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Abstract

We study the cover time of random geometric graphs. Let I(d) = [0, 1]d denote the
unit torus in d dimensions. Let D(x, r) denote the ball (disc) of radius r. Let Υd be
the volume of the unit ball D(0, 1) in d dimensions. A random geometric graph G =
G(d, r, n) in d dimensions is defined as follows: Sample n points V independently and
uniformly at random from I(d). For each point x draw a ball D(x, r) of radius r about
x. The vertex set V (G) = V and the edge set E(G) = {{v, w} : w ̸= v, w ∈ D(v, r)}.
Let G(d, r, n), d ≥ 3 be a random geometric graph. Let CG denote the cover time of a

simple random walk on G. Let c > 1 be constant, and let r = (c log n/(Υdn))
1/d. Then

whp the cover time satisfies

CG ∼ c log

(
c

c− 1

)
n log n.

1 Introduction

Let G = (V,E) be a connected graph with |V | = n vertices, and |E| = m edges. In a simple
random walk W on a graph G, at each step, a particle moves from its current vertex to a
randomly chosen neighbour. For v ∈ V , let Cv be the expected time taken for a simple random
walk starting at v to visit every vertex of G. The vertex cover time CG of G is defined as
CG = maxv∈V Cv. The (vertex) cover time of connected graphs has been extensively studied.
It is a classic result of Aleliunas, Karp, Lipton, Lovász and Rackoff [2] that CG ≤ 2m(n− 1).
It was shown by Feige [15], [16], that for any connected graph G, the cover time satisfies
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(1− o(1))n log n ≤ CG ≤ (1+ o(1)) 4
27
n3. As an example of a graph achieving the lower bound,

the complete graph Kn has cover time determined by the Coupon Collector problem. The
lollipop graph consisting of a path of length n/3 joined to a clique of size 2n/3 gives the
asymptotic upper bound for the cover time.

A few words on notation. Results on random graphs are always asymptotic in n, the size of
the vertex set. The notation An ∼ Bn means that limn→∞An/Bn = 1, and whp (with high
probability) means with probability tending to 1 as n → ∞. Poly-log factors are suppressed
in Õ, Ω̃.

In a series of papers, we have studied the cover time of various models of a random graph.
These results can be summarized as follows:

• [10] If p = c log n/n and c > 1 then whp CGn,p ∼ c log
(

c
c−1

)
n log n.

• [11] Let c > 1 and let x denote the solution in (0, 1) of x = 1 − e−cx. Let Xg be the

giant component of Gn,p, p = c/n. Then whp CXg ∼
cx(2−x)

4(cx−log c)
n(log n)2.

• [8] Let Gn,r denote a random r-regular graph on vertex set [n] with r ≥ 3 then whp
CGn,r ∼ r−1

r−2
n log n.

• [9] Let Gm(n) denote a preferential attachment graph of average degree 2m then whp
CGm ∼ 2m

m−1
n log n.

• [12] Let Dn,p denote a random digraph with independent edge probability p. If p =
c log n/n and c > 1 then whp CDn,p ∼ c log

(
c
c−1

)
n log n.

Let I denote the unit interval [0, 1] and let I(d) = [0, 1]d denote the unit torus in d dimensions.
We use the torus for convenience, to avoid boundary effects. Let D(x, r) denote the ball (disc)
of radius r, and thus

D(x, r) =

{
y ∈ I(d) :

d∑
i=1

min
{
|xi − yi|2, |xi − (1 + yi)|2

}
≤ r2

}
.

Let Υd be the volume of the unit ball D(0, 1) in d dimensions. Thus

Υd = (πd/2)/Γ(d/2 + 1) =

{
πk

k!
d = 2k, even

2dk!πk

d!
d = 2k + 1, odd

A random geometric graph G = G(d, r, n) in d dimensions is defined as follows: Sample
n points V independently and uniformly at random from I(d). For each point x draw a
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ball D(x, r) of radius r about x. The vertex set V (G) = V and the edge set E(G) =
{{v, w} : w ̸= v, w ∈ D(v, r)}

Geometric graphs are widely used as models of ad-hoc wireless networks [18], [19], [24] in
which each transmitter has transmission radius r and can only communicate with other trans-
mitters within that radius. In the simplest model of a random geometric graph, the n points
representing transmitters, are distributed uniformly at random (uar) in the unit square. Any
other point v within the circle radius r centered at a transmitter u, is joined to u by an edge.

If r ≥
√
c log n/(πn), c > 1, then the graph G(d, r, n) is connected whp [18, 21], and the

cover time of G is well defined. Avin and Ercal [3] consider the cover time of geometric graphs
in the case d = 2, and prove the following theorem.

Theorem 1. If G = G(2, r, n) and r2 > 8 logn
n

then whp

CG = Θ(n log n).

They also indicate that this result can be generalized to d ≥ 3. In this paper we consider
d ≥ 3 and replace Θ(n log n) by an asymptotically correct constant:

Theorem 2. Let G(d, r, n), d ≥ 3 be a random geometric graph. Let c > 1 be constant, and

let r =
(
c logn
Υdn

)1/d
. Then whp

CG ∼ c log

(
c

c− 1

)
n log n. (1)

As c increases, the RHS of (1) is asymptotic to n log n. It will be clear that we can allow
c→ ∞ in our analysis and obtain this estimate rigorously. We find it convenient however just
to deal with the case of c constant.

Structure of the paper

In common with [8]–[12] the paper relies on the first visit time lemma (Lemma 11) to estimate
the cover time. Using this lemma requires us to estimate Rv, the expected number of returns
to vertex v within time T made by a random walk Wv which starts from vertex v. Here T
(see equation (8)) is a bound on the time needed for a random walk to get sufficiently close
in distribution to the steady state to apply Lemma 11.

Normally calculations of Rv rely on symmetry or locally tree-like structure of the graph, at
least for most vertices. Moreover there is often a large set of vertices v for which the ratio
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d(v)/Rv is clearly minimum. These vertices are hardest to reach and determine the cover
time.

It turns out that provided the conditions of Theorem 2 are satisfied, then Rv = 1+o(1) for all
v, but the main difficulty is proving this fact, and most of the paper is devoted to this task.
Several technical difficulties arise, mainly due to the high edge density between neighbours of
a vertex, the lack of homogeneity in the graph itself and the variation in spatial distribution
of vertices within the d-dimensional unit cube I(d). This last point is especially troublesome
when the parameter c in the disc-radius tends to 1 (the connectivity threshold).

To establish the result, we were obliged to prove some very precise results on connectivity
properties of the graph, based on a dissection of the unit cube I(d) into sub-cubes. Most
of Section 2, is devoted to proving that G contains a large d-dimensional connected grid-like
structure Γ of vertices in “heavy” sub-cubes. All other vertices are connected to Γ by short
paths. (Here a cube is heavy if it contains at least a log n vertices, for some a > 0). This
proof causes some technical difficulties, because we want to have c arbitrarily close to 1 and
not just sufficiently large.

Having done this, in Section 4 we estimate the mixing time T . This is not a new result, but
is included for completeness. The proof is straightforward once we have proved the existence
of Γ. The value of T = Õ(n2/d) is much larger than in papers [8]–[12], where it is polylog(n).
This means there is more time for the walk to return to v and so verifying Rv = 1 + o(1)
is non-trivial. This takes up Section 5. The analysis here is specific to the paper, using
effective resistance, Raleigh’s theorem on edge deletion and Pólya’s theorem on random walks
on Rd, d ≥ 3. Indeed there are several difficulties in relating properties of the walk to the
grid-like subgraph we focused on in Section 2 (see Lemma 13, and subsequent sub-lemmas).

Having established Rv = 1+ o(1) we can apply Lemma 11 to obtain an upper bound on cover
time. This is Section 6.1. When we come to prove the lower bound in Section 6.2, we use the
Chebyshev inequality, as in previous papers. It turns out to be much more complicated to
apply, especially for c close to one. We had to resort to the idea of coupling the construction
of G along with the construction of the random walk Wv and then applying the Berry-Esseen
inequality.

