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Abstract

For any small constant ϵ > 0, the Erdős-Rényi random graph G(n, 1+ϵ
n ) with high

probability has a unique largest component which contains (1±O(ϵ))2ϵn vertices. Let

Gc(n, p) be obtained by assigning each edge in G(n, p) a color in [c] independently

and uniformly. Cooley, Do, Erde, and Missethan proved that for any fixed α > 0,

Gαn(n,
1+ϵ
n ) with high probability contains a rainbow tree (a tree that does not re-

peat colors) which covers (1 ± O(ϵ)) α
α+1ϵn vertices, and conjectured that there is one

which covers (1 ± O(ϵ))2ϵn. In this paper, we achieve the correct leading constant

and prove their conjecture correct up to a logarithmic factor in the error term, as

we show that with high probability Gαn(n,
1+ϵ
n ) contains a rainbow tree which covers

(1±O(ϵ log(1/ϵ)))2ϵn vertices.

1 Introduction

1.1 The Giant Component

In their seminal 1960 paper, Erdős and Rényi showed that for constant ϵ > 0, a random graph

with more than 1+ϵ
n

(
n
2

)
edges contains a unique giant component of size Θ(n), which they

called the giant component. In particular, we know the asymptotic size of this component:

here G(n,m) is the random graph with vertex set [n] and m randomly chosen edges. For an

introduction to the properties of G(n,m), see for example Frieze and Karoński [12].

Theorem 1 ([10, 5]). Let ϵ > 0 constant, m = (1 + ϵ)n/2. Then with high probability,

G(n,m) consists of a unique giant component, with (1− µ
1+ϵ

± o(1))n vertices, where µ is the

solution in (0, 1) of the equation µe−µ = (1 + ϵ)e−(1+ϵ).

In this theorem and throughout the paper, with high probability, or w.h.p., refers to a

probability that goes to 1 as n goes to infinity with ϵ > 0 fixed. Similarly, o(1) refers to a
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probability that goes to 0 as n → ∞. On the other hand, even though ϵ is fixed with n, we

care about “sufficiently small” ϵ, so we will still use notation like O(ϵ2) to mean a term that

is O(1) in n but is O(ϵ2) as ϵ → 0.

Using Taylor series, we see that µ in Theorem 1 equals 1 − ϵ + O(ϵ2), and thus the

giant component has size (1 − µ
1+ϵ

± o(1))n = (1 ± o(1) ± O(ϵ))2ϵn. For our purposes,

we will be working with G(n, p) not G(n,m), but all of our results transfer between the

two models, as standard Chernoff bounds give that the number of edges in G(n, 1+ϵ
n

) is

w.h.p. (1+ϵ)n
2

±O((n log n)1/2) = (1 ± o(1)) (1+ϵ)n
2

.

1.2 Rainbow Coloring

Now, we consider the colored random graph, Gc(n, p), where every edge that is chosen in

G(n, p) is then uniformly and independently given a color from [c]. A set of edges in Gc(n, p)

is considered rainbow if each edge is present but no two edges in the set have the same color.

Cooley, Do, Erde, and Missethan conjectured the following:

Conjecture 2 ([8], Conjecture 4.1). Let α > 0, c = αn, ϵ > 0 sufficiently small. Let p = 1+ϵ
n
.

Then w.h.p. the largest rainbow tree in Gc(n, p) has order (1 ±O(ϵ))2ϵn.

(1 ± O(ϵ))2ϵn is clearly an upper bound on the size of the largest rainbow tree, as the

size of the largest tree in G(n, p) is also (1 ± O(ϵ))2ϵn. So the task is to show that there

w.h.p. exists a rainbow tree of this size. Cooley, Do, Erde, and Missethan also proved a

weaker version of their conjecture:

Theorem 3 ([8], Theorem 1.4). Let α > 0, c = αn, ϵ > 0 sufficiently small. Let p = 1+ϵ
n
.

Then w.h.p. the largest rainbow tree in Gc(n, p) has order (1 ±O(ϵ)) α
α+1

ϵn.

