)d(v) and so there are at least 11εd(v)
G-neighbors in T at distance at least (1 − 19ε)d(v) from v, which implies that v ∈ Cιιι,
contradiction.

Since the epoch produces a tree with at most m vertices, using the pigeonhole
principle we can choose a W ⊆ Bιιι such that |W | = ε2m and dT (v, w) ≤ εm for any
v, w ∈W .

Note also that d(v) ≤ 2m for any v ∈ Bιιι. This can be seen as follows: For any
v ∈ W let ρv ∈ T 0

ιιι be the vertex which minimizes dT (v, ρv). Note that we may have
ρv = v. There are at most |Q| G-neighbors of v on the path Q from v to ρv. Then note
that there are at most 2((1− 19ε)m− |Q|) G-neighbors of v on T \ (Q∪Rιιι ∪Rιιι′ ∪Rιιι′0)
that are within (1− 19ε)m of v. Here the factor 2 comes from counting G-neighbors in
Tιιι and Ti′i′i′0. So the maximum number of w ∈ NG(v)∩T such that dT (v, w) ≤ (1−19ε)m
is bounded by

|Q|+ 2((1− 19ε)m− |Q|) + |Rιιι|+ |Rιιι′ |+ |Rιιι′0| ≤ (2− 29ε)m (13)

Equation (13) then implies that d(v) ≤ (2− 29ε)m+ 3εd(v).

Define an ordering on T by saying that t1 ≤ t2 if t1 was discovered before t2 during
∆ΦΣ, or if t1 = t2. If S ⊆ T ′, and t ≤ s for all s ∈ S, write t ≤ S. Similarly define ≥, >
and <.

Let each v ∈ W choose k neighbors in the color of epoch Tιιι. We say that v is good
if it chooses v1, v2 ∈ Pιιι′ and v3 ∈ Pιιι′0 such that

dT (v1, v2) + dT (v3, T
0
ιιι ) + dT (ρv, v) ≥ (1− 17ε)m

where dT (v3, S) = mins∈S dT (v3, s). For each v ∈ W define n0(v) = |NG(v) ∩ Pιιι \ T 0
ιιι |,

n1(v) = |NG(v) ∩ Pιιι′ \ T 0
ιιι | and n2(v) = |NG(v) ∩ Pιιι′0 \ T 0

ιιι |. Since v ∈ Bιιι we have

n0(v) + n1(v) + n2(v) = |(NG(v) ∩ T ) \ (Rιιι′ ∪Rιιι′0 ∪Rιιι ∪ T 0
ιιι )| ≥ (1− 14ε)m.

Since the n0(v) + n1(v) vertices of NG(v) ∪ Pιιι ∪ Pιιι′ \ T 0
ιιι are on a path, we must have

n0(v) +n1(v) ≤ (1− 16ε)m, otherwise v has 2εm ≥ εd(v) neighbors at distance at least
(1− 18ε)m, contradicting v ∈ Bιιι. This implies n2(v) ≥ 2εm. Similarly, n1(v) ≥ 2εm.

Fix a vertex v ∈ W and define V1, V2 ⊆ (NG(v) ∩ Pιιι′) \ T 0
ιιι and V3 ⊆ (NG(v) ∩

Pιιι′0) \ T 0
ιιι , |V1| = |V2| = |V3| = εm as follows. V1 is the set of the first εm vertices of
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v
u

u1

v1

v2
u2

u3

v3

S0
i

ρu = ρv

Figure 2: Example depiction of cycle found when |Bιιι| = εm.

NG(v)∩Pιιι′ discovered during ∆ΦΣ. V2 is the set of the last εm vertices of NG(v)∩Pιιι′
discovered before any vertex of T 0

ιιι . Lastly, V3 consists of the εm last vertices discovered
in NG(v) ∩ Pιιι′0. Since n1(v) ≥ 2εm and n2(v) ≥ 2εm, the sets V1, V2, V3 exist and are
disjoint.

Since d(v) ≤ 2m, the probability that v chooses v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3 is at
least (ε/2)3. If this happens, we have

dT (v1, v2) + dT (v3, T
0
ιιι ) + dT (ρv, v) ≥ n1(v)− 2εm+ n2(v)− εm+ n3(v) ≥ (1− 17ε)m.

In other words, v ∈ W is good with probability at least (ε/2)3. Since |W | = ε2m,
w.h.p. there exist two good vertices u, v ∈ W . Since u, v /∈ Pιιι, the shortest path
from ρv to v does not contain u, and the shortest path from ρu to u does not contain
v. Also, by choice of W we have dT (ρu, u) ≥ dT (ρv, v) − 2εm. Suppose u and v pick
u1 ≤ u2 ≤ u3 and v1 ≤ v2 ≤ v3, and w.l.o.g. suppose dT (u1, v2) ≥ dT (v1, v2). The cycle
(u, u1, ..., v2, v, v3, ..., ρu, ..., u) has length

1 + dT (u1, v2) + 1 + 1 + dT (v3, ρu) + dT (ρu, u)

≥ dT (v1, v2) + dT (v3, T
0
ιιι ) + dT (ρv, v)− 2εm

≥ (1− 19ε)m.
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