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GREEDY MATCHING ON THE LINE*

ALAN FRIEZE,# COLIN McDIARMID: anp BRUCE REEDS

Abstract. The problem of finding a perfect matching of small total length in a complete graph whoge -

vertices are points in the interval [0, 1] is considered. The greedy heuristic for this problem repeatedly picks
the two closest unmatched points x and y, and adds the edge xy to the matching. It is shown that if 2n
points are randomly chosen uniformly in [0, 1], then the expected length of the matching given by the greedy
algorithm is #{log n). This compares unfavourably with the length of the shortest perfect matching, which
is always less than 1.

Key words. greedy, matching, Euclidean, line, average case, worst case

AMS(MOS) subject classifications. 68Q25, 90C27, 68R10, 05C70, 60C05, 60D05

1. Introduction. We are interested in finding a perfect matching of small length
on a set of points drawn from the interval [0, 1]. That is, given a set A of 2n numberg
{x,, X2}, each of which is between 0 and 1, we want to partition A into n pairs
{yi, 21} {2, 22h o o o {¥as 24} s0 that we minimize Y7 ly—zl. We can solve this
problem by reordering the elements of A so that x;, =X, = "= X and then set
¥, = X2i-1) and z, =X, It is easy to see that this method always gives the optimal
matching and, furthermore, the length of this matching is at most 1.

It is natural to ask how well the greedy approach performs in this simple setting,
The greedy matching algorithm first finds distinct elements a, b in A such that {a—b|=
min {|c—d|: ¢, d € A, ¢ # d} and selects {a, b} as one pair of the partition. The remaining
pairs are found by using the same procedure on A—{a, b}.

It is not difficult to see that the greedy matching algorithm selects a matching of
length at most O(In (n)) when applied to a set of 2n points. Also, one may construct
examples to show that the worst-case weight of a greedy matching is (In (n)). Indeed,
in § 3, we identify the worst-case behaviour rather precisely. (For related work see
Avis [1] and Rheingold and Tarjan [4].) However, we are more interested in average-
case behaviour. We prove that if 2n points are chosen at random from the uniform
distribution on [0, 1], then the expected length of the resulting matching is Q(lIn (n)).
This settles a question raised by Avis, Davis, and Steele in [2], where results are given
on greedy Euclidean matching in d-dimensional spaces for d =2. (Note that the greedy
algorithm may be of practical use when d =2, though it is only of theoretical interest
in the case d =1 considered here.)

Since this is our main result, we now state it again. Given n numbers x,, -, X,
(n even) in the interval [0, 1], let G[x,, - - -, x,] denote the length of the corresponding
greedy matching (break ties arbitrarily).

TueoreMm. Let X,, -+, X, be n independent random variables, each uniformly
distributed on [0,1]. Then E[G(X,, - -, X,)1=zIn(n) for n sufficiently large.

2. Bags, sticks, and entropy. Rather than considering our points directly we shall
focus on the distances between them. To this end, we begin with some definitions.
Given an n-tuple x=(x,, - -,x,) of reals in [0, 1], let x,,= x5 =" "= X denote
the numbers rearranged in nondecreasing order and let z, = X5y — Xk, fork=0,--,n
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‘.'iwhere X0, =0, X(,+1,= 1. We shall referto z,, - - -, z,_, as the (nearest neighbour) sticks
3;;ad 2o, Zn as the endsticks. Let L(x)=[z,, -, z,-,] and let B(x) be the unordered
(multl set of these values. Thus L(x) is the [ist of sticks and B(x) the bag of sticks.

i Note that the endsticks are not included here.

i Now, let X,, -, X, be independently and identically distributed uniform on
{0, 1). We shall use two easy properties of the corresponding random sticks.

Property 1. Let B be any bag of n — 1 sticks (considered distinct). Then, conditional
on B(X) = B the distribution of the corresponding list L(X) is uniform on the (n—1)!
orderings of the n—1 sticks in B.

