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Abstract

Given a connected graph G = (V,E) and a length function ℓ : E → R we let dv,w denote the shortest
distance between vertex v and vertex w. A t-spanner is a subset E′ ⊆ E such that if d′v,w denotes shortest
distances in the subgraph G′ = (V,E′) then d′v,w ≤ tdv,w for all v, w ∈ V . We study the size of spanners
in the following scenario: we consider a random embedding of Gn,p into the unit square with Euclidean
edge lengths.

1 Introduction

Given a connected graph G = (V,E) and a length function ℓ : E → R we let dv,w denote the shortest distance
between vertex v and vertex w. A t-spanner is a subset E ′ ⊆ E such that if d′v,w denotes shortest distances in
the subgraph G′ = (V,E ′) then d′v,w ≤ tdv,w for all v, w ∈ V . In general, the closer t is to one, the larger we
need E ′ to be relative to E. Spanners have theoretical and practical applications in various network design
problems. For a recent survey on this topic see Ahmed et al [1]. Work in this area has in the main been
restricted to the analysis of the worst-case properties of spanners. In this note, we assume that edge lengths
are random variables and do a probabilistic analysis.

We consider the case where ℓi,j = |Xi−Xj|, where X = {X1, X2, . . . , Xn} are n randomly chosen points from
[0, 1]2. In addition we assume that edges exist between the points in X , independently with probability p.
This model, denoted by the graph Xp of a random embedding of Gn,p into [0, 1]2 has been considered in Frieze
and Pegden [7], Mehrabian and Wormald [11]. The case of p = 1 (i.e. randomly chosen points) is discussed
in Section 15.1.2 of Narasimham and Smid [13].

Now di,j = |Xi −Xj| when {i, j} ∈ Xp implies that with probability one, a 1-spanner contains ≈
(
n
2

)
p edges.

We prove the following:

Theorem 1. Suppose that the edges of Xp are given their Euclidean length. Let ε > 0 be fixed. We describe
the construction of a (1 + ε)-spanner Eε.

(a) If np/ log n→∞ then E(|Eε|) = O(ε−3(log 1/ε)p−1n).

(b) If 1
p log 1/p

= o(log1/2 n) then |Eε| ≤ E(|Eε|) +O(n) w.h.p.

(c) If np→∞ then w.h.p. any (1 + ε)-spanner requires Ω(nε−1p−1) edges.
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Assuming Ω(n log n) edges we get a much simpler proof. Also, if we only want an O(n) bound on the
expected number of edges in our spanner then we can relax the constraint on p to np/ log n → ∞. I.e. the
extra restrictions are needed to prove the high probability result.

Theorem 2. Suppose that np2/ log n → ∞. Then w.h.p. there is a (1 + ε)-spanner with O(ε−2p−1n log n)
edges.

The argument we present for Theorem 1 can be easily adapted to deal with random geometric graphs GX ,r

for sufficiently large radius r. Here we generate X as in Theorem 1 and now we join two vertices/points X, Y
by an edge if |X − Y | ≤ r. See Penrose [14] for an early book on this model.

Theorem 3. If r2 ≫ logn
n

then w.h.p. there is a (1 + ε)-spanner using O(nε−2) edges.

We note finally that Frieze and Pegden [8] have also considered the case where edge lengths are independently
exponential mean one. The results there are much tighter.

2 Proof of Theorem 1

Suppose that 0 < ε≪ 1. Let

rε =
1000 log1/2 1/ε

n1/2ε3/2p
and Rε =

(
106 log n

πnpε3

)1/2

. (1)

The constraint on p means that
nR2

ε = no(1).

Let
E1 = {{A,B} ∈ Xp : |A−B| ≤ rε} .

We have

E(|E1|) ≤
(
n

2

)
πr2εp ≤ 106πn log(1/ε)/(2ε3p) (2)

and then we can assert that

|E1| ≤
(106π log 1/ε)n

ε3p
w.h.p. (3)

using the Chebyshev inequality. Here we can use the fact that the events {|A−B| ≤ R} are pair-wise
independent.