2 Some properties of G = G(d, r, n)

The degree, d(v), of vertex v ∈ V is binomially distributed as Bin(n−1, p), where p = c log n/n
is the volume of D(v, r). It is a simple matter to show using the Chebychev inequality that
whp the number of edges m of G satisfies

m ∼ 1

2
cn log n. (2)
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We next give some crude bounds on vertex degree.

Lemma 3. Let np = c log n. For c > 1 there exists a constant c0 > 0 such that whp

c0 log n ≤ d(v) ≤ ∆0 = (c+ 10) log n for all v ∈ V.

Proof For c0 sufficiently small,

Pr(∃v : d(v) ≤ c0 log n) ≤ nPr(Bin(n− 1, p) ≤ c0 log n)

= n

c0 logn∑
k=0

(
n− 1

k

)
pk (1− p)n−1−k

≤ 2n

(
ne

c0 log n

)c0 logn(c log n
n

)c0 logn
n−c+o(1)

= n−(c−1−c0 log(ce/c0)−o(1))

= o(1).

On the other hand,

Pr(∃v : d(v) ≥ ∆0) ≤ nPr(Bin(n− 1, p) ≥ ∆0)

≤ n
∑
k≥∆0

(
n

k

)(
c log n

n

)k (
1− c log n

n

)n−k
≤ 2n

(
n

∆0

)(
c log n

n

)∆0
(
1− c log n

n

)n−∆0

≤ 3n

(
ne

∆0

)∆0
(
c log n

n

)∆0

n−c

= 3n1−c−(c+10) log((c+10)/(ce))

= o(1).

2

Let D(k) denote the number of vertices v with d(v) = k in G, and let D(k) be the expected
number. Thus

D(k) = n

(
n− 1

k

)
pk(1− p)n−1−k ≤ 2

nc−1

(nep
k

)k
.

Let
Ic = [c0 log n,∆0],

where ∆0 = (c + 10) log n. The previous lemma shows that whp all vertex degrees lie in Ic.
The next lemma gives bounds the value of D(k) in terms of D(k) for various ranges of k ∈ Ic.
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Lemma 4. Let

K0 = {k ∈ Ic : D(k) ≤ (log n)−2}.
K1 = {k ∈ Ic : (log n)−2 ≤ D(k) ≤ (log n)2}.
K2 = Ic \ (K0 ∪K1).

Then, whp

(a) For k ∈ K0, D(k) = 0.
For k ∈ K1, D(k) ≤ (log n)4, and

min{k ∈ K1} ≥ (log n)1/2 and |K1| = O(log log n).

If k ∈ K2 then 1
2
D(k) ≤ D(k) ≤ 2D(k).

(b) Let γc = (c−1) log(c/(c−1)). Let k1 = ⌈(c− 1) log n⌉, and let S1 = {v : d(v) = k1}, then

|S1| = (nep/k1)
k1n1−c+o(1) = nγc+o(1).

Proof An identical calculation is made in [10] for the degree sequence of the random
graph Gn,p. 2

The remainder of this section is devoted to proving that vertices of G which are close spatially
in I(d) = [0, 1]d, are close in edge distance in G. To do this we partition I(d) into sub-cubes
of various (appropriate) sizes, and examine the structure of the graph within and between the
sub-cubes. This partition approach is used in many of the proofs throughout this paper.

Let
ha = ϵar and hb = L1ha

where ϵa ≤ 1/4d is a small positive constant. We assume that ℓa = 1/ha is an even integer and
L1 is a large odd integer constant which divides ℓa, and thus ℓa/L1 is even. We will assume
that

L1ϵa ≫ 1 (3)

so that a ball of radius r fits well into a cube of side L1ha.

The size of L1 is constrained by the inequalities (6) and (7); where Γd is given by (4) and the
parameter L of inequality (7) satisfies (5).

We partition I(d) into grids Ka, Kb where Ka, Kb are made up of cubes of side ha, hb and Ka

is a refinement of Kb. We assume that ϵa is small enough so that if x, y are in Ka-cubes that
share a (d− 1)-dimensional face then x, y are adjacent in G.
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Let B1, B2, . . . , BM , M = Ω(n/ log n) be an enumeration of the Kb-cubes. The aim of the
next few lemmas is to show that whp we can choose a Ka-cube Ai inside each Bi such that
each Ai contains Ω(log n) members of V (we say Ai is a heavy sub-cube). Furthermore, if
Bi, Bj share a (d − 1)-dimensional face, then there is a sequence of 3L1 + 1 heavy Ka-cubes
X0, X1, . . . X3L1 such that (i) X0 = Ai and X3L1 = Aj and (ii) Xi, Xi+1 share a (d − 1)-
dimensional face for 0 ≤ i < 3L1. L1 is some sufficiently large constant. In other words, we
find a large d-dimensional grid-like structure with vertices represented by the Ai and edges
represented by a sequence of 3L1 + 1 heavy cubes. Furthermore, every other vertex will be
within O(1) distance of this “grid”.

Each Ka-cube is labeled by a d-tuple in [ℓa]
d. Given a Kb-cube B we define a line of B to be

a set of L1 Ka-cubes of B, where the labels are constant except for exactly one index. A slice
of B is a set of Ld−1

1 Ka-cubes of B, where the labels are constant on exactly one index. A
slice is extreme if contains a (d− 1)-dimensional face of B. Given a line of B, its two ends are
the two Ka-cubes lying in extreme slices.

If we fix a Ka-cube A, then the number of points in V that are in A is distributed as
Bin(n, α log n/n) where α = cϵda/Υd. A cube is light if it contains fewer than ϵℓα log n points
in V where ϵℓ ≤ c0/2c is a small constant, otherwise it is heavy. If C is an arbitrary union of
Ka-cubes A1, A2, . . . , Ak then heavy(C) = {Ai : Ai is heavy}.

Given a Ka-cube A, let KL(A) be a cube of side Lha with A at its centre (assuming that L is
an odd integer). Consider KL(A) to be partitioned into Ld Ka-cubes.

Lemma 5. Suppose that L = O(1). Let

Γd = 20Υdϵ
−d
a . (4)

Then whp there does not exist a Ka-cube A such that KL(A) contains Γd light Ka-cubes

Proof The number of points of V in a set of t Ka-cubes is distributed as the binomial
Bin(n, tα log n/n). If they are all light then this number is less than tα log n/2. Using Chernoff
bounds, we see that the probability that KL(A) contains at least t ≥ Γd light Ka-cubes is at
most (

Ld

t

)
e−tα logn/8 ≤ (Ld n−cϵda/(8Υd))t ≤ n−2.

There are O(n) Ka-cubes and the claim follows.
2

We use the following result, which is part of Lemma 9.9 of Penrose [21]: Let BZ(n) = [n]d and
let A be a subset of BZ(n). We assume a graph structure with vertices [n]d, and where two
vertices are adjacent if their Hamming distance is one. The external vertex boundary ∂+B(n)A

is the set of vertices in BZ(n) \ A which are adjacent to some x ∈ A.
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Lemma 6. If A ⊆ [n]d and |A| ≤ 2nd/3 then

|∂+B(n)A| ≥ (2d)−1(1− (2/3)1/d)|A|(d−1)/d.

2

Fix a cube C that is the union of Ka-cubes and is of side Lha, L = O(1). Consider the graph
HC with vertex set heavy(C) and where two vertices of HC are adjacent if the corresponding
cubes share a (d− 1)-dimensional face. Let κ1(HC) denote the size of the largest component
of HC . We a somewhat loosely refer to this as “the largest component of C”.

Lemma 7. Whp
κ1(HC) ≥ Ld − γΓ2

d

for some γ = γ(d) ≥ 1.