This result is intuitively obvious, or see Feller [3], pp. 74-76.
Property 2. With probability =1 as n -0,
max {Z,: k=0,--+,n}=2In(n)/n
To check this result, note that for each k
Prob (Z, >t)=(1-1)" if0<t<]1
(see for example, Feller [3], p. 22). Thus

Prob(max Z, > ) =(n+1)(1-0)"=(n+1)/n" ift=2In(n)/n.

‘.M.__...,._.*..
Mri.

To begin, we use the first property to obtain a lower bound on the conditional expected
value E(G[X]|B[X] = B) that depends on the length of the sticks in B. Then we point
out that the second property ensures that this lower bound gives the desired result.

Thus, we now focus our attention on a fixed bag B of n sticks (where n 1s odd).
By Property 1 above, the distribution of G(X) conditional on B(X) = B is the same as
~ that of the value CHOOSE(B) returned by the following randomized recursive
aigorithm.

gy AT

Let x be a minimum element in B
if |B| =1 then return x

{ ; else

} with probability 2/n choose y uniformly from B —{x} and return
(= x+CHOOSE (B —{x, y}} (this corresponds to x being the leftmost
2 or rightmost stick, with neighbour y)

b with probability (n—2)/n choose y uniformly from B —{x} and =
; uniformly from B —{x, y} and return x+ CHOOSE (B —{x, y, z} U
* {x+y+z}) (this corresponds to x having left neighbour y and right
fiie neighbour z)

i Now let

{ F(B)= E[CHOOSE (B)]= E[G(X)| B(X) = B].

Dy %nsndermg the algorithm CHOOSE (B) we obtain a recurrence for F(B). Let
-, a,} be a bag of n sticks where n is odd, n>1, and a, i1s a minimum

al 3 az )
2'_ Ement. Then
¢

_{al! a;s ak}U{al+aj+ak})-

,“f‘;llrrence is the key to our analysis. It will allow us to prove a lower bound on
In terms of the entropy of the stick lengths.
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3. A lemma. 1 . .
Lemma. Let A={a,, - ax} be an odd cardinality set of positive numbers We note
sumto 1. Let show that.
o (1—a)/ln
N 1 N N : < \
H(A)=a ¥ a In (_)_B D 1___20 v ln.(‘!), 6. CLan
i=1 a, i=2 1 i=a A ]
| S(A
where a = In(12) =0.40243 and B=a In (24/11)=0.31396. Then F(A)= H(A). _,,"-
Proof. We note that if N =1, then H(A) =0 and F(A) =1, so the inequality ,
We shall assume it holds for N < n (where n> 1) and prove it for N = n, Furthermore )
we may assume that a, is a minimal element of A. Then, as we noted earlier: - Proof
i=1, 4, °
2 n vl =xlr
F(A)=a,+ F(A- 2 RlEL=2 o
(A)=a, n(ﬂ—l)jgg ( {al,a,}) L Now,
n—1 n
Y ¥ FlA- +a,
M=), 50k, s Saatliat gt al)
By the induction hypothesis,
5 Here, the
FlA)za+——— % H(A—{a,,a}) while the i
n(n—-1),- i=2or j=
2 n-1 n 5[4')_5(A
— Y ¥ H(A-{a,a atU{a,+a+a,}) Applyii
ﬂ(ﬂ oz ]);z.'! k=j+1
By the definition of H,
2 p) _
F{A'JiH(A)+a,+E+ B +_aln‘(n)+-aln(n~l)
n n-—1| n° (n—=1)
2a v 1 1
+ Y- — |- —
"(n—l),“-:( Wi (a,) ailn (a))
2 n‘zl n ( 1
+ (g, +a,+a)In| —
- i n{n—l)_,i': k:%—r] Tk Y (a,-rak-i-al)
1 1 1 Setting r=4
—a; In (—) —a In (—-) —a,ln (-—))
af a; a,
So, -
28 2aln(n) al -1) 1 'ﬁt where fi
F(.4)§H(A)+a,+—‘8+ . -( + 2'h n s —aa In|— o :1/r:)(—l]f‘(
oo (n—1)° a % | :
o5 fir)z=21In1
2 4 "
()
nin=1),= - a, .
., 2e¢ m-ton 1 " Next we note
+ X Y jlg+ac+a)in|{—m8—
n(n=1) ;5 ksjey a, +a,+a, ;