For each A ∈ X we define τ cones K(i, A), 0 ≤ i < τ with apex A and whose boundary rays make angles iε
and (i + 1)ε with the horizontal. We then let Y (i, A) denote the closest point in Euclidean distance to A in
K(i, A) that is adjacent to A in Xp. We put Y (i, A) = ⊥ if there is no such Y and let dA,⊥ =∞. Also, define
i = iA,Y by Y ∈ K(i, A). Let

E2 = {(A, Yi,A) : A ∈ X , i ∈ {0, 1, . . . , τ − 1}} so that |E2| = O(n/ε). (4)

For A,B ∈ A we let PA,B denote the shortest path between A,B in Xp and we let dA,B denote the length of
PA,B. The next two lemmas will discuss the case where A,B are sufficiently distant.

Lemma 4. If |A−B| ≥ Rε then with probability 1− o(n−100), |A− Y | ≤ ε|A−B|, where Y = Y (iA,B, A).
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Proof. We have

P(|A− Y | > ε|A−B|) ≤ (1− επ(εRε)
2p/2)n−1 ≤ e−106 logn/(πε) = o(n−100).

The 2 in the middle expression allows half the cone to be outside [0, 1]2.

Lemma 5. If rε ≤ r = |A−B| ≥ Rε then with probability 1− o(n−2), dA,B ≤ (1 + 4ε)|A−B|.

Proof. Let X1, X2 be points on the line segment AB at distance |A− B|/3, 2|A− B|/3 from A respectively.
Let Bi, i = 1, 2 be the ball of radius εr centred at Xi. Let A1 be the set of Xp neighbors of A in X1 and let
A2 be the set of Xp neighbors of B in X2. Ei, i = 1, 2 be the event that |Ai| ≥ r2np/10. Then the Chernoff
bounds imply that

P(E1 ∧ E2) ≥ 1− 2e−πr2np/1000 = 1− o(n−100).

Let E3 be the event that there is an Xp edge between A1 and A2. Then

P(E3 | E1 ∧ E2) ≥ 1− (1− p)r
4n2p2/100 = 1− o(n−2).

Finally note that if Ei, i = 1, 2, 3 all occur then dA,B ≤ (1 + 4ε)|A − B|. (4 is trivial and avoids any
computation.)

Let
Bε = {(A,B) : dA,B ≥ (1 + ε)|B − A| and r = |A−B| ≥ rε} (5)

and
E3 =

⋃
(A,B)∈Bε

E(PA,B).

Let
Cε = {(A,B) : dA,B ≤ (1 + ε)|B − A| and r = |A−B| ≥ rε and |A− Y | ≥ ε|A−B|} ,

where Y = Y (iA,B, A). Let

E4 =
⋃

(A,B)∈Cε

E(PA,B).

We show in Lemmas 9 and 12 that the sets E3, E4 have linear size w.h.p. Let Eε =
⋃4

i=0Ei.

For X, Y ∈ X we let d̂X,Y denote the length of the path from X to Y constructed by the following procedure:
Given A,B ∈ X where {A,B} /∈ E we construct a path A = Z0, Z1, . . . , Zk = B as follows: in the following,
Yj = Y (i, Zj) for B ∈ K(i, Zj), j ≥ 0.

Construct:

D1 If {Zj, B} ∈ E1, use the edge {Zj, B}, otherwise

D2 If |Zj − Yj| > |Zj −B| then use PZj ,B to complete the path, otherwise

D3 If dYj ,B ≥ (1 + 5ε)|Yj −B| then use PZj ,B to complete the path, otherwise

D4 Zj+1 ← Yj.

Remark 1. We observe that Lemmas 4 and 5 imply that with probability 1 − o(n−100) we do not use PZj ,B

for |Zj −B| ≥ 2Rε. Denote the corresponding event by U .

The next lemma is used to estimate the quality of the path built by construct. (We can obviously replace
5ε by ε in order to get a (1 + ε)-spanner.)
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Lemma 6. Let A = Z0, Z1, . . . , Zk, Zk+1 = B be a sequence of points where

(i) Zj+1 ∈ K(iZj ,B, Zj) for all 0 ≤ j < k,

(ii) |Zj − Zj+1| ≤ |Zj −B| for 0 ≤ j < k,

(iii) dZk,B ≤ (1 + 5ε)|Zk −B|.

