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Abstract

Given a graph G and an integer k, two players alternatively color the edges of

G using k colors so that adjacent edges get different colors. The game chromatic

index χ′
g(G) is the minimum k for which the first player has a strategy that ensures

that all edges of G get colored.

The trivial bounds are ∆(G) ≤ χ′
g(G) ≤ 2∆(G)−1, where ∆(G) denote the max-

imal degree of G. Lam, Shiu, and Xu and, independently, Bartnicki and Grytczuk

asked whether there is a constant C such that χ′
g(G) ≤ ∆(G) + C for every graph

G. We show that the answer is in the negative by constructing graphs G such that

χ′
g(G) ≥ 1.008∆(G) and ∆(G) → ∞. On the other hand, we show that for every

µ > 0 there is ε > 0 such that for any graph G with ∆(G) ≥ (1/2 + µ)v(G) we

have χ′
g(G) ≤ (2 − ε)∆(G).
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1 Introduction

Let a graph G and a positive integer k be given. Two players, called Alice and Bob,

alternatively color a previously uncolored edge of G in one of the colors from [k] =

{1, . . . , k} so that no two adjacent edges have the same color. Thus, at any moment of

the game, the current partial coloring of E(G) is a proper edge coloring. The game can

end in two different ways. Either all edges of G are colored (and then Alice is the winner)

or the uncolored edge picked by a player cannot be properly colored (and then Bob wins).

Let us agree that Alice starts the game. (In fact, all theorems stated in this paper

will remain valid for the version where we let Bob start the game.) The game chromatic

index χ′
g(G) is the smallest k such that Alice has a winning strategy. This parameter

has been previously studied by Lam, Shiu and Xu [9], Cai and Zhu [6], Erdős, Faigle,

Hochstättler, and Kern [8], Andres [1], Bartnicki and Grytczuk [2], and others.

This is a variation of the game chromatic number which is analogously defined for the

game where nodes (not edges) are colored. The latter parameter is much better studied;

we refer the reader to Bohman, Frieze, and Sudakov [5] for some history and references

on the game chromatic number.

The trivial bounds on the game chromatic index are

∆(G) ≤ χ′
g(G) ≤ 2∆(G) − 1, (1)

where ∆(G) denotes the maximal degree of G.

Unfortunately, the game chromatic index seems hard to analyze. For example, a

player’s move can easily harm that player later in the game. Also, it is not clear if there

is any useful ‘potential’ function that measures a player’s progress. Therefore, we settle

for the modest task of getting a constant factor improvement over the trivial bounds (1)

when ∆(G) is large.

Lam, Shiu and Xu [9, Question 1] and, independently, Bartnicki and Grytczuk [2,

Problem 1] asked whether there is a constant C such that χ′
g(G) ≤ ∆(G) + C for an

arbitrary graph G. In Section 2 we show that the answer to this question is in the

negative. Namely, we construct, for every sufficiently large d, a graph G with ∆(G) ≤ d

and χ′
g(G) ≥ 1.008 d.

On the other hand, the lower bound in (1) is attainable for some graphs. A trivial

example is G = K1,d. However, we believe that large minimal degree δ(G) will force

χ′
g(G) to be well above δ(G). Namely, we make the following conjecture.
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Conjecture 1 There are ε > 0 and d0 such that any graph G with δ(G) ≥ d0 satisfies

χ′
g(G) ≥ (1 + ε)δ(G).

Of course, the conclusion of Conjecture 1 is interesting only when ∆(G) < (1+ε)δ(G),

that is, when all degrees are fairly close to each other.

From the other direction, we show in Section 3 that for any µ > 0 there is ε > 0 such

that any graph G with ∆(G) ≥ (1/2 + µ)v(G) satisfies χ′
g(G) < (2 − ε)∆(G). (Here,

v(G) denotes the number of vertices of G.) Surprisingly, this is done by letting Alice play

randomly, see Section 3 for details. While probabilistic intuition and reasoning often help

in the analysis of combinatorial games, see e.g. Beck [3], there are not many examples

where non-trivial results are obtained by actually introducing randomness into a player’s

strategy. Such examples were discovered by Spencer [11], Bednarska and  Luczak [4],

Pluhár [10], and others. Our proof of the upper bound fits into this category.