1 1 A
-a;in (—) —a, In (—-)}
4 ay Thus, by our
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We note that by the convexity of x In (x), the single sum is at most In (n—1). We shall

f show that, given that a,=a, the double sum is minimized when a,=:--=gq, =
i (1-a)/(n—=1)=0b, say.
CLAIM.

{ n—1 n 1 l ]
! =Y ¥ +a, + —— ) -aqIn(=)- -
{ S(4) E: A_Tﬂ{(a" i aljln(aﬁ—ak%-a.) % n(a_,) 2.1 (ak)}

1 1 1
Rl (P sy 43 - =
:2(n 1)(n ..)((a 2b)in (a+2b) -bln(b)).

Proof of Claim. Suppose a.# a;. Let ai=a\=(a,+as)/2 and let a =aq, for
i=1, 4, 5,---,n It will suffice to show that S(A")<S(A). To this end let
flx)=xIn(x)-(x+a,+a)In(x+a,+a,) for k=4, --- n

Now,

| S(A")~S(A)={a}In (ab)+alln (a}) - a:In (a;) — as In ()}

+ ¥ (filad)+fila}) - filax) - fiay)).
=4
Here, the first term comes from the term in the double sum where j=2and k=3,
while the ith term in the sum comes from the terms in the double sum where & =i and
} j=2 or j=3. Since the functions xIn(x) and fi(x) are strictly convex, we have
S(A")-S(A) <0 as required. O
Applying the claim, we see that

,
F(A)Z H(A)+a+L 42,80 oin (l)
n n a

+(";2)a ((a+2b) In (a;b) ~25 In (%))

2
= H(A)+ L g 0 20 g (l)
n n n a

i (n—2)a(a ( a ) ( b ))
b o - -+ +2 ]
§ 8 n a aln a+2b P a+2b

smm% r=b/a and noting that @ In(1/a)=In(n)/n since a=1/n, we get

2 =
F(A)= Htm+f+(%) abf(r),

e —— A

i,

There  f(r)=(1/an)+ (/1 I (1/(1+20) 420 (1/(1+20). Now )=
E)(~(1/a)+In (1+2r)), so f(r) is minimized when n{1+2r)=1/a and thus
WI=-21n(2+(2/€"" - 1)). Hence

g
i

¥t 28 [n-2 -
F(A)EH(A)+__( )Eabln(.?'!' \/a )
n n e -1

-~ W¥enote that b=1/(n—-1), so

e —

!%A);PHA)+%(2B-2aln(2+ ? ))

e —1

_;by our choice of @ and B, we have F(A)= H(A) as required.
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4. Completing the proof of the Theorem. Consider n points x,,- -+, X, in [0,]]7,
(n even) such that each of the corresponding (n+1) sticks (including endsticks) hag
length at most d(<1). Thus the corresponding bag B of n — 1 sticks has sum of lengths
o =1-2d. From the lemma (by scaling by 1/o)

n—1 n=1 1
a[a ¥ -'Eln (g)—B Y 1/i-2a ¥ Inir)]

xeB O X i=2 =2 1

U[a( ¥ -’f-) In 1 _dzd—ﬁ‘ "E—l 1/i-2a "il __ln-(:i)]

xe B O i=2 I

F(B)

I

v

1-2d
d

(5]

et I (i)]

={l—2d)[o:[n BT 1i-2¢S
i=2 i=2

i
Now set d =21In(n)/n and use Property 2. We find that

E[G(X,, -, X)]1=(1+o(E[G(X,, " -, Xn)]nrnax Z,=2In(n)/n]
Sj=n

=Z(lto(1)){a+o(1)In(n)=BIn(n)+0(1))
=(a—B+o(1))In(n)=(0.088)In(n).
This completes the proof of the theorem. O

5. Worst-case results. In this section we consider lists of points on which the
greedy algorithm performs particuiarly badly.