Then

dZk,B +
k−1∑
j=0

|Zj+1 − Zj| ≤ (1 + 5ε)|A−B|. (6)

Proof. Let dj = |Zj −B| for 0 ≤ j ≤ k. To prove the lemma, it suffices to show for all j that

|Zj+1 − Zj| ≤ (1 + 5ε)(dj − dj+1). (7)

This implies that

dZk,B +
k−1∑
j=0

|Zj+1 − Zj| ≤ (1 + 5ε)dk + (1 + 5ε)
k−1∑
j=0

(dj − dj+1) = (1 + 5ε)d0.

To this end, define Z̄j+1 to the point on the segment ZjZk such that |Z̄j+1 − Zk| = |Zj+1 − Zk|. By the
assumption that |Zj − Zj+1| ≤ |Zj − Zk|, we have that ∠Zj+1ZkZ̄j+1 < π/2, and thus that the ratio

|Zj+1 − Zj|
dj − dj+1

can be bounded by considering the case where ∠Zj+1ZkZ̄j+1 = π/2, as it is drawn in Figure 1.

We have in that case that sin ε =
dj+1

|Zj−Zj+1| and cos ε =
dj

|Zj−Zj+1| , giving dj − dj+1 = (cos ε− sin ε)|Zj − Zj+1|
which implies (7).

Zj

Zj+1

Zk

Z̄j+1

ε

dj − dj+1 dj+1

Figure 1:

Assuming (6) we see immediately that the path built by construct has a length within a 1 + 5ε factor of
the minimum. We argue next that

Lemma 7. The edges of the paths PZj ,B used in construct are contained in E3 ∪ E4.
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Proof. First consider the path P = PZj ,B used in D2. If dZj ,B ≥ (1+ ε)|Zj −B| then E(P ) ⊆ E3. Otherwise,
E(P ) ⊆ E4.

Now consider the path P = PZj ,B used in D3. If dZj ,B ≥ (1 + ε)|Zj − B| then E(P ) ⊆ E3. So assume that
dZj ,B ≤ (1 + ε)|Zj −B|.
If |Zj − Yj| ≥ ε|Zj −B| then E(P ) ⊆ E4. So assume that |Zj − Yj| ≤ ε|Zj −B|. At this point we have

(1 + 5ε) |Yj −B| ≤ dYj ,B ≤ |Zj − Yj|+ dZj ,B ≤ (1 + 2ε|Zj −B|) ≤ (1 + 2ε) (|Zj − Yj|+ |Yj −B|).

This implies that |Zj − Yj| ≥ 3ε|Yj − B|/(1 + 2ε). If |Yj − B| ≥ |Zj − B|/2 then we have E(P ) ⊆ E4. So
assume that |Yj−B| ≤ |Zj−B|/2. But then |Zj−Yj| ≥ |Zj−B|−|Yj−B| ≥ |Zj−B|/2, a contradiction.

Lemma 8. construct produces a path of length at most (1 + 6ε)dA,B and only edges of length at most εRε

contribute to E3, E4.

Proof. We can assume that |A−B| ≥ Rε. Let A = Z0, Z1, . . . , Zk, Zk+1 = B be the path constructed and let
Zℓ be the first point within εRε of B. Note that this means Zℓ, Zℓ+1, . . . , Zk are all within εRε of B. This
yields the second claim of the lemma.

Let d̂ℓ =
∑ℓ−1

i=0 |Zi+1 − Zi| be the length of the subpath from A to Zℓ. It follows from Lemma 6 that

d̂ℓ ≤ (1+5ε)|A−Zℓ|. Because |Zℓ−1−B| ≥ Rε and |Zℓ−1−Zℓ| ≤ ε|Zℓ−1−B| we see that |Zℓ−B| ≥ (1−ε)Rε.
It follows from Lemma 5 that dZℓ,B ≤ (1+4ε)|Zℓ−B|. The path constructed by secure therefore has length
at most

(1 + 5ε)|A− Zℓ|+ (1 + 5ε)(1 + 4ε)εRε ≤ (1 + 6ε)|A−B|.