The result of this paper is that we improve the leading constant from α
α+1

to its optimal

value of 2, resolving their conjecture up to a logarithmic factor in the lower-order term:

Theorem 4. Let α > 0, c = αn, ϵ > 0 sufficiently small. Let p = 1+ϵ
n
. Then w.h.p. the

largest rainbow tree in Gc(n, p) has order (1 ±O(ϵ log(1/ϵ)))2ϵn.

1.3 Relation to Previous Literature

A major goal in Gc(n, p) has been to find rainbow thresholds for given structures, that is, to

prove that for certain p and c, there w.h.p. is (or is not) a rainbow copy of that structure.

Previous results in this model have shown optimal or near-optimal rainbow thresholds for

the existence of certain trees, which can also be thought of as showing the size of the rainbow

connected component. Frieze and Mckay showed that Gc(n, p) has a rainbow spanning tree

w.h.p. whenever the uncolored graph is connected and at least n − 1 colors have appeared

[13]. Aigner-Horev, Hefetz, and Lahiri showed that for any given tree of size (1 − ϵ)n for
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constant ϵ > 0, it suffices to take p = ω(1/n) and c = n for there to w.h.p. exist a rainbow

copy of that tree [1]. Cooley, Do, Erde, and Missethan showed that for any fixed ϵ > 0,

there exists a d(ϵ) > 1 such that Gn(n, d
n
) will w.h.p. have a tree, and in fact a cycle, of size

(1 − ϵ)n [8]. Our paper’s result can be thought of as showing the threshold for a rainbow

tree of size ϵn for small fixed ϵ > 0. For a tree of size o(n) but ω(n2/3), the optimal result

was also shown by Cooley, Do, Erde, and Missethan [8].

In general, a breakthrough result on uncolored thresholds by Frankston, Kahn, Narayanan,

and Park [11] was extended by Bell, Frieze, and Marbach to show that for any structure with

k edges, p can always be taken to be within a log(k) factor of the optimal value as long as

c > γk for some γ > 1 [3]. This could be applied to trees of size ϵn, but the logarithmic

factor is too large.

Our proof relies heavily on previous results and distributional lemmas regarding the

structure of the uncolored giant component, which we will discuss in Section 2. We will

prove Theorem 4 in Section 3.

2 Structure of the Uncolored Giant Component

2.1 The Core and Mantle

Throughout the paper, we will define a ≲ b to mean a ≤ b(1 ± o(1) ± O(ϵ)), that is, ≤ up

to factors allowed by Conjecture 2. We will use ≳ and ≈ similarly. For instance, we can say

the giant component has size ≈ 2ϵn.

After its size, the next thing about the giant component we will need to know is the

size of its core. The core, or 2-core, of a graph G is the maximal subgraph of G where all

vertices have degree at least 2. Note that the core of a connected component is always itself

connected.

Lemma 5 ([2];[16], Theorem 3;[15], Theorem 1(ii);[6, 12]). Let ϵ > 0 constant and let C be

the core of the giant component in G(n, 1+ϵ
2

). With high probability,

|V (C)| ≈ |E(C)| ≈ 2ϵ2n.

In other words, only an ϵ fraction of the giant component lies in the core. The vertices

and edges that are in the giant component but not in its core are called the mantle vertices

and edges. Note that the vertices of the giant component along with only the mantle edges

form a forest where each component contains exactly one vertex in the core.

A more specific description of the giant component was given in 2015 by Ding, Lubetzky,

and Peres [9]. They gave a model that the core of G(n, 1+ϵ
n

) is contiguous to, which means

that any graph property is true w.h.p. in their model is true w.h.p. in the core of G(n, 1+ϵ
n

).

Recall that µ is the solution in (0, 1) to µe−µ = (1 + ϵ)e−(1+ϵ). Their model is the following:
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• First, let Λ ∼ N (1 + ϵ − µ, 1
n
), where N (µ, σ) denotes the normal distribution with

mean µ and standard deviation σ. For 1 ≤ u ≤ n, let Du ∼ Poisson(Λ) iid, conditioned

on
∑

Du1Du≥3 being even. Let Nk be the number of u such that Du = k, and let

N =
∑

k≥3Nk. Select a random multigraph K on N vertices uniformly among all

multigraphs with Nk vertices of degree k for all k ≥ 3.