The restriction ∆(G) ≥ (1/2 + µ)v(G) in the above result is needed in order to make

our proof work. We do not believe that there is anything special about the constant 1/2

here. We conjecture that a much stronger claim is true.

Conjecture 2 There is ε > 0 such that for an arbitrary graph G we have χ′
g(G) ≤

(2 − ε)∆(G).

2 Lower Bounds

Theorem 3 For every sufficiently large integer d, there is a graph G with maximum

degree at most d such that χ′
g(G) > 1.008 d.

Proof. Let β = 4/7, α = 1 − β, and λ = 1/25. Let d be sufficiently large and let

n = ⌊d/β − 3d2/3⌋.

We define a graph G of order n and maximum degree at most d as follows. Take two

disjoint sets A and B of sizes ⌈αn⌉ and ⌊βn⌋ respectively. The vertex set of G is A ∪ B.

Put a complete bipartite graph between A and B. Let A be an independent set. Let

G[B], the subgraph of G induced by B, be a random graph with each pair of B being an

edge with probability p = 1 − α/β, independently of the other pairs.

Let the acronym whp (with high probability) mean ‘with probability 1 − o(1) as

n → ∞’.
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By the Chernoff bound [7], whp the G-degree of every x ∈ V (G), satisfies |d(x)−βn| ≤

n2/3. In particular, the maximal degree of G is at most d. Also, whp every subset X

of B spans at least p
(

|X|
2

)

− n5/3 edges. (Indeed, any fixed X violates this inequality

with probability o(2n) by the Chernoff bound.) Fix any G[B] that satisfies these two

conditions.

Let k ≤ 1.008d be an arbitrary integer and let κ = k/n. In order to prove Theorem 3

we have to show that Bob has a winning strategy for the pair (G, k). By (1), it is enough

to consider only those k that are at least ∆(G).

At the start of the game, Bob picks some l = ⌈λn⌉ special colors, say 1, . . . , l ∈ [k].

(Note that the assumption k ≥ ∆(G) implies that l ≤ k.) His strategy consists of two

stages. At each round of Stage 1, Bob tries to color some (arbitrary) edge inside B with

one of the special colors. If this is impossible (that is, the endpoints of every uncolored

edge of G[B] see all special colors between the two of them), then Stage 1 is over. In

Stage 2 Bob plays arbitrarily.

Let us show that Bob necessarily wins. Suppose on the contrary that all edges of G

get colored by the end of the game.

Let Stage 1 have τn2 rounds. Suppose that Alice plays τBn2 times inside B (and

(τ − τB)n2 times between A and B).

Let us analyze the moment when Stage 1 ends. Take any special color i ∈ [l]. Let

Xi ⊆ A ∪ B be the set of vertices that are adjacent to an edge of color i. Let µi =

|B \ Xi| /n. We have

p

(

µin

2

)

− n5/3 =

(

pµ2
i

2
+ o(1)

)

n2 ≤ τBn2 +
lµin

2
. (2)

Indeed, every edge of G[B \Xi], at least p
(

µin
2

)

− n5/3 edges by our choice of G[B], must

be colored. On the other hand, Bob can color at most lµin/2 edges of G[B \Xi] because

he uses only the l special colors in Stage 1 (and each color class is a matching).

Inequality (2), which is quadratic in µi, implies that

µi ≤
λ +

√

λ2 + 8pτB

2p
+ o(1). (3)

Also, we have

2τBn2 ≤
l

∑

i=1

(|Xi ∩ B| − 3|Xi ∩ A|) . (4)
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Indeed, Bob increases σ =
∑l

i=1(|Xi ∩ B| − 3|Xi ∩ A|) by 2 in each his move in Stage 1.

If Alice uses a special color on a G[A,B]-edge, then σ does not change in this round.

If Alice does something else, which happens at least τBn2 times, then σ increases by at

least 2 during the round.