Proof It follows from Lemma 5 that |V (HC)| = |heavy(C)| ≥ Ld−Γd. LetW1,W2, . . . ,Ws

be the components of HC . Suppose that some r-subset of componentsW1, ...,Wr satisfiesW =⋃r
i=1Wi where |W | = w ≤ Ld/2. Lemma 6 implies that W has at least a1w

(d−1)/d neighbours
for some a1 = a1(d). As these must all be light this implies that Γd ≥ a1w

(d−1)/d ≥ a1w
1/2

and so w ≤ a−2
1 Γ2

d and the claim follows. 2

Recall that hb = L1ha defines the side length of the Kb-cubes. Let A be the centre Ka-cube
of a Kb-cube B. We introduce a new quantity L and define K∗

L(B), the L-centre of B, to be
KL(A). If F is an extreme slice of B, then define its L-centre as follows: If X is the centre
Ka-cube of F then K∗

L(F ) = F ∩KL(X).

A line Λ of B containing a cube Â ∈ K∗
L(B) is good if it satisfies the following conditions:

1. All its Ka-cubes are in κ1(HB).

2. Let A1, A2 be the Ka-cubes at the ends of Λ. Let Fi be the extreme slice containing
Ai. Let F

∗
i = K∗

L(Fi). Let H
∗
i be the sub-graph of HB induced by F ∗

i . We require that
Ai ∈ κ1(H

∗
i ) for i = 1, 2.

We say that a Ka-cube Â is good if Â ∈ K∗
L(B) ∩ κ1(HB) and if the d lines through Â are

good. A good cube Â is useable if all Ka-cubes within distance 10 of Â are good.

Lemma 8. K∗
L(B) contains at least Ld − (2d)11LγΓ2

d useable cubes, whp.

Proof Let B be a Kb-cube. Every useable sub-cube of B lies in κ1(HB). The number of
lines containing a light cube of B is at most dΓd. The number of lines with an end-cube in
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the L-centre of its face that violate Condition 2 of goodness is at most 2d× γΓ2
d−1. (We have

applied Lemma 7 to the F ∗
i of this condition).

Each cube has at most (2d)10 cubes within distance 10. So the number of non-useable cubes
in the L-centre is at most L(2d)10(dΓd + 2dγΓ2

d−1). 2

We make L large enough so that

Ld − (2d)11LγΓ2
d > Ld/2 (5)

and then we can apply Lemma 8 to show there are many useable cubes. We also assume that

L1 ≥ Ld. (6)

Finally, Lemma 10 below, requires the following lower bound on L1:

L1 ≥ 3d(Γd + γΓ2
d)/ϵa. (7)

Let B1, B2, . . . , BM , M = Ω(n/ log n) be an enumeration of the Kb-cubes. Our grids define
bipartite graphs, this is why we chose ℓa, ℓa/L1 even. Thus each cube will have a parity, with
neighbouring cubes having different parity. Similarly, the Ka sub-cubes of each Bi have a
parity. We choose a useable cube Ai in each Bi, i = 1, 2, . . . ,M , where Ai is chosen to have
the same parity as Bi.

In what follows, by a path, we mean a sequence of Ka-cubes (the path vertices) with consec-
utive cubes sharing a (d− 1)-face.

Lemma 9. If Kb-cubes Bi, Bj share a (d− 1)-dimensional face, then there is a path P (i, j) of
length 3L1 of heavy cubes joining Ai and Aj, where Ai, Aj are useable cubes, as defined above.
These paths are pair-wise internally vertex disjoint.

Proof First define a path Q(i, j) as follows: Start at Ai and follow the line Λi of cubes
to the face separating Bi and Bj. Suppose this ends in the cube Si. Do the same for Aj. Now
choose a cube S in κ1(F

∗
i ) that shares a (d−1)-face with a cube S ′ in κ1(F

∗
j ). This is possible

if L is large enough. Q(i, j) consists of Λi, then a path from Si to S inside κ1(F
∗
i ), then the

edge to S ′, then a path from S ′ to Sj inside κ1(F
∗
j ) and finally the line Λj in the direction

Sj to Aj. The Q(i, j) are internally vertex disjoint by construction and have odd length at
most 2L1 + Ld ≤ 3L1, from (6). The odd length follows from the fact that the parities of
Bi, Bj differ. We now add to Q(i, j) to bring its length up to 3L1. Suppose Q(i, j) has length
3L1 − 2t where t is a positive integer. Suppose that Q(i, j) begins with cubes Ai, S1, S2. We
will replace the edge (S1, S2) by a path of length 2t + 1. Suppose that we number the 2d
coordinate directions as ±1,±2, . . . ,±d. Suppose that Q(i, j) starts in direction +k. If t = 1
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we replace (S1, S2) by (S1, T1, T2, S2) where Tl is the neighbour of Sl in direction +(k + 1).
Otherwise, let T ′

l be the neighbour of Tl in the direction +(k + 1). We can now construct a
path S1, T1, T

′
1, T

′
2, Ph, T2, S2 where Ph is a path of length 2h + 1, 0 ≤ h ≤ (L1 − L)/2. The

path Ph goes out from T ′
2 for h steps in direction +k, then makes a step in direction −(k+1)

and then returns to T2 via h steps in direction −k. This path will only use heavy cubes, by
the definition of useable. This suffices for 2h + 4 = 2t provided t ≤ L1 − L + 2. For larger
t we will have to go out further in the direction +(k + 1) and use two or three paths in the
direction +k. Our choice of directions will maintain disjointness.

2

We now consider points that do not lie in a cube of κ1(HB) for any B in the Kb dissection of
I(d).

Lemma 10. For v ∈ V , let C
(b)
v be the Kb-cube containing v in the Kb dissection of I(d) and

let C
(a)
v be the Ka-cube containing v in the Ka dissection of C

(b)
v . Then, there exists a Kb-cube

Bi such that

(a) v is at G-distance ≤ 3d(Γd + γΓ2
d) from κ1(HBi).

(b) v is at G-distance O(1) from any point w ∈ V in Bi.

Proof Let ℓ = 3d(Γd + γΓ2
d). Fix v ∈ V lying in the cube C

(a)
v and let P = (v0 =

v, v1, . . . , vk) be a shortest path in G from v to a point in an HBi . Here we are assuming that
G is connected, which it is whp.

We can assume that the Ka-cubes that contain these vi are distinct, otherwise the path can
be shortened. Given (7) we can see that k ≤ ℓ. Indeed, if ℓ < k then (7) implies that the sub-

path (v0, v1, . . . , vℓ) stays inside the ≤ 3d Kb-cubes that touch C
(b)
v . It follows from Lemmas 5

and 7 that at least one of Ka-cubes containing one of the v1, v2, . . . , vℓ is in the largest heavy
component of its Kb-cube. This verifies k < ℓ and also proves part (a). Once we reach the
largest component of Bi, we can reach a vertex in Ai in O(1) steps, which proves part (b). 2

3 Estimating first visit probabilities

In this section we describe the main analytical tool we use to compute the cover time. We
use the approach of [8, 9, 11, 12]. Let G denote a fixed connected graph, and let u be some
arbitrary vertex from which a walk Wu is started. Let Wu(t) be the vertex reached at step t,

let P be the matrix of transition probabilities of the walk, and let P
(t)
u (v) = Pr(Wu(t) = v).

Let π be the steady state distribution of the random walk Wu. Let πv = π(v) denote the
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stationary distribution of the vertex v. For an unbiased ergodic random walk on a graph G
with m = m(G) edges, πv =

d(v)
2m

, where d(v) denotes the degree of v in G.

Let d(t) = maxu,x∈V |P (t)
u (x)− πx|, and let T be such that, for t ≥ T

max
u,x∈V

|P (t)
u (x)− πx| ≤ n−3. (8)

It follows from e.g. Aldous and Fill [1] that d(s+ t) ≤ 2d(s)d(t) and so for k ≥ 1,

max
u,x∈V

|P (kT )
u (x)− πx| ≤

2k−1

n3k
. (9)

Now fix u ̸= v ∈ V . Next, let rt = Pr(Wv(t) = v) be the probability that this walk returns
to v at step t. Let

RT (z) =
T−1∑
j=0

rjz
j. (10)

For a large constant K > 0, let

λ =
1

KT
. (11)

For t ≥ T , let At(v) be the event that Wu does not visit v in steps T, T + 1, . . . , t The vertex
u will have to be implicit in this definition. The following was proved in [11].