• Then, replace each edge of K with paths of length iid Geom(1 − µ) to form K′.

• Finally, independently for each vertex v in K′, add on a Poisson(µ)-Galton-Watson

tree rooted at v.

For our proof, we do not need any details of the first two steps (beyond that they form a

core C with |V (C)| ≈ |E(C)| ≈ 2ϵ2n). We heavily rely on more specific details of the final

step, and for the rest of this paper will prove everything w.h.p. under their model.

2.2 Galton-Watson Trees

The Poisson(µ)-Galton-Watson tree, or µ-PGW tree, is a random tree that is created as

follows:

• Start with a root vertex, which we will call level 0. Set j = 0.

• While level j is not empty:

– Independently for each vertex v in level j, create Poisson(µ) children of v, which

will be on level j + 1.

– Increment j.

Because µ < 1, the resulting tree is finite with probability 1. This model was studied by

Bienaymé in 1845 and Galton and Watson in 1875 [4, 14]. In 1942, Borel proved that the

number of vertices (including the root) in a µ-PGW tree T follows the following distribution:

for any k ∈ Z>0,

P(|V (T )| = k) =
e−µk(µk)k−1

k!
,

which is called the Borel(µ) distribution [7, 9].

For any edge e in a µ-PGW tree, let desc(e) be the number of vertices in the subtree

rooted at the child vertex of e. Note that each vertex created then becomes the root of a

new µ-PGW tree, so desc(e) ∼ Borel(µ) for every e that is created. Now that we know that

the Borel distribution appears in the giant component, we will bound its tail probabilities.

Lemma 6. Let X ∼Borel(µ). For any j ∈ Z>0,

P(X > j) <
1

j1/2µ
.
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Proof.

P(X > j) =
∞∑

k=j+1

e−µk(µk)k−1

k!
<

∞∑
k=j+1

e−µk(µk)k−1

2k1/2(k/e)k
=

∞∑
k=j+1

(
e1−µµ

)k
(2µ)−1k−1.5

< (2µ)−1

∞∑
k=j+1

k−1.5 < (2µ)−1

∫ ∞

k=j

k−1.5 =
1

j1/2µ

2.3 The Mantle of the Giant Component

Let M be the set of mantle edges. For any e ∈ M , note that desc(e) (with respect to the

µ-PGW tree containing e rooted in the core) equals the number of vertices in the mantle

that would be disconnected from the core if e were removed. From the last section we know

that for a fixed e ∈ M , desc(e) is distributed as Borel(µ), where µ = 1 − ϵ±O(ϵ2).

Lemma 7. Let 1 ≤ j ≤ O(1) with respect to n (but j can depend on ϵ) and let Dj = |{e ∈
M : desc(e) > j}|. Then,

P
(
Dj >

3ϵn

j1/2

)
< n−2.

Proof. When creating the mantle under the Ding–Lubetzky–Peres model, for each edge e

created, we know P(desc(e) > j) = P(Borel(µ) > j) ≤ 1.1/j1/2 for sufficiently small ϵ by

Lemma 6. We also know w.h.p. that |M | ≲ 2ϵn, so EDj ≲ 2.2ϵn/j1/2. To show concentration

of Dj around its expectation, we use the following theorem from Warnke [17]:

Theorem 8. Let X = (X1, X2, . . . , XN) be a family of independent random variables with

Xk taking values in a set Λk. Let Ω =
∏

k∈[N ] Λk and suppose that Γ ⊆ Ω and suppose that

f : Ω → R are given. Suppose also that whenever x,x′ ∈ Ω differ only in the kth coordinate

|f(x) − f(x′)| ≤

ck if x ∈ Γ.

dk otherwise.

If W = f(X), then for all reals γk > 0,

P(W ≥ E(W ) + t) ≤ exp

{
− t2

2
∑

k∈[N ]((ck + γk(dk − ck)2))

}
+ P(X /∈ Γ)

∑
k∈[N ]

γ−1
k .