For i ∈ [l], let Yi be the set of vertices covered by the edges of Color i after the game

ends. Let µn2 =
∑l

i=1 µin. At most µn2 edges can be colored with special colors in

Stage 2, because an edge colored i ∈ [l] in Stage 2 must intersect B \ Xi. (Recall that A

is an independent set in G.) Thus we have

l
∑

i=1

(|Yi ∩ B| − 3|Yi ∩ A|) ≥
l

∑

i=1

(|Xi ∩ B| − 3|Xi ∩ A|) − 2µn2. (5)

The total number of edges of special colors at the end of the game is, by (4) and (5),

1

2

l
∑

i=1

|Yi| =
1

2

l
∑

i=1

(|Yi ∩ A| + |Yi ∩ B|)

≤
2

3

l
∑

i=1

|Yi ∩ B| −
τB − µ

3
n2 ≤

2λβ

3
n2 −

τB − µ

3
n2.

Each of the remaining k − l colors is used on at most n/2 edges. Since the total

number of edges of G is (β/2 + o(1))n2, we have

2λβ

3
+

µ

3
−

τB

3
+

κ − λ

2
≥

β

2
+ o(1).

Re-arranging and using the definition of µ and Inequality (3), we obtain

κ

β
+ o(1) ≥ 1 +

2τB

3β
−

4λ

3
−

λ2 + λ
√

λ2 + 8pτB

3pβ
+

λ

β
. (6)

By taking the derivative with respect to τB of the right-hand side of (6), one can

conclude that the minimum over all real τB is attained when τB = 3λ2/(8p). Substituting

this into (6) and using the known values of the constants, we obtain that

κ

β
+ o(1) ≥

3781

3750
> 1.0082. (7)

This contradiction shows that Bob wins, finishing the proof of Theorem 3.

Remark. In order to have a rigorous proof of Theorem 3 checkable by hand, we used

rational numbers for all fixed constants. These choices are not optimal (given the stated
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inequalities) but are good rational approximations of such. In particular, the bound (7)

can be slightly improved. Further improvements can be obtained by using more sophisti-

cated strategies for Bob in Stage 1. Unfortunately, the analysis becomes too messy while

the new bounds seem still to be very close to 1. Therefore we settled for the current

version.

3 Upper Bounds

Here we are going to prove the upper bound on χ′
g promised in the Introduction. Our

result will be stronger if we give Bob the freedom to skip moves. Namely, we consider

the following new game, studied by Andres [1].

Let G and k be given. Bob and Alice alternatively make moves. Bob starts. In his

move, Bob can either properly color an uncolored edge or skip (that is, not color any edge

at all). Alice, however, always has to properly color an uncolored edge. As in the old

version, any moment of the game gives a partial proper coloring of E(G) and Alice wins

if the whole graph is colored at the end. Let the upper game chromatic number χ′
u(G)

be the smallest k such that Alice has a winning strategy.

Since Bob is allowed to miss his first turn, we have χ′
g(G) ≤ χ′

u(G) for any graph G.

Here we prove the following upper bound on χ′
u(G).

Theorem 4 For every µ > 0 there is ε > 0 such that any graph G with ∆(G) ≥ (1/2 +

µ)v(G) satisfies

χ′
u(G) ≤ (2 − ε)∆(G). (8)

The rest of Section 3 is dedicated to proving Theorem 4.

Let us first specify some notation we are going to use. We abbreviate an unordered

pair {x, y} as xy.

Suppose that we fix the players’ strategies and observe the game. Let us agree that

we immediately stop the game if there is an uncolored edge incident to all colors. (Then

no player will be able to color it and Bob automatically wins.) A round consists of a

move of Bob (possibly skipped) followed by a move of Alice. Let Ar and Br denote the

sets of edges colored by Alice and Bob respectively after the initial r rounds. If the

game ended earlier, before r full rounds were completed, let Ar and Br denote the final

edge-sets colored by Alice and Bob respectively.
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Let Cr = Ar ∪ Br consist of the colored edges after Round r. Let c : E(G) → [k] be

the (possibly partial) coloring constructed at the end of the game. Let C ′
r be the set of

colored edges before Alice’s move in Round r. For a vertex x of G, let Cr(x) be the set

of the colors of the Cr-edges incident to x:

Cr(x) = {c(xy) : xy ∈ Cr}.

The sets Ar(x), Br(x), and C ′
r(x) are defined analogously.