Lemma 11. Suppose that

(a) For some constant θ > 0, we have

min
|z|≤1+λ

|RT (z)| ≥ θ.

(b) Tπv = o(1) and Tπv = Ω(n−2).

Let
pv =

πv
RT (1)(1 +O(Tπv))

,

where RT (1) is from (10).

Then for all t ≥ T ,

Pr(At(v)) =
(1 +O(Tπv))

(1 + pv)t
+O(Te−λt/2). (12)

The evaluation of RT (z) at z = 1 occurs frequently in our calculations in this paper. For the
rest of the paper u, v will not be fixed and it is appropriate to replace the notation RT (1) by
something dependent on v. We use the notation Rv. Our next two tasks are to estimate T
and the Rv.
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4 Mixing time of the random walk

We need two basic results on mixing times. These results and the appropriate related defini-
tions can be found in e.g. Lovász [20], and Sinclair [22] respectively.

First let λmax be the second largest eigenvalue of the transition matrix P . Then,

|P (t)
u (x)− πx| ≤

(
πx
πu

)1/2

λtmax ≤ ((c+ 10)/c0)
1/2λtmax. (13)

Next, for each x ̸= y ∈ V let γxy be a canonical path from x to y in G. Then, we have that

λmax ≤ 1− 1

ρ
, (14)

where

ρ = max
e={x,y}∈E(G)

1

π(x)P (x, y)

∑
γab∋e

π(a)π(b)|γab|, (15)

and |γab| is the length of the canonical path γab from a to b.

Consider the Kb-grid of Section 2. It will help to fix a collection of points xi ∈ Ai ∩ V for
i = 1, 2, . . . ,M .

Lemma 12.
1− λmax = Ω̃

(
n−2/d

)
.

Proof We first define canonical paths between the xi. We can in a natural way express
xi = y(j1, j2, . . . , jd) where 0 ≤ jt < 1/hb for 1 ≤ t ≤ d. The path from y(j1, j2, . . . , jd) to
y(k1, k2, . . . , kd) goes

y(j1, j2, . . . , jd) ↭ y(j1 + 1, j2, . . . , jd) ↭ · · · , y(k1, j2, . . . , jd) ↭
y(k1, j2 + 1, . . . , jd) ↭ · · · ↭, y(k1, k2, . . . , kd).

The ↭ represents a path in G that follows the sub-cubes of a P (i, j), choosing one vertex
from each Ka-cube as necessary.

Thus we first increase the first component (mod 1/hb) until it is k1 and then do the same
for the second and subsequent components. Each such path has length at most 3dL1/hb =
O(1/r). If we fix a grid edge e (really an edge of a path ↭) joining y(j1, . . . , jt, . . . , jd) to
y(j1, . . . , jt+1, . . . , jd) then the number of paths through e is O(h−d−1

b ); any such path starts
at y(l1, . . . , lt, jt+1, . . . , jd) and ends at y(j1, . . . , jt−1, l

′
t, . . . , l

′
d) for some l1, . . . , lt, l

′
t, . . . , ld.

We obtain canonical paths for every pair of vertices by using Lemma 10 i.e. we connect each
point x of V to its closest xi = ϕ(x). Each xi is chosen by O(log n) points in this way. Using
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Chernoff bounds, we bound the number of points in V at G-distance O(1) (Lemma 10) from
any xi. Our path from x to y goes x to ϕ(x) to ϕ(y) to y. After this we find that each path
has length O(1/r) and each edge is in Õ

(
1/rd+1

)
paths. It follows from (15) that

ρ = Õ
(
n · 1 · r−d−1 · n−2 · r−1

)
= Õ (() 1/(nrd+2)) = Õ

(
n2/d

)
and the lemma follows from (14). 2

Applying (13) we see that we can take

T = Õ
(
n2/d

)
(16)

when we use Lemma 11.

We note that Boyd, Ghosh, Prabhakar and Shah [6] and Bar-Yossef, Friedman and Kliot [5]
have proved tight results on the mixing time for p ≥ C log n/n and C sufficiently large.

5 Expected number of returns during the mixing time

etc.

Having obtained a good enough bound on T , we next show that whp Rv = 1 + o(1) for all
v ∈ V , and that the conditions of Lemma 11 hold.

For a set of vertices B, the escape probability pesc(a,B), is the probability that a random walk
leaving a does not return to a before reaching B. This probability is given by

pesc(a,B) =
1

d(a)REFF(v,B)
, (17)

where REFF(a,B) is the effective resistance between a and B in an electrical network with all
edges having resistance one, see for example Doyle and Snell [13].

Thus Rv(B), the expected number of returns to v before reaching B is given by

Rv(B) =
1

pesc(v,B)
= d(v)REFF(v,B).

Raleigh’s Theorem (see e.g. [13]), states that deleting edges increases effective resistance.
Thus, provided we do not prune edges incident with vertex v, edge deletion increases Rv(B).

We will identify a set Uv such that Wv is very likely to enter Uv before returning to v and
such that if x ∈ Uv then Wx is unlikely to visit v within time T . We deduce from this the
Rv = 1 + o(1).

13



5.1 The probability a walk visits fixed vertex during T

For x, y ∈ V we let
η(x, y) = Pr(∃ 1 ≤ t ≤ T : Wx(t) = y). (18)

We aim to show that if y is fixed, then η(x, y) = o(1) for almost all choices of x.

Given ϵ > 0, let
Bϵ(x) = {y ∈ V : η(y, x) ≥ ϵ} .

By stationarity, for fixed t, ∑
y∈V

πyPr(Wy(t) = x) = πx.

Thus

Tπx =
∑

1≤t≤T

∑
y∈V

πyP
(t)
y (x)

=
∑
y∈V

πy
∑

1≤t≤T

P (t)
y (x)

≥
∑
y∈V

πyη(y, x)

≥
∑

y∈Bx(ϵ)

πyη(y, x)

≥ πminϵ|Bx(ϵ)|.

where πmin = min {πy : y ∈ V }.

Consequently,

|Bϵ(x)| ≤
Tπx
ϵπmin

.

It follows that if

Uv =

{
x : η(x, v) ≥ 1

(log n)2

}
then whp

|Uv| = Õ (T ) . (19)

5.2 The value of Rv

We next prove that

Lemma 13. Whp Rv = 1 +O(1/ log n) for all v ∈ V .
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Proof Fix v ∈ V and make v the centre of a Kb-cube Cv of side L1ha and partition I(d)
into Kb-cubes with Cv as one of the cubes. Let Ūv = V \ Uv.

Let Wv starting from v, and let pv be the probability of a first return to v within time T by
this walk. Then

1 ≤ Rv ≤
1

1− pv
, (20)

and
pv ≤ 1− pesc(v, Ūv) + 1/(log n)2. (21)

Given (21) and (20), it is sufficient to prove for all v ∈ V that whp

pesc(v, Ūv) = 1−O(1/ log n). (22)

We focus on proving (22). We construct a sub-graph G∗
v = (V ∗, E∗) of G. The set V ∗ =

W ∗
1 ∪W ∗

2 , where W
∗
1 , W

∗
2 are defined as follows. Let S denote the set of heavy Ka-cubes that

either (i) belong to a path P (i, j) as defined in Section 2 or (ii) are contained in Cv. For each
sub-cube in S, we choose an arbitrary subset of vertices of size ϵℓα log n, α = c/(Υdϵ

d
a) and

place these vertices in W ∗
1 . (See the definition of heavy above Lemma 5 for the values of these

constants.) Let W ∗
2 consist of v and all of its neighbours and any vertex that is in a heavy

cube of Cv. Note that (3) implies that v has no neighbours outside of Cv. Let E
∗ = E∗

1 ∪E∗
2 ,

where E∗
1 consists of those edges (x, y) where x, y are either contained in the same Ka-cube

of S, or are in distinct Ka-cubes of S which share a (d − 1)-dimensional face. The set E∗
2

consists of the edges of G that join two vertices of W ∗
2 .