The next two lemmas bound the expected number of edges in the sets E3, E4.

2.1 E(|E3|)

Lemma 9. E(|E3|) = O(n/ε2).

Proof. Fix a pair of points A,B ∈ X and let r = |A − B| where rε ≤ r ≤ Rε (rε, Rε defined in (5)). Note
next that shortest paths are always induced paths. We let LK,k,A,B denote the set of induced paths from A
to B with k + 1 ≥ 2 edges in Xp, of total length at most (1 + (K + 1)ε)r.

We let LK,k,A,B = |LK,k,A,B|. Then we have

|E3| ≤
∑

A,B∈X

∞∑
k,K=1

∑
P∈LK,k,A,B

|P | · 1dA,B≥(1+Kε)r. (8)

This is because if dA,B ≥ (1 + ε)|A − B| then the shortest path from A to B has its length in JK,r =
[(1 +Kε)r, (1 + (K + 1)ε)r], for some K ≥ 1. Next define, for L ≥ 1,

F (L, ε) :=
√
2Lε+ L2ε2.

Claim 1. There exists an absolute constant Λ such that for K ≥ 1,

E
(
LK,k,A,B · 1dA,B≥(1+εK)r

⏐⏐|A−B| = r
)
≤(
ΛF (K, ε)(1 +Kε)r2np(1− p)(k−1)/2

k2

)k

e−cF (K/4,ε)(1+Kε/4)r2np. (9)
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Proof of Claim 1: Let EA,B(L) denote the ellipse with centre the midpoint of AB, foci at A,B so that
one axis is along the line through AB and the other is orthogonal to it. The axis lengths a, b being given by

a = (1+Lε)r and b = r
√
(1 + Lε)2 − 1 = rF (L, ε). Thus EA,B(L) is the set of points whose sum of distances

to A,B is at most (1 + Lε)r.

Given k points P1, . . . , Pk, the path P = (A = P0, P1, . . . , Pk, Pk+1 = B) is of length at most (1 + (K + 1)ε)r
only if all these points lie in EA,B(K+1). Thus the length of P is at most the sum Z1+· · ·+Zk of independent
random variables where Zi is the distance to the origin of a random point in an ellipse with axes 2a, 2b centred
at the origin. Here we are using the fact that if a point x lies in an ellipse E then E is contained in a copy

of 2E centered at x. Indeed, suppose that (xi, yi), i = 1, 2 are two points in the ellipse E =
{

x2

ξ2
+ y2

η2
≤ 1
}
.

Then
(x1 − x2)

2

ξ2
+

(y1 − y2)
2

η2
≤ 2(x2

1 + x2
2)

ξ2
+

2(y21 + y22)

η2
= 2

2∑
i=1

(
x2
i

ξ2
+

y2i
η2

)
≤ 4. (10)

It follows that (x1, y1) is contained in a copy of 2E centered at (x2, y2).

The following is well-known:

Lemma 10. Z1 is distributed as U1/2(a2 cos2(2πV ) + b2 sin2(2πV ))1/2 where U, V are independent uniform
[0, 1] random variables.

Proof.

Now (2ξ + ξ2)
1/2 ≤ (1 + ξ) and so F (K + 1, ε) ≤ 1 + (K + 1)ε. So, Z1 is dominated by U1/2(1 + (K + 1)ε)r.

It follows from Lemma 10 that ℓ(P ) is dominated by (1 + (K + 1)ε)r times the sum of k independent copies
of U1/2. Lemma 9 of Frieze and Tkocz [9] shows that

P(Z1 + Z2 + · · ·+ Zk ≤ (1 + (K + 1)ε)r) ≤ 2k

(2k)!
≤ e2k

k2k2k
. (11)

Thus, given k random points P1, . . . , Pk, the probability that A,P1, . . . , Pk is an induced path of length
≤ (1 + (K + 1)ε)r is at most(

ΛF (K + 1, ε)(1 + (K + 1)ε)r2np(1− p)(k−1)/2

k2

)k

.

(In equation (9), the ratio F (K+1,ε)(1+(K+1)ε)
F (K,ε)(1+Kε)

≤ 4 has been absorbed into Λ.)