Proof of Theorem 4. We will use various positive constants, whose dependences are as

follows

µ ≫ c1 ≫ c2 ≫ c3 ≫ c4 ≫ c5 ≫ ε > 0,

where a ≫ b means that b is sufficiently small depending on a. It is enough to prove

Theorem 4 for all sufficiently large n. Indeed, for any order-n graph G we have ∆(G) ≤ n

and χ′
u(G) ≤ 2∆(G) − 1 ≤ (2 − 1/n)∆(G); thus the theorem becomes valid for every

n ≤ n0 if ε is reduced below 1/n0.

Let n be sufficiently large. Let the asymptotic notation, like O(1), refer to the case

that n → ∞ while µ, c1, etc, are fixed. Let G be an arbitrary graph of order n and

maximum degree d ≥ (1
2

+ µ)n. Let k = ⌊(2 − ε)d⌋.

Here is the strategy of Alice.

She makes two types of moves: R-moves (or random moves) and S-moves (or set

moves). If Bob skipped his move, then Alice makes an R-move. An R-move consists of

selecting an uncolored edge, uniformly at random from all uncolored edges of G. (The

coloring rule, which is the same for both R-moves and S-moves, will be described shortly.)

If Bob selected an edge xy in the previous move, then Alice throws a biased coin. With

probability 1 − c1, she makes an R-move. With probability c1/2, she picks a random

uncolored edge at x. (If all edges at x have already been colored, then Alice makes an

R-move instead.) With probability c1/2, she picks a random uncolored edge at y (or

makes an R-move if all edges at y have already been colored).

The rules for selecting Alice’s edge uv are different for these two types of moves but

the coloring rule is the same: the color c(uv) is chosen uniformly at random from all

admissible colors (that is, from the set [k] \ (C ′
r(u)∪C ′

r(v)), where r is the number of the

current round). There is always at least one available color for the edge uv, for otherwise

we would have already stopped the game and declared Bob to be the winner. Let Rr and

Sr denote the sets of Alice’s R-moves and S-moves respectively after r rounds. Thus, for
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every r,

Ar = Rr ∪ Sr.

Note that if Bob has a winning strategy, then (since this is a complete information

game) Bob has a deterministic winning strategy. Hence, in order to prove the theorem,

it is enough to show that, for any fixed (deterministic) strategy of Bob, this random

strategy of Alice has non-negative probability of winning.

So let us fix some strategy of Bob and let Alice play as above. Let

D = {x ∈ V (G) : d(x) ≥ (1 − 2ε)d}.

Clearly, if we take an edge not entirely inside D, then at most d + (1 − 2ε)d < k colors

are forbidden, so this edge can always be colored. For x ∈ D let

r(x) = min{r : |Cr(x)| ≥ c2d}. (9)

Here is an informal description why Alice wins whp. We will show that whp every

pair of vertices of D will share at least εd common colors before the game ends. Indeed,

if this occurs, then Alice wins because every edge gets colored: the number of forbidden

colors is at most (d − 1) + (d − 1) − εd < k. In fact, we show that this event occurs

early in the game, after at most r rounds, where r can be set to be, for example, 4c2n
2.

Since the set Cr, containing at most 2r edges, is small, when Alice colors a random edge

incident to a vertex x ∈ D in some Round i, the color of this edge is spread on almost

all the set [k] \C ′
i(x). Hence, it is enough to show that whp each |Ar(x)|, x ∈ D is fairly

large. To this end observe that if |Br(x)| is small, then |Rr(x)| is large because then any

R-move has a chance at least (d− |Cr(x)|)/
(

n
2

)

to pick an edge at x; otherwise |Sr(x)| is

large, being whp at least (c1/4)× |Br(x)|. This is why we need an occasional S-move: to

prevent Bob from claiming almost all edges at some vertex x ∈ D.

Let us present a rigorous proof. We define a family of ‘bad’ events and establish

the following two properties. Property I: the expected value of the sum of the indicator

functions of bad events is o(1). Property II: if none of the bad events occurs then Alice

necessarily wins. Then the theorem clearly follows.