The degree of v in G∗ is the same as its degree in G and G∗ is a sub-graph of G. From
Raleigh’s Theorem, we see that REFF(v, Ūv) ≤ R∗

EFF(v, Ūv). So if p∗esc(v, Ūv) is the probability
that the random walk W∗

v on G∗ visits Ūv before returning to v then

pesc(v, Ūv) ≥ p∗esc(v, Ūv).

So to prove (22), it suffices to prove

p∗esc(v, Ūv) = 1−O(1/ log n) (23)

Define a d-dimensional grid Γ̃ with M vertices as follows: There is one vertex of Γ̃ for each
of the Kb-cubes B1, B2, . . . , BM in the partition of I(d) and the cube Cv corresponds to the
origin of Γ̃.

With one small caveat, the random walk W∗
v on G∗ can be coupled with a random walk W̃

on Γ̃. Let V ∗
i = V ∗ ∩ Ai, for i = 1, 2, . . . ,M , where Ai is the useable Ka-cube of Bi chosen

according to Lemma 9. When W∗
v is inside V ∗

i , W̃ will be at the ith vertex of Γ̃. If W∗
v is

on a vertex of a path P (i, j) then Γ̃ stays at its current vertex. Since the paths P (i, j) are
all of the same length, and since the V ∗

i are all the same size, the next vertex that W∗
v visits

15



is equally likely to be any neighbour of the current vertex. The caveat concerns what to do
when W∗

v is inside Cv or equivalently when W̃ is at the origin. In this case it is not true that
the Kb-cube next visited by W∗

v is equally likely to be any neighbour. This turns out to be
unimportant, but it should be borne in mind in the following discussion.

Now focus on the random walk W̃ on the [N ]d, N = M1/d, where M = Ω(n/ log n). By
assumption, W̃ starts at the origin. Let J ∗

V =
{
i ∈ [M ] : V ∗

i ⊆ Ūv
}
.

We will prove that with probability bounded below by a constant γ > 0, W̃ will (for some
small constant c1) visit J ∗

V within c1N
2, steps, before returning to the origin. We will also

show that
Pr(W∗

v revisits v | W∗
v visits W ∗

2 ) ≤ ϵv = O(1/ log n). (24)

This bound includes the probability of a re-visit to v before W∗ first leaves Cv. Thus,

1− p∗esc(v, Ūv) ≤ ϵv

∞∑
i=0

i(1− γ)i <
ϵv
γ2

= O(1/ log n)

and this completes the proof of (23).

Now because d ≥ 3 there is a positive probability γ′ such that we have W̃(t′) ̸= 0 for 1 ≤
t′ ≤ t = c1N

2. This is because a random walk Ŵ on the infinite d-dimensional lattice is non-
recurrent. Thus there is a constant probability ζd > 0 that it does not return to the origin.
The symmetry of the grid ensures that this remains true, even if there is a non-uniform choice
of neighbour at the origin. If c1 is small, then there is a greater than 1 − ζd/2 chance that
Ŵ stays inside the box [−N/3, N/3]d for the first t steps and this implies that W̃ does not
return to the origin with probability at least ζd − ζd/2. Furthermore, if the walk does not
return to the origin, then its subsequent behaviour is precisely that of the standard walk,
given the neighbour X1 = W̃(1) of the origin that is first chosen. So we can now think of the
distribution of W̃ as that of a standard walk that first goes to X1 and then with probability
at least ζd/2 does not return to the origin. Now for a fixed x ∈ Nd we have

Pr(W∗
v (t) ∈ V ∗

x | no return, X1) = O(Pr(W∗
v (t) ∈ V ∗

x | X1)) = O(Pr(Ŵ(t) = x | X1).

For a random walk Ŵ on the d-dimensional lattice,

Pr(Ŵ(t) = x) = O(Pr(Ŵ(t) = 0)) = O(t−d/2).

This can be seen by considering the relevant multinomial terms (see e.g. page 329 of Feller
[17] for the case d = 3). Thus choosing t = c1N

2, as above, we have

Pr(W̃v(t) /∈ J ∗
V ) = Õ

(
|Uv|N−d) = Õ

(
TN−d) = O(1/ log n).

So

Pr

W∗
v (t) /∈

⋃
i∈J ∗

V

V ∗
i

 = Õ
(
|Uv|N−d) = Õ

(
TN−d) = O(1/ log n).

Now any constant γ < γ′ will suffice. 2

16



5.3 Proof of (24):

For this we consider the graph H with vertex set equal to the set of heavy Ka-cubes. Two
heavy cubes C1, C2 are defined to be adjacent in H if the centers of C1, C2 are no more than
r1 = r − 2d1/2ha apart. In which case, vi ∈ Ci ∩ V, i = 1, 2 implies that (v1, v2) ∈ G.

Lemma 14. The ball D(v, r) contains Υdϵ
−d
a (1 − ϵB) Ka-cubes, where 0 ≤ ϵB ≤ 1 − (1 −

2ϵad
1/2)d.

Proof The upper bound of Υdr
d

(ϵar)d
is the ratio of the volume of D(v, r) and the volume

of a Ka-cube. For the lower bound, consider D(v, r′), r′ = r1. Every Ka-cube that touches

D(v, r1) is contained entirely in D(v, r). There are at least
Υdr

d
1

(ϵar)d
cubes that touch D(v, r1)

and the lower bound follows. 2

It follows that the maximum degree in H satisfies

∆(H) ≤ Υdϵ
−d
a = O(1). (25)

Lemma 15. Whp, for every w ∈ V , D(w, r) contains at least one heavy cube.

Proof Let c′ = Υdr
d
1n/ log n = c(1 − 2d1/2ϵa)

d. If ϵa is sufficiently small, we will have
c′ > 1 and then whp (see proof of Lemma 3) D(w, r1) contains at least c

′
0 log n points of V

where c′0 ≥ c0/2, for all w ∈ V . There are at most Υdϵ
−d
a cubes contained entirely in D(w, r).

So, one of these cubes must contain at least c0ϵda
2Υd

log n points i.e. is heavy. 2

The following bound is somewhat crude, but it will suffice.

Lemma 16. Whp H contains no component with fewer than log log n vertices.

Proof Let δC = 1C is heavy for a Ka-cube C. Now let C be a fixed Ka-cube and S a set of

Ka-cubes with |S| = O(log n). If p = cϵda logn
Υdn

= α logn
n

, and n′ = n−O((log n)2) then

Pr(C is light | δs, s ∈ S) ≤
ϵℓα logn∑
i=0

(
n′

i

)
pi(1− p)n

′−i ≤ n−β, (26)

where β = α(1 − ϵℓ log(e/ϵℓ)) + o(1). (Strictly speaking we should also condition on the
event that every Ka-cube has O(log n) points of V . However, this happens with probability
1−O(n−K) where the constant K can be made as large as necessary).

Let N = 1/ϵar so that the grid Ka has Nd cubes.

Case 1: k ≤ (c− 1)Υdϵ
−d
a /2.
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The probability that H contains a component with k vertices is at most

o(1) + n(eϵ−da )kn−β(Υdϵ−da (1−ϵB)(r1/r)d−k) = o(1).

Explanation: The o(1) term on the LHS is the probability that there is a vertex of degree
exceeding (c + 10) log n. Choose a Ka-cube C and another k − 1 that make up a connected
component of H. There are at most (eϵ−da )k ways to choose a tree of cubes with root C.

Now let x be the centre of the first chosen cube. The term n−β(Υdϵ−da (1−ϵB)(r1/r)d−k) bounds the
probability that all of the other cubes in D(x, r1) are light. Note that β(Υdϵ

−d
a (1−ϵB)(r1/r)d−

k) > 1 if ϵℓ, ϵB = ϵB(ϵa) are sufficiently small.

Case 2: (c− 1)Υdϵ
−d
a /2 ≤ k ≤ log log n.