For any nonnegative integer k consider the list x(k)={i/3*:i=0, ,-+4,348
of 3*+1 points in [0, 1]. For k=1 the greedy algorithm applied to x(k) can pick
37" intervals of length 37% namely, the intervals [(3j+1)37% (3j+2)37*] for
F=00, L35s 380 1, and then be left with the points x(k —1). Hence x(k) has a greedy
matching of weight k/3+ 1. It follows that for any even n, there is a list of n points
that has a greedy matching of weight !|log, (n - 1) +1.

On the other hand, we shall show that any greedy matching on a list of n points
has weight at most ;log (n—1)+ 1. Thus for n of the form 3* + 1 the above examples
are worst possible and for all other n we are not far off. From now on we shall just
use log (x) to denote log; (x).

ProposiTION. For a bag A={a,, -, ax} of sticks (with N odd), let W(A) be
the length of the longest greedy matching of any n-tuple x such that the corresponding
list L(x) of sticks is a permutation of A. Then

N l N
Y a log (—) + Y a,.
: = a: r-_'-l

Proof. We prove this by induction on the cardinality of A. If|A| =1, then W(A) =g,
and the theorem is true. So we suppose the theorem holds for N < n, where n = 3, and
prove it for N =n. Let x be a list of points such that L(x) is a permutation of A and
such that G(x) = W(A). We may assume that a, is the minimal element of A chosen
in the first iteration when the greedy matching is applied to x.

Case 1. a, is the rightmost or leftmost stick of L(x). In this case, let a, be the
neighbour of a, in L(x). Then

W(A)=G(x)Sa,+ W(A—{a,, a,}).
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Now, by our induction hypothesis:

Case 2. a, is an interior stick of L(x). In this case we may assume that a, and a,
are the neighbours of a, in L(x) and that a.= a,,

Now, W(A)=G(x)=a,+ W(A—-{a,, a,, a;} U {a;+a,+a.}). By our induction
hypothesis,

4 i

i i 1y .1
(A)=a,+= Y a 2 ) Tla+a+
W(A)=a, BE a, log (a-) 3(01 a, a;)log(al+a:+a3)

n
+ ¥ a,+(a,+a.+a,)
=4

i=

lal (!) 1alo (1) 1 | (1)
i — ) —— a- ‘——"a - 1.
gdimg a,) 392108 2] 3 alog i

Fﬂingal and a, +a,+a;,since a, = a:= a,, we know that —a, log (1/a,)—a, log (1/a;)
‘ 'Sig_aximized when a,=aq,. Furthermore, fixing a, and fixing a, = a, we see that

1 1 1 1
- +a-+ ) lo — z! -
3 Ve Fas+ ) log (a, +a;+a3) 3 43 108 (a;)

Maximized when ay=a,. Thus,

n 1 n 1 1 1 1
E. a, log (a—) +.;. a+a, +5<3a|} log (3—‘1—‘) —3(5 a, log (;}*))

1 n
a; log (—) + Y a,. 0
a

=]

1 .n 1 f 1
==Y aq, log —)+\'a,+a +zla,ta.+a,)lo ( )
i c(a. = I 3 e hie £ a,ta,+a,

OW, for any bag A ={q,, - ", @,_,} of sticks,

n—1i

=1 1 1
Y a log (—)é—log{n—l) and Y g,=].
= Q 3 i=1

i=

2'Tom our proposition, the greedy matching applied to a set of n points constructs
Ching of length at most }log (n—1)+1. We note that this implies our examples
- Worst possible for n of the form 3" +1. Indeed, it is easy to see from our
ition that they are unique such examples.
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