All our bad events will be split into a few families. For each family we immediately

analyze Property I, leaving the proof of Property II until the very end. For the notational

convenience, we identify each event with its indicator function.
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3.1 The First Family

Each event B1
z,m,r of this family is indexed by a triple (z,m, r), where z ∈ D and 0 ≤ r <

m ≤ e(G). Informally speaking, if none of the events B1
z,m,r occurs, then the number of

A-edges that hit a vertex z ∈ D at any interval of the game is not much smaller than the

expected value, provided that the final degree of z is not too big.

Here a formal definition of B1
z,m,r. If the game ends before Round m, we set B1

z,m,r =

0. So suppose that the game continues for at least m rounds. We set B1
z,m,r = 0 if

Cm(z) ≥ 4c2d or if

|Am(z) \ Ar(z)| ≥
(m − r)(2 − 4c1)

n
− c5n. (10)

Otherwise, we set B1
z,m,r = 1.

Let us show that
∑

z∈D

∑

0≤r<m≤e(G)

E(B1
z,m,r) = o(1). (11)

We fix z,m, r and estimate the probability of B1
z,m,r. Consider a moment when Alice is

about to make a move in Round i, with r < i ≤ m. Assume that z is currently incident

to fewer than 4c2d colored edges for otherwise we have Cm(z) ≥ 4c2d and B1
z,m,r = 0. The

probability of Alice’s making an R-move is at least 1 − c1, whether or not Bob skipped

his previous move. We have at least d(z) − 4c2d ≥ (1 − 2ε − 4c2)d uncolored edges at

z and at most dn/2 edges in total. Hence, the probability of increasing the number of

A-edges at z is at least

(1 − c1)
(1 − 2ε − 4c2)d

dn/2
>

2 − 4c1

n
=: p

at each round. Hence, if we assume that C ′
i(z) ≤ 4c2d for each i ∈ [r + 1,m], then the

left-hand side of (10) can be bounded from below by coupling with the (m−r, p)-Binomial

variable. The Chernoff bound implies that the probability that (10) fails is exponentially

small in n. Since the number of choices of the triple (z,m, r) is O(n5), the inequality (11)

follows.

3.2 The Second Family

Here we define the event B2
{x,y}, where x, y ∈ D, x 6= y. Using our convention, we will

abbreviate it as B2
xy. Roughly speaking, we observe the game for the initial r rounds

for some r. Suppose that x and y have not acquired at least εd common colors yet.
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Furthermore, suppose that one of them (say x) is incident to at least c3d uncolored edges

whose other endpoint does not see at least c3d of the colors appearing at y. Then it is

very unlikely that, in next c4dn rounds, x gets almost none of the colors that were present

at y at Round r.

Here is a formal definition of B2
xy. If B1

u,m,r = 1 for some 0 ≤ r < m ≤ e(G)

and u ∈ {x, y}, then we immediately set B2
xy = 0. So let us suppose otherwise. Let

r = max(r(x), r(y)), where r(z) is the function defined by (9). If r is undefined (i.e. the

game stops before each of x and y gets Cr-degree at least c2d), then we set B2
xy = 0. (It

will be the case that some other bad event will be ‘responsible’ for this.) If

|Cr(x) ∩ Cr(y)| ≥ εd, (12)

then we set B2
xy = 0, so let us suppose that (12) does not hold. We define

Z(x,y) = {z : xz ∈ E(G) \ Cr, |Cr(y) \ Cr(z)| ≥ c3d}, (13)

Z(y,x) = {z : yz ∈ E(G) \ Cr, |Cr(x) \ Cr(z)| ≥ c3d}. (14)

If max(|Z(x,y)|, |Z(y,x)|) < c3d, then we set B2
xy = 0. So suppose otherwise and let

{u, v} = {x, y} satisfy |Z(u,v)| ≥ c3d. (If both assignments u = x and u = y work, we

can agree that e.g. u is the smaller of x and y with respect to some fixed linear order on

V (G).)

Let us observe the game until Round m, where

m = r + ⌊c4dn⌋. (15)

If the game ends before Round m, then we do the following: Set B2
xy = 1 if the edge

xy is uncolorable at the end (possibly one of a few uncolorable edges) and set B2
xy = 0

otherwise (that is, if xy is colored or can be properly colored in the final position).