Choose k Ka-cubes C1, C2, . . . , Ck and let X =
⋃k
i=1Ci. Let Y be the subset of I(d) within

distance r2 = r1 − d1/2ha of X. Note that if y ∈ Y then it is within distance r1 of a centre of
a sub-cube of X. We claim that

vold(Y ) ≥ Υd(ρ+ r2)
d,

where ρ is the solution to kϵdar
d = Υdρ

d. This follows from the classical isoperimetric inequality
[4], where ρ is the radius of a ball with the same volume as X. Note that

ρ =

(
kϵdar

d

Υd

)1/d

=

(
k

Υd

)1/d

ϵar ≥
(
c− 1

2

)1/d

r.

Arguing as in Lemma 14 we see that if r3 = r2 − 2d1/2ha then Y \X contains at least

Υdϵ
−d
a

(
(1− ϵB)

(
ρ+ r3
r

)d
−
(ρ
r

)d)
≥ Υdϵ

−d
a (1− ϵB)(r3/r)

d (27)

Ka-cubes. So, the probability that H contains a component with k vertices is at most

n((c+ 10) log n)kn−β(Υdϵ−da (1−ϵB)(r3/r)d) = o(1).

The term n−β(Υdϵ−da (1−ϵB)(r3/r)d) bounds the probability that all the cubes mentioned in (27)
are light. 2

Now consider a random walk W∗ on G∗ that starts at some vertex w ∈ Cv. Note first that,
when at a neighbour of v, there is only an O(1/ log n) chance of returning to v at the next
step. Second note, that at any vertex, there is at least the chance ϵh = ϵℓα

c+10
of moving to

a heavy cube (Lemma 15). In particular, with probability at least ϵh − o(1) the next vertex
after w lies in a heavy cube and is not equal to v. Let P be some path in G∗ of length t0
where 20Υdϵ

−d
a ≪ t0 ≪ L1. We can use Lemma 16 to argue that P exists.
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Then note that with probability
(

ϵh
∆(H)

)t0
the next t0 steps of W∗ traverse the cubes of P . By

Lemma 5 we see that at least one of the cubes on P will be in κ1(Cv). Once we reach such

cube there is at least the chance ϵ∗ = ϵ
3d(Γd+cbΓ

2
d)+L

d
1+1

h of leaving Cv by going along the path
promised by Lemma 10 to a giant component and then going through this giant component
and leaving Cv. Thus the chance of returning to v is O(1/ log n) either when starting at v or
when returning to Cv.

This completes the proof of (24) and the lemma. 2

5.4 Conditions of Lemma 11

It is clear from (16) that Lemma 11(b) holds. To check condition (a) we see that if |z| ≤ 1+λ
then since by Lemma 13 we have Rv = 1 + o(1), we see, using (11) that∣∣∣∣∣

T−1∑
j=1

rjz
j

∣∣∣∣∣ ≤ (1 + λ)T
T−1∑
j=1

rt = (1 + λ)T (Rv − 1) ≤ e1/K(Rv − 1) = o(1).

So |RT (z)| ≥ 1−
∣∣∣∑T−1

j=1 rjz
j
∣∣∣ = 1− o(1) for |z| ≤ 1 + λ.

6 Cover time

From (12) of Lemma 11 we have that for all t ≥ T ,

Pr(At(v)) =
1 + o(1)(

1 + πv
Rv(1+O(Tπv))

)t+1 +O(Te−λt/2). (28)

An upper bound is obtained as follows: Let TG(u) be the time taken to visit every vertex of G
by the random walk Wu. Let Ut be the number of vertices of G which have not been visited
by Wu at step t. We note the following:

Pr(TG(u) > t) = Pr(Ut > 0) ≤ min{1,EUt}, (29)

Cu = ETG(u) =
∑
t>0

Pr(TG(u) > t) (30)

It follows from (29,30) that for all t

Cu ≤ t+ 1 +
∑
s>t

EUs ≤ t+ 1 +
∑
v∈V

∑
s>t

Pr(As(v)). (31)
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Let

t∗ =

(
c log

(
c

c− 1

))
n log n

and
t0 = (1− δ)t∗ and t1 = (1 + δ)t∗

where δ = o(1) but goes to zero sufficiently slowly that inequalities below are satisfied.

6.1 Upper bound on the cover time

For v ∈ V we have by Lemmas 11 and 13 that for s ≥ T

Pr(As(v)) = (1 + o(1)) exp {−(1 + o(1/ log n))πvs}+O(Te−Ω(s/T ))

and we note that

πv =
d(v)

2m
.

Then we find, using the whp bounds in Lemma 4,

Cu ≤ t1 + 1 + S1 + S2 +O(nT 2e−Ω(s/T )) (32)

where

Si =
∑
k∈Ki

D(k)
∑
s≥t1

exp

{
−(1− o(1))ks

2m

}
≤ 3m

∑
k∈Ki

D(k)

k
e−(1−o(1))kt1/2m

≤ 3m
∑
k∈Ki

D(k)

k

(
c− 1

c

)(1+δ/2)k

.

For the first term,

S1 ≤ 3m
∑
k∈K1

(log n)4

k

(
c− 1

c

)(1+δ/2)k

= o(t1) (33)

since D(k) ≤ (log n)4 and min{k ∈ K2} ≥ (log n)1/2.
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Continuing we get

S2 ≤ 6m

nc−1

∑
k∈Ic

(nep
k

)k (c− 1

c

)(1+δ/2)k

≤ 6m
∑
k∈Ic

e−δk/2c

= o(t1), (34)

where we have used the fact that (nep(c − 1))/(kc))k is maximized at k = np(c − 1)/c, and
δk/ log log n→ ∞ for k ∈ Ic.

It now follows from (32) – (33) that Cu ≤ t1 + o(t1).

6.2 Lower bound on the cover time

We can find a vertex u and a set of vertices S0 such that at time t0, the probability the
set S0 is covered by the walk Wu tends to zero. Hence TG(u) > t0 whp which implies that
CG ≥ (1− o(1))t∗.

We construct S0 as follows. Let k1 = (c − 1) log n be as defined in Lemma 4, and let
S1 = {v : d(v) = k1}. Let A = {(u, v) : u /∈ S1, v ∈ S1, η(u, v) ≥ 1/(log n)2}, where η(u, v)
is defined in (18). It follows from (19) that whp |A| = Õ (T |S1|). By simple counting, we
see that there exists u /∈ S1 such that | {v ∈ S1 : (u, v) ∈ A} | = Õ (T |S1|/n) = o(|S1|). We
choose such a u and let S2 = {v ∈ S1 : (u, v) /∈ A}. We then take an independent subset S0

of S2. Because the maximum degree of G is O(log n) we can choose |S0| = Ω(|S2|/ log n).

Let Bv be the event that Wu does not visit v in the time interval [1, T ]. Then, by our choice
of u, we see that for v ∈ S0,

Pr(Bv) ≥ 1− 1/(log n)2. (35)

We need to prove that

Pr(At0(v) | Bv) = (1 + o(1)) exp

{
−(c− 1)t0(1 + o(1))

cnRv(1 +O(Tπv))

}
= (1 + o(1))Pr(At0(v)). (36)

The proof of this requires just a small change to the proof of Lemma 11, which we include
as an appendix. (Equality is needed in (36). The reader will observe that Pr(At(v) | Bv) ≤
(1 + o(1))Pr(At(v)) follows immediately from (35)).

Then whp, if Z0 is the number of vertices in S0 that are not visited in time [1, t0],

E(Z0) ≥ A1
n(c−1) log(c/(c−1))

log n
exp

{
−(1 + o(1))

(c− 1)t0
cn

}
≥ A2n

1
2
δ(c−1) log(c/(c−1)) → ∞ (37)
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for some constants A1, A2 > 0.

We show next, for all v, w ∈ S0, that

η(v, w) = O(1/ log n). (38)

We define a new graph Gψ by identifying v, w and replacing them with a new node ψ. The
proof of Lemma 12 can be modified to show that the mixing time Tψ of Gψ will satisfy (16).
Indeed, we can assume that our choice of xi’s excludes v, w and then v, w can only appear as
endpoints of canonical paths. For a path from x to ψ we can then choose one of the already
constructed canonical paths from x to v or x to w.