We apply this theorem with W = Dj and Xk equal to the set of neighbors of vertex k

in [k − 1]. We take Γ to be the occurence of (i) the maximum degree in Gn,p is at most nη

for some small η and (ii) every tree in Gn,p of size at most n1−η that contains at most one

vertex (the root) that is adjacent to vertices outside the tree, has size at most nη. Under
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these circumstances P(X /∈ Γ) ≤ e−nη
and ck ≤ n2η and dk ≤ n. (This is proved by first

moment calculations. In particular, property (ii) follows from the gap in component sizes,

see Lemma 2.14 of [12].) We can then take t = n1/2+2η, γk = n−3 in the theorem to show

that W ≤ 3ϵ/j1/2 with the required probability.

3 Proof of Theorem 4

First, create G = G(n, p), and let E be the set of edges in the giant component. Choose an

ordering e1, . . . , e|E| that satisfies the following:

• All core edges come before all mantle edges

• The mantle edges are ordered in descending order by their number of descendents, that

is, desc(ei) ≥ desc(ei+1) for any ei, ei+1 ∈ M .

Now, go in this order, and when you get to ei, color it independently uniformly at random

from [αn] (or technically, [⌈αn⌉], but we will omit ceilings for convenience). If the color of

ei has already been used on some ej for j < i, delete ei.

This process results in a rainbow colored graph that is a subgraph of the giant component.

Our claim is that this new graph has a component of size (1−O(ϵ log(1/ϵ))2ϵn, which would

clearly prove the theorem, as any rainbow component has a rainbow spanning tree. In other

words, we are allowed to delete at most O(ϵ2 log(1/ϵ)n) vertices from the giant component.

Lemma 9. After we process the first 5ϵ2n edges (e1, . . . , e5ϵ2n), w.h.p. the new graph G′ has

a component of size ≈ 2ϵn.

Proof. When each edge ei gets colored, there are less than i already used colors, out of αn

possible colors. Thus, for each edge, the probability that it gets deleted is less than i/(αn),

so for every i ≤ 5ϵ2n, ei gets deleted with probability less than 5ϵ2/α. Thus, in this process,

every edge in G is kept with probability at least 1− 5ϵ2

α
, independently of what has happened

to the previous edges. This gives a direct coupling from G′ to G(n, p′) where

p′ = p

(
1 − 5ϵ2

α

)
=

1 + (1 −O(ϵ))ϵ

n

for fixed α and sufficiently small ϵ. This coupling is such that every edge that appears in

G(n, p′) also appears in G′. Then we apply Theorem 1 to say that G(n, p′) has a giant

component of size ≈ 2ϵn.

Lemma 10. With high probability, in the original graph G, we have that ei is in the mantle

and desc(ei) ≤ 36(ϵn/i)2 for every 5ϵ2n ≤ i ≤ |E|.
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Proof. Lemma 5 tells us that w.h.p. for sufficiently small ϵ, there are less than 5ϵ2n/2 edges

in the core and less than 5ϵn/2 edges total, which we can assume these throughout the proof.

This implies that ei is in the mantle for every 5ϵ2n/2 ≤ i ≤ |E| < 5ϵn/2.

Fix 5ϵ2n ≤ i ≤ |E|. Noting that 5ϵ2n ≤ i implies that 36(ϵn/i)2 is O(1) with respect to

n, Lemma 7 tells us that with probability at least 1 − n−2,

|{e ∈ M : desc(e) > 36(ϵn/i)2}| < 3ϵn

6(ϵn/i)
<

i

2

Thus with probability at least 1 − n−2, there are less than 5ϵ2n/2 + i/2 ≤ i total edges that

are in the core or have more than 36(ϵn/i)2 descendants, and thus desc(ei) ≤ 36(ϵn/i)2.

Taking a union bound over all 5ϵ2n ≤ i ≤ |E| gives us that with probability at least

1 − (5ϵn/2)(n−2), or w.h.p., we have that desc(ei) ≤ 36(ϵn/i)2 for every 5ϵ2n ≤ i ≤ |E|.

Applying Lemma 10 with i = 5ϵ2n tells us that in the new graph G′, as the core of

G′ is a subset of the core of G, any uncolored edge is either in the mantle or has been

disconnected from the core. If an uncolored edge is still in the mantle, it has the same

number of descendants in G′ as it did in G, as all of its descendant edges are also uncolored

(as they have fewer descendants). So for uncolored edges, we will still use desc(ei) to equal

what it was in G, and then deleting any future ei disconnects at most desc(ei) vertices from

the rainbow giant (specifically, desc(ei) if ei was previously in the mantle and 0 if it has

already been disconnected). These properties remain true as the process continues.