So, suppose that the game lasts at least until Round m. If

|Cm(x) ∩ Cm(y)| ≥ εd, (16)

we set B2
xy = 0; otherwise, we set B2

xy = 1. This finishes the description of the event B2
xy.

Let us prove that
∑

x,y∈D

x 6=y

E(B2
xy) = o(1). (17)
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Let us fix xy ∈
(

D
2

)

and estimate the probability of B2
xy. We analyze the game, starting

from Round r and assuming that the previous development of the game does not rule

out B2
xy yet. In particular, we have defined u, v with {u, v} = {x, y} and |Z(u,v)| ≥ c3d.

We will observe the game in Rounds r + 1 to m′, where

m′ = min(m, r′), (18)

where r′ is the total number of the rounds until the game stops.

Since m′ − r ≤ m − r ≤ c4dn, we have, for any i ∈ [r + 1,m′], that

|Z(u,v) \ Z ′
i| ≤ 2 ×

m − r

c3d/2
≤ 4

c4dn

c3d
≤

c3d

4
,

where we define Z ′
i = {z ∈ Z(u,v) : |Cr(v) \ C ′

i(z)| ≥ c3d/2}. Indeed, every vertex in

Z(u,v) \ Z ′
i must gain at least c3d/2 colored edges in Rounds r + 1 to i, resulting in the

first inequality. The final inequality follows from c4 ≪ c3. Thus

|Z ′
i| ≥ |Z(u,v)| −

c3d

4
≥

3c3d

4
(19)

Let I consist of those i ∈ [r+1,m′] such that in Round i Alice colors an edge between

u and Z ′
i. Let E0 be the event that B2

xy occurs and |I| ≥ c5d. Let us show that the

probability of each of E0 and B2
xy \ E0 (given the previous history up to Round r) is

exponentially small in n—this will prove (17) because there are O(n2) choices of xy in

total.

Let us analyze E0 first. We will make use of the following coupling. Let p0 =

(c3/2 − ε)/2. Let X = (X1, X2, . . . ) be an infinite 0/1-sequence where each entry is 1

with probability p0, independently of the other entries. Initially we set k = 1.

Let us observe the rounds one by one as the game progresses. Let i ≥ r+1 be number

of the current round.

Suppose first that, in this Round i, Alice has selected and is about to color an edge

uz with some z ∈ Z ′
i. Let W = [k] \ (C ′

i(u) ∪ C ′
i(z)) consist of all available colors for uz.

Let W ′ = W ∩ C ′
i(v) consist of those available colors that are also present at v. Alice

increases the number of common colors at u and v with probability p = |W ′|/|W |.

By the definition of Z ′
i there are at least c3d/2 colors of Cr(v) ⊆ C ′

i(v) that are absent

in C ′
i(z). Assume that at most εd of these colors are present in C ′

i(u) for otherwise (16)

holds, B2
xy = 0, and E0 = 0. Hence, |W ′| ≥ c3d/2 − εd and p = |W ′|/|W | ≥ (c3d/2 −

εd)/2d = p0.
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Our coupling requires that the edge uz is colored with a color from W ′ whenever the

k-th element Xk of X is 1. This can be achieved, for example, as follows. If Xk = 1,

Alice picks a random color from W ′. If Xk = 0, then Alice picks, with probability

(p − p0)/(1 − p0) a random color from W ′ and with probability 1 − (p − p0)/(1 − p0)

a random color from W \ W ′. This gives the uniform distribution on the set W of all

available colors. Indeed, any two colors both from W ′ or from W \ W ′ are equally likely

to be picked while the probability of selecting a color from W ′ is exactly

p0 + (1 − p0)
p − p0

1 − p0

= p =
|W ′|

|W |
.

Now, we increase k by 1 so that the new (unexposed) value of Xk is independent of the

previous history. Continue the game.

If, in Round i, Alice does not color an edge uz with z ∈ Z ′
i, then we do not do

anything (and do not increase the counter k).

It follows that if E0 occurs, then the first ⌊c5d⌋ elements of X contain at most εd

ones. By the Chernoff bound, this has exponentially small in n probability, giving the

desired result. (Note that we do not have to take the union bound over all choices of I

since we were feeding in the bits of X only when there was demand.)