Similarly, the proof of Lemma 13 can be modified to show that

pesc(ψ, Ūψ) = 1−O(1/ log n). (39)

Here Ūψ = Ūv ∩ Ūw and the probability is for a random walk in Gψ starting at ψ. Our
modification of Lemma 13 requires a random walk on the d-dimensional lattice, starting at
point x (a surrogate for v’s cube), to have positive probability of not returning to x or some
other fixed vertex y (a surrogate for w’s cube) and vice-versa. This is a simple consequence
of Pólya’s classic result.

Then
η(v, w) ≤ 2(1− pesc(ψ,Uψ)) +O(1/(log n)2) = O(1/ log n).

The term 2(1− pesc(ψ,Uψ)) arises as follows: Consider the random walk Wψ, conditioned on
moving to a neighbour of v at the first step. Up until the time that this walk returns to ψ it
behaves just like Wv. It has a probability 1− pesc(ψ,Uψ) of not entering Uψ before returning
to ψ and this can be inflated by a factor 2 to account for the initial conditioning. But then
Wv has a probability of at most 2(1− pesc(ψ,Uψ)) of avoiding Uψ before reaching v or w and
a fortiori it has a probability of at most 2(1− pesc(ψ,Uψ)) of avoiding Uψ before reaching w.
The term O(1/(log n)2) accounts for walks that reach Uψ before w.

Now for v, w ̸= u let

At(v, w) = At(v) ∧ At(w) and Bv,w = Bv ∧ Bw.

Then for v ̸= w,
Pr(Bv,w) ≥ 1−Pr(B̄v)−Pr(B̄w) ≥ 1− 2/(log n)2 (40)

and we will show that

Pr(At0(v, w) | Bv,w) ≤ A0Pr(At0(v))Pr(At0(w)). (41)

for all v, w ∈ S0, for some absolute constant A0 and

Pr(At0(v, w) | Bv,w) = (1 + o(1))Pr(At0(v, w)) = (1 + o(1))Pr(At0(v))Pr(At0(w)) (42)
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for almost all pairs (v, w) ∈ S0.

It then follows that
E(Z0(Z0 − 1)) ≤ (1 + o(1))E(Z0)

2

and so

Pr(Z0 ̸= 0) ≥ E(Z0)
2

E(Z2
0)

=
1

E(Z0(Z0−1))
E(Z0)2

+ (EZ0)−1
= 1− o(1)

from (37) and (42).

6.2.1 Proof of (41)

We argue that

Rψ ≤ Rv +Rw

2
+O(1/ log n) (43)

Walks in Gψ can be mapped to walks in G in a natural way. If the walk is not at ψ then it
chooses its successor with the same probability. When at ψ, with probability 1/2 it moves
to a neighbour of v and with probability 1/2 it moves to a neighbour of w. Returns to v, w
account for the term Rv+Rw

2
. We must also account for returns to ψ that come from walks

from v to w and vice-versa. This can be overestimated by Rvη(v, w) + Rwη(w, v), giving the
O(1/ log n) term.

Putting πv = πw = π0 = πψ/2, this implies that

πψ
Rψ

− πv
Rv

− πw
Rw

=
π0

RψRvRw

(2RvRw −Rψ(Rv +Rw))

≥ π0
RψRvRw

(
2RvRw −

(
Rv +Rw

2
+O(1/ log n)

)
(Rv +Rw)

)
=

π0
2RψRvRw

((Rv −Rw)
2 +O(1/ log n))

= O

(
1

n log n

)
. (44)

So, with Prψ referring to probability in the space of random walks on Gψ,

Prψ(At0(ψ)) = (1 + o(1)) exp

{
− t0πψ
(1 +O(Tπψ))Rψ

}
= (1 + o(1)) exp

{
−t0πv
Rv

}
exp

{
−t0πw
Rw

}
exp

{
O

(
t0

n log n

)}
= O(Pr(At0(v))Pr(At0(w))). (45)
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But, using rapid mixing in Gψ,

Prψ(At0(ψ)) =
∑
x̸=ψ

P
Tψ
ψ,u(x)Prψ(Wx(t− Tψ) ̸= ψ, Tψ ≤ t ≤ t0)

The term P
Tψ
ψ,u(x) is the probability that a walk on Gψ that starts at u will be at x after Tψ

steps.

=
∑
x̸=ψ

(
d(x)

2m
+O(n−3)

)
Prψ(Wx(t− Tψ) ̸= ψ, Tψ ≤ t ≤ t0)

=
∑
x ̸=v,w

(
P
Tψ
u (x) +O(n−3)

)
Pr(Wx(t− Tψ) ̸= v, w, Tψ ≤ t ≤ t0) (46)

= Pr(Wu(t) ̸= v, w, Tψ ≤ t ≤ t0) +O(n−2)

= Pr(At0(v, w)) +O(n−2). (47)

Equation (46) follows because there is a natural measure preserving map ϕ between walks in
G that start at x ̸= v, w and avoid v, w and walks in Gψ that avoid ψ. The map ϕ also shows
that

Pr(At0(v, w) ∧ Bv,w) = Prψ(At0(ψ) ∧ Bψ) = (1 + o(1))Prψ(At0(ψ) | Bψ). (48)

But the argument for (36) can be used to show that

Prψ(At0(ψ) | Bψ) = (1 + o(1))Prψ(At0(ψ)). (49)

Equation (41) follows from (45)–(49).

6.3 Proof of (42)

We get this sharpening of (41) whenever we can replace the O(1/ log n) in (43) by o(1/ log n).
This replacement can be done whenever we can replace O(1/ log n) in (38) by o(1/ log n). We
show that this can be done for almost all pairs v, w ∈ S0.

There is a very simple argument when c is sufficiently large. The size of S0 is nγc+o(1) whp
where γc = (c− 1) log

(
c
c−1

)
. For any fixed v ∈ S0 there are at most T (log n)2 vertices w such

that η(v, w) ≥ 1/(log n)2. If γc > 2/d then whp T (log n)2 = Õ(n2/d) = o(|S0|) and (42) holds.
For example, if c ≥ 2 then γc ≥ log 2 = .69314718 > 2/d for d ≥ 3.

So now we must consider the case where 1 < c ≤ 2. Let A denote the set of unordered pairs
v, w ∈ S0 such that either η(v, w) ≥ 1/(log n)2 or η(w, v) ≥ 1/(log n)2. To prove (42) it is
enough to show that

Pr(η(v, w) ≥ 1/(log n)2 | v, w ∈ S0, |v − w| ≥ r1/2) = o(1). (50)
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Here, if v = (v1, v2, . . . , vd) then |v| = (v21 + v22 + · · ·+ v2d)
1/2.

Note that the expected number of pairs v, w ∈ S0 such that |v−w| ≤ r1/2 can be bounded by
Õ
(
max

{
n2γc−1/2+o(1), 1

})
. So whp there are at most log n times this quantity. These pairs

can therefore be ignored in our verification of (42).

To prove (50) we choose two points v, w for which |v − w| ≥ r1/2, condition on v, w ∈ S0

and then bound Pr(η(v, w)) from below. We condition on v, w ∈ S0 by randomly placing k1
points into each of D(v, r), D(w, r). We then couple part of the remaining construction of G
along with the first T steps (x1, x2, ..., xT ) of the random walk Wv. We weaken xT = w to
xT ∈ D(w, r).

Let iv = max {i : xi ∈ D(v, 2r)}. Notice next that for i > iv, xi+1 is either (i) chosen from
some previously exposed point or (ii) randomly chosen from D(xi, r) and these latter choices
are made independently. Let J0 be the set of indices i > iv where a choice is made according
to (ii). Suppose now that i ∈ J0 and xi = (xi,1, xi,2, . . . , xi,d) and let yi,j = xi,j − xi−1,j. The
yi,j, j = 1, 2, . . . , d are not independent. Their sum of squares is at most r2. On the other
hand, if B(xi) is the cube of side 2r/d1/2 with centre xi, then B(xi) is contained in D(xi, r).
Conditional on xi ∈ B(xi−1), the yi,j, j = 1, 2, . . . , d are independent. Let J1 be the indices
i ∈ J0 for which xi ∈ B(xi−1). Then let It = [t] ∩ J1 for t ≥ 0.