To get (9), we need to also make make use of the term 1dA,B≥(1+εK)r in (9).

Case 1: Kε ≤ 1: We define two rhombi, RA, RB. Let M denote the middle of the segment AB. Then
RA has one diagonal AM and another diagonal WAW

′
A of length (Kε)1/2r/10 that is orthogonal to AM and

bisects it. The rhombus RA is defined similarly. Finally let R̂A = RA ∩ [0, 1]2 and R̂B = RB ∩ [0, 1]2. Note

that at R̂A has area at least 1/2 of the area of R̂A and similarly for R̂B. Thus if K ≥ 1 then

area(R̂A) ≥
(Kε)1/2r2

20
≥ F (K + 1, ε)(1 + (K + 1)ε)r2

100
. (12)

Here we have used Kε ≤ 1 to justify the second inequality.

For a pair of points A,B let d∗A,B(X) denote the minimum length of a path Q = (A, S, T,B) in Xp where

S ∈ R̂A \X and T ∈ R̂B \X. We wish to show that

ℓ(Q) ≤ (1 +Kε)r for all choices of S, T. (13)
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Now fix S and consider the function f(T ) = |ST | + |TB|. This is a convex function and so it is maximised

at an extreme point of R̂B \X. Then for a fixed T we find that maximising over S, we have that S must be

an extreme point of R̂A \X. To verify (13), it is enough to check the length

ℓ(AWAW
′
BB) ≤

⎛⎝2

((
1

4

)2

+

(
(Kε)1/2

20

)2
)1/2

+

((
1

2

)2

+

(
(Kε)1/2

10

)2
)1/2

⎞⎠ r

≤
(
2

(
1

4

(
1 +

Kε

400

)
+

(
1

2

(
1 +

Kε

100

))))
r <

(
1 +

Kε

40

)
r.

This dominates the other 15 possibilities for a pair S, T .

We have that for any X, we have
1dA,B≥(1+εK)r ≤ 1d∗A,B(X)≥(1+εK)r.

The number of points νA in R̂A \ {Pi} that are adjacent to A in Xp is distributed as a binomial with mean
at least cAF (K + 1, ε)(1 + (K + 1)ε)r2(n − k)p for some absolute constant cA > 0. This follows from (12).
Because k = o(n), w.h.p., as will be discussed below, see (23), we have that P(νA ≤ cAF (K + 1, ε)(1 +
(K + 1)ε)r2np/2) ≤ e−cAF (K+1,ε)(1+(K+1)ε)r2np/20. Similarly, P(νB ≤ cBF (K + 1, ε)(1 + (K + 1)ε)r2np/2) ≤
e−cBF (K+1,ε)(1+(K+1)ε)r2np/20 where νB is the number of points in R̂B that are adjacent to B in Xp. An edge

between R̂A and R̂B will show that d∗A,B < (1 + Kε)r, see (13). We see that there will be at least νAνB/2
possible edges. It follows that if K ≥ 1 then

ρk,K,ε = P(d∗A,B ≥ (1 +Kε)r | |A−B| = r, P1, . . . , Pk) ≤
e−cAF (K+1,ε)(1+(K+1)ε)r2np/20 + e−cBF (K+1,ε)(1+(K+1)ε)r2np/20 + (1− p)cAcBF ((K+1),ε)2(1+(K+1)ε)2r4n2p3/4

≤ e−cAF (K+1,ε)(1+(K+1)ε)r2np/20 + e−cBF (K+1,ε)(1+(K+1)ε)r2np/20 + (1− p)cAcBF (K+1,ε)2(1+(K+1)ε)2r2r2εn
2p3/4

e−cF (K+1,ε)(1+(K+1)ε)r2np, (14)

for some absolute constant c > 0, since r2εnp
2 ≥ 104ε−2.