Next, we analyze E ′
0 = B2

xy \ E0, the event that B2
xy occurs and |I| < c5d. We split

it further into two complementary sub-events E ′
0 = E1 ∪ E2 depending respectively on

whether or not Bob colors at least c3d/4 edges incident to u in Rounds r +1 to m′, where

m′ is defined by (18).

In order to analyze E1, consider the first l = ⌊c3d/4⌋ moves of Bob after Round r

incident to u. Let us consider Alice’s move in any such Round i, when Bob has just

colored an edge at u. Of all G-edges between u and Z ′
i, at most c5d edges are colored by

Alice (we can assume this for otherwise |I| ≥ c5d) and, trivially, at most l ≤ c3d/4 edges

are colored by Bob. Hence, by (19), the probability that Alice picks an edge between u

and Z ′
i in Round i is at least

c1

2
×

3c3d/4 − c5d − c3d/4

d
≥

c1c3

5
.

Similarly to above, we can couple this with an infinite 0/1-sequence X = (X1, X2, . . . ),

whose each entry is 1 with probability c1c3/5, where we read the next bit of X after those

moves of Bob that touch u. It follows that if E1 = 1, then there are less than c5d ones

among the first l members of X1. The Chernoff bound shows that the probability of this

(and thus of E1) is exponentially small in n.
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Let us analyze E2.

Suppose first that m′ < m (and that B2
xy = 1). Recall that m and m′ are defined

by (15) and (18). Then xy is uncolorable in the final position, so at least (1 − ε)d edges

incident to u get colored. In particular, at least |Z ′
m′| − εd edges between u and Z ′

m′

are colored. Alice colors at most c5d of these edges since E0 does not occur, while Bob

colors at most c3d/4 of these edges since E1 does not occur. By (19), we conclude that

c5d + c3d/4 ≥ 3c3d/4 − εd, a contradiction.

Hence, assume that m′ = m, that is, the game lasts for at least m rounds. We observe

⌊c4nd⌋ rounds after Round r and, in each Round i with r < i ≤ m, the probability of

Alice’s hitting an edge between u and Z ′
i is at least

(1 − c1) ×
3c3d/4 − c5d − c3d/4

nd/2

because neither E0 nor E1 occurs. Again, the probability of fewer than c5d successes

(which is needed to avoid |I| ≥ c5d) is exponentially small. This completely proves (17).

3.3 The Third Family

Its events B3
a are indexed by a color a ∈ [k]. The event B3

a occurs if and only if the graph

Rm contains at least 37c2n edges of color a, where m = ⌊4c2n
2⌋. (Recall that Rm consists

of all R-moves of Alice made during the first m rounds.)

Initially, let us set H = ∅ and let X be an infinite 0/1-sequence where each entry is 1

with probability 3/n independently of the other entries. Let the game last for r′ rounds.

We observe Alice’s moves until Round m′, where m′ = min(m, r′). Let us consider

a moment when Alice has just selected an R-edge xy and is about to color it in some

Round i. If there are less than n/3 available colors for the edge xy at the current moment,

then we just add the pair xy to H and proceed with the game. Suppose that there are

more than n/3 available colors. The probability of selecting the color a for c(xy) is at

most 3/n. We read the next unexposed bit of X. Our coupling requires that if it is 0,

then Alice does not select color a for c(xy).

Consider the partial coloring right after Round m′. Let Y consist of vertices of G of

Cm′-degree at least n/3. We have |Y |(n/3) ≤ 2m; thus |Y | ≤ 24c2n. Every edge xy of H

has to intersect Y for otherwise the number of available colors at xy, even at Round m′, is

at least (2− ε)d−n/3−n/3 > n/3, a contradiction. Since each color class is a matching,

the number of color-a edges inside H is at most |Y |. It follows that if B3
a = 1, then the

13



first m entries of X contain at least 37c2n− 24c2n = 13c2n ones. By the Chernoff bound

this has probability exponentially small in n. Hence
∑k

a=1 B3
a = o(1).

3.4 The Fourth Family

Let 0 ≤ m ≤ e(G).