The size of It is Bin(|J0 ∩ [t]|, q) where q is bounded away from 0. Furthermore, to reach
w in t steps, we must have |J0 ∩ [t]| ≥ |v − w|/r − O(log n) ≥ r−1/2 − O(log n). So, by use
of the Chernoff bounds, we can assume that |I1| ≥ r−1/2q/2. Now fix I1 and condition on
the values yi,j, i /∈ I1 and let Zj =

∑
i∈I1 yi,j, j = 1, 2, . . . , d. Now we have Z1, Z2, . . . , Zd

independent. Fix j. Then Zj =
∑s

l=1 ξl where whp s ≥ r−1/2q/2 and ξl is uniform in
[−r/d1/2, r/d1/2]. As such it is well approximated by a normal distribution. In particular we
can use the Berry-Esseen inequality, see for example [14]:

Let X1, X2, . . . , XN be i.i.d. with E(Xi) = 0,E(X2
i ) = σ2 and E(|Xi|3) = ρ <∞. If FN(x) is

the distribution of (X1+X2+ · · ·+XN)/(σ
√
N) and N (x) is the standard normal distribution,

then

|FN(x)−N (x)| ≤ 3ρ

σ3
√
N
.

To have xt ∈ D(w, r) each Zj will have to have to take a value in an interval Aj of length
at most 2r. This interval being determined by the values xi, i /∈ It. It follows from the Berry-
Esseen inequality that Pr(Zj ∈ Aj) = O(t−1/2). (We have σ = Ω(r) and ρ = O(r3)). Hence,
for some constant C,

E(η(v, w)) ≤ C
T∑

t=r−1/2q/2

t−d/2 = O(r1/4)

and (50) and (42) follow.
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A Proof of (36)

Fix two vertices u, v. For t ≥ T let ht = Pr(Wu(t) = v | Bv) be the conditional probability
that the walk Wu visits v at step t. Let

H(z) =
∞∑
t=T

htz
t (51)

generate ht for t ≥ T .

Next, considering the walk Wv, starting at v, let rt = Pr(Wv(t) = v) be the probability that
this walk returns to v at step t = 0, 1, .... Let

R(z) =
∞∑
t=0

rtz
t

generate rt. Our definition of return involves r0 = 1.
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For t ≥ T let ft = ft(u→v) be the probability that the first visit of the walk Wu to v in the
period [T, T + 1, . . .] occurs at step t, conditional on the occurrence of Bv. Let

F (z) =
∞∑
t=T

ftz
t

generate ft. Then we have
H(z) = F (z)R(z). (52)

Write

R(z) = RT (z) + R̂T (z) +
πvz

T

1− z
, (53)

where RT (z) is given by (10) and

R̂T (z) =
∑
t≥T

(rt − πv)z
t

generates the error in using the stationary distribution πv for rt when t ≥ T . Similarly,

H(z) = ĤT (z) +
πvz

T

1− z
(54)

where
ĤT (z) =

∑
t≥T

(ht − πv)z
t.

Equation (9) implies that the radii of convergence of both R̂T and ĤT exceed 1+2λ. (Although
the ht are conditional probabilities, we can still use (9) for t ≥ 2T ). Moreover, |z| ≤ 1 + λ,

|R̂T (z)| = o(n−2). (55)

|ĤT (z)| = o(1). (56)

Equation (55) follows directly from the definition of T . This also implies that∑
t≥2T

|ht − πv||z|t = o(n−2).

Furthermore,
∑2T

t=T πv|z|2T = O(Tπv) = o(1) and

2T∑
t=T

ht|z|t ≤ (1 + λ)2T
2T∑
t=T

ht ≤ (1 + λ)2TPr(Bv)−1max
u′

Ru′,v = o(1)

where for u′ ̸= v we let Ru′,v denote the expected number of visits by Wu to v up to time T .

Here Pr(Bv)−1 handles the conditioning on Bv and maximising over u′ is maximising over
Wu(T − 1).
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Using (53), (54) we rewrite F (z) = H(z)/R(z) from (52) as F (z) = B(z)/A(z) where

A(z) = πvz
T + (1− z)(RT (z) + R̂T (z)), (57)

B(z) = πvz
T + (1− z)ĤT (z). (58)

For real z ≥ 1 we have
RT (1) ≤ RT (z) ≤ RT (1)z

T .

Let z = 1 + βπv, where β = O(1). Since Tπv = o(1) we have

RT (z) = RT (1)(1 +O(Tπv)).

Tπv = o(1) and Tπv = Ω(n−2) and (55) and RT (1) ≥ 1 imply that

A(z) = πv(1− βRT (1) +O(Tπv))

It follows that A(z) has a real zero at z0, where

z0 = 1 +
πv

RT (1)(1 +O(Tπv))
= 1 + pv, (59)

say. We also see that
A′(z0) = −RT (1)(1 +O(Tπv)) ̸= 0 (60)

and thus z0 is a simple zero (see e.g. [7] p193). The value of B(z) at z0 is

B(z0) = πv(1 + o(1)) ̸= 0. (61)

We have used (56) here.

Thus,
B(z0)

A′(z0)
= −(1 +O(Tπv))pv. (62)

Thus (see e.g. [7] p195) the principal part of the Laurent expansion of F (z) at z0 is

f(z) =
B(z0)/A

′(z0)

z − z0
. (63)

To approximate the coefficients of the generating function F (z), we now use a standard tech-
nique for the asymptotic expansion of power series (see e.g.[23] Th 5.2.1).

We prove below that F (z) = f(z) + g(z), where g(z) is analytic in Cλ = {|z| ≤ 1 + λ} and
that

M = max
z∈Cλ

|g(z)| = O(Tπv). (64)
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Let at = [zt]g(z), then (see e.g.[7] p143), at = g(t)(0)/t!. By the Cauchy Inequality (see e.g.
[7] p130) we see that |g(t)(0)| ≤Mt!/(1 + λ)t and thus

|at| ≤
M

(1 + λ)t
= O(Tπve

−tλ/2).

As [zt]F (z) = [zt]f(z) + [zt]g(z) and [zt]1/(z − z0) = −1/zt+1
0 we have

[zt]F (z) =
−B(z0)/A

′(z0)

zt+1
0

+O(Tπve
−tλ/2). (65)

Thus, we obtain

[zt]F (z) = (1 + o(1))
pv

(1 + pv)t+1
+O(Tπve

−tλ/2).

Substituting RT (1) = 1 + o(1) and πv ∼ c−1
cn

completes the proof of (36).

A.1 Proof of (64)

Now M = maxz∈Cλ |g(z)| ≤ max |f(z)| + max |F (z)| = O(Tπv) + max |F (z)|, where F (z) =
B(z)/A(z). On Cλ we have, using (55)-(58),

|F (z)| ≤ O(πv)

λ|RT (z)| −O(Tπv)
= O(Tπv).

We now prove that z0 is the only zero of A(z) inside the circle Cλ and this implies that
F (z) − f(z) is analytic inside Cλ. We use Rouché’s Theorem (see e.g. [7]), the statement of
which is as follows: Let two functions ϕ(z) and γ(z) be analytic inside and on a simple closed
contour C. Suppose that |ϕ(z)| > |γ(z)| at each point of C, then ϕ(z) and ϕ(z) + γ(z) have
the same number of zeroes, counting multiplicities, inside C.

Let the functions ϕ(z), γ(z) be given by ϕ(z) = (1− z)RT (z) and γ(z) = πvz
T +(1− z)R̂T (z).

|γ(z)|/|ϕ(z)| ≤ πv(1 + λ)T

λθ
+

|R̂T (z)|
θ

= o(1).

As ϕ(z) + γ(z) = A(z) we conclude that A(z) has only one zero inside the circle Cλ. This is
the simple zero at z0. 2
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