Now, for every 5ϵ2n < i ≤ |E|, let Xi equal desc(i) if ei is deleted and Xi = 0 if ei is

kept. Then note that the total number of vertices disconnected from the core in our entire

process is at most O(ϵ2n) +
∑|E|

i=5ϵ2n+1Xi.

Lemma 11. For every 5ϵ2n < i ≤ |E|, E(Xi|X1, . . . , Xi−1) < 36ϵ2n/(iα) for every possible

sequence X1, . . . , Xi−1.

Proof. Lemma 10 gives that for every 5ϵ2n ≤ i ≤ |E|, desc(ei) ≤ 36(ϵn/i)2. Then no matter

the values of X1, . . . , Xi−1, the probability that ei gets a banned color is less than i
αn

. Thus

E(Xi|X1, . . . , Xi−1) <
i

αn

(
36

(ϵn
i

)2
)

=
36ϵ2n

iα
.

The proof of Theorem 4 follows from the Chernoff-Hoeffding bound. Due to Lemma

11, we can treat each Xi as an independent random variables with mean 36ϵ2n/(iα) and

maximum value 36(ϵn/i)2 ≤ 2ϵ−2. If S =
∑|E|

i=5ϵ2nXi then, where Hk =
∑k

j=1 1/j,

E(S) =

|E|∑
i=5ϵ2n

36ϵ2n

iα
=

36ϵ2n

α
(H|E| −H5ϵ2n) <

36ϵ2n

α

(
log

(
e1/2|E|
5ϵ2n

))
<

36ϵ2 log(1/ϵ)n

α
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Then

P
(
S − ES >

ϵ2 log(1/ϵ)n

α

)
< exp

(
−2(ϵ2 ln(1/ϵ)n/α)2

(3ϵn)(2ϵ−2)2

)
< exp

(
−ϵ5 ln(1/ϵ)n

6α2

)
= o(1)

So w.h.p. S ≤ 37ϵ2 log(1/ϵ)n/α. Thus, the coloring ends with a rainbow giant component of

size at least (1 − 37ϵ log(1/ϵ)/α−O(ϵ))2ϵn, completing the proof.

3.1 Lower Bound on Vertices Lost

The conjecture of Cooley, Do, Erde, and Missethan allows the rainbow tree to have O(ϵ2n)

fewer vertices than the uncolored component, while ours loses O(ϵ2 log(1/ϵ)n). One may

wonder if there is a rainbow tree losing even fewer vertices, say O(ϵ3n) or o(n); however,

the conjectured allowance is the best possible. We know from the Borel distribution and

something analogous to Lemma 7 that there are w.h.p. ≈ 2ϵn/e leaf vertices in the giant

component. If we randomly order these ≈ 2ϵn/e leaf edges and color them in order with

αn colors, each edge has probability ≈ ϵ
eα

of being given a repeated color. So we will

w.h.p. need to delete ≳ 2ϵ2/e2α = Θ(ϵ2n) leaves when going from the uncolored to rainbow

giant component.
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Combinatorica, 1(1):1–12, Mar 1981.

[3] Tolson Bell, Alan Frieze, and Trent Marbach. Rainbow thresholds. Arxiv: 2104.05629,

2023.
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[5] Béla Bollobás. The evolution of random graphs. Transactions of the American Mathe-

matical Society, 286(1):257–274, 1984.

[6] Béla Bollobás. The Evolution of Random Graphs—the Giant Component, page 130–159.

Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2 edition,

2001.
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[10] Paul Erdős and Alfred Rényi. On the evolution of random graphs. Publ. Math. Inst.

Hungary. Acad. Sci., 5:17–61, 1960.

[11] Keith Frankston, Jeff Kahn, Bhargav Narayanan, and Jinyoung Park. Thresholds versus

fractional expectation-thresholds. Annals of Mathematics, 194:475–495, 2021.
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