The event B4
m, occurs if and only if |Sm| > c1m + c3n

2. (Recall that Sm consists

of Alice’s S-moves made in the first m rounds.) Since the probability of increasing

the current |Sr| in any round is at most c1, the Chernoff bound easily implies that
∑e(G)

m=0 B4
m = o(1).

3.5 Putting All Together

Let us show that if none of the above bad events occurs, then Alice surely wins. Let us

assume on the contrary that the game ends when an edge xy ∈ E(G) cannot be properly

colored. If there are a few choices for xy, pick one arbitrarily. (Recall that we stop the

game as soon as an uncolorable edge appears.)

This means that x, y ∈ D and each of x and y is incident to at least (1 − ε)d colored

edges. Thus r(x) and r(y) are well-defined. Let r = max(r(x), r(y)). Assume r(x) ≥ r(y).

Thus r = r(x) and 0 ≤ |Cr(x)| − c2d < 2. Since xy cannot be properly colored at the

end of the game, Inequality (12) is false, that is,

|Cr(x) ∩ Cr(y)| < εd. (20)

Since B1
x,r,0 = 0 and |Cr(x)| ≤ c2d + 2 < 4c2d, we have by (10) applied to the first r

rounds that

c2d + 2 ≥ |Ar(x)| ≥
r(2 − 4c1)

n
− c5n.

It follows from c5, c2 ≪ c1 that, for example,

r ≤
(1 + 3c1)c2nd

2
. (21)

Claim 1 max(|Z(x,y)|, |Z(y,x)|) ≥ c3d.

Proof of Claim. Suppose that the claim is not true. Let l = |Cr(y)|. Then, by the

definition of Z(x,y), there are at least

dG(x) − |Cr(x)| − |Z(x,y)| ≥ (1 − 2ε)d − (c2d + 2) − c3d ≥ (1 − 2c2)d,
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vertices of G such that, after the r-th round, each sees at least l− c3d colors from Cr(y).

Likewise, there are at least

dG(y) − l − |Z(y,x)| ≥ (1 − 2ε)d − l − c3d ≥ (1 − 2c3)d − l

vertices of G, each seeing at least |Cr(x)| − c3d ≥ c2d − c3d colors from Cr(x). This

requires at least

1

2
((1 − 2c2)d(l − c3d) + ((1 − 2c3)d − l)(c2d − c3d)) ≥

dl

2
+ c2

−3dl + d2

2
− c2

2n
2 (22)

edges of Cr, each colored by a color in Cr(x) ∪ Cr(y). By (20) and since each color class

contains at most n/2 edges, we double-count at most

|Cr(x) ∩ Cr(y)| × (n/2) ≤ εdn/2 ≤ c2
2n

2 (23)

edges. Moreover, by (21) we have r ≤ 4c2n
2 and since no bad event B3

a occurs, Ar can

contribute at most

|Cr(x) ∪ Cr(y)| × (37c2n) ≤ (c2d + 2 + l) × (37c2n)

to (22). Since B4
r does not occur, Sr contributes at most c1r + c3n

2 to (22). Finally,

|Br| ≤ r. From (22) and (23), we obtain that

dl

2
+ c2

−3dl + d2

2
− 2c2

2n
2 ≤ (c2d + 2 + l) × (37c2n) + c1r + c3n

2 + r.

Using (21), we obtain (after routine simplifications) that

l

(

d

2
−

3c2d

2
− 37c2n

)

≤ −c2
d2

2
+ c2

nd

2
+ 3c1c2n

2 (24)

This is a contradiction to l = |Cr(y)| ≥ c2d, d ≥ (1
2

+ µ)n, and µ ≫ c1 ≫ c2. The claim

is proved.

So we can define {u, v} = {x, y} as it is done after (14). Let m = r + ⌊c4dn⌋. The

game cannot end before Round m for then B2
xy = 1 (as xy is responsible for the end of

the game). Again, since B2
xy = 0, we conclude that (16) holds. This means that, after

Round m, x and y share at least εd colors, so there will always be a choice of color for xy.

This contradicts our assumption and proves that Alice wins. This completes the proof of

Theorem 4.
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