Case 2: Kε ≥ 1: We replace RA, RB by two halves SA, SB of the rectangle with center M and one side
of length (1 + (K + 1)ε/10)r parallel to AB and the other of side Kε/10 orthogonal to AB. Putting

ŜA = SA ∩ [0, 1]2 and ŜB = SB ∩ [0, 1]2 we see that all we need do now is to prove the equivalent of (12) and
(13). Then,

area(ŜA) ≥
(
1 +

(K + 1)ε

10

)
Kε

20
r2 ≥ F (K + 1, ε)(1 + (K + 1)ε)

1000
r2.

We have used Kε ≥ 1 to justify the second inequality.

We further have that for all S ∈ ŜA, T ∈ ŜB that, using the triangle inequality,

ℓ(ASTB) ≤
(
1 +

(K + 1)ε

10

)
r + 4

(
Kε

10
+

(K + 1)ε

10

)
r < (1 + (K + 1)ε)r.

Thus, the probability ρk,K,ε defined above satisfies

ρk,K,ε ≤
(
ΛF (K + 1, ε)(1 + (K + 1)ε)r2np(1− p)(k−1)/2

k2

)k

e−cF (K+1,ε)(1+(K+1)ε)r2np,

and the claim follows by linearity of expectation.

End of proof of Claim 1
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It will be convenient to replace r by ρ
(np)1/2

and write Jρ = [ ρ
n1/2 ,

ρ+1
n1/2 ] and let ρmin = rε(np)

1/2. Then,

E(|E3|)

≤
(
n

2

) ∞∑
ρ=ρmin

∞∑
K=1

n−2∑
k=1

k

(
ΛF (K, ε)(1 +Kε)r2np(1− p)(k−1)/2

k2

)k

e−cF (K+1,ε)(1+(K+1)ε)r2npP(|A−B| ∈ Jρ)

≤
(
n

2

)
π

∞∑
ρ=ρmin

∞∑
K=1

n−2∑
k=1

k

(
ΛF (K, ε)(1 +Kε)r2np(1− p)(k−1)/2

k2

)k

e−cF (K+1,ε)(1+(K+1)ε)r2np

(
2ρ+ 1

n

)

≤ 2πn
n−2∑
k=1

k
∞∑

K=1

(
ΛF (K, ε)(1 +Kε)(1− p)(k−1)/2

k2

)k ∞∑
ρ=ρmin

e−cF (K+1,ε)(1+(K+1)ε)ρ2ρ2k+1

≤ 2πn
n−2∑
k=1

k

∞∑
K=1

(
ΛF (K, ε)(1 +Kε)(1− p)(k−1)/2

k2

)k ∫ ∞

s=0

e−cF (K+1,ε)(1+(K+1)ε)sskds

= 2πn
n−2∑
k=1

k
∞∑

K=1

(
ΛF (K, ε)(1 +Kε)(1− p)(k−1)/2

k2

)k (
1

cF (K + 1, ε)(1 + (K + 1)ε)

)k+1

k!

≤ 2πn
n−2∑
k=1

k

(
64Λ(1− p)(k−1)/2

k

)k ∞∑
K=1

(
1

cF (K + 1, ε)(1 + (K + 1)ε)

)
(15)

= O
( n

ε2

)
.

2.2 E(|E4|)

Lemma 11. The expected number of (k + 1)-edge induced paths of length at most (1 + ε)r from A to B in
Xp can be bounded by (

nπr2p(1− p)(k−1)/2 ε(1 + ε)3e2

16k2

)k

(1− πε3r2p)n−2. (16)

Proof. Let ρk denote the probability that k fixed points X1, . . . , Xk satisfy that:

• A = X0, X1, . . . , Xk is an induced path

• For all i = 1, . . . , k, Xi lies in a copy of the ellipse 2 · EA,B, translated to be centered at Xi−1, and

• The total length of the path has total length at most (1 + ε)r.

By (10), this is the same as the probability that the the path has total length at most (1 + ε)r. Applying
(11), we have that

ρk ≤ (2πε(1 + ε)r2p)k(1− p)k(k−1)/2

(
e2(1 + ε)2

16k2

)k

.

Thus, by linearity of expectation, the number of induced paths A = X0, . . . , Xk such that

• the total length of the path is at most (1 + ε)r, and

• no point off the path lies within distance εr of A in the cone K(i, A)
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is at most

nk(2πε(1 + ε)r2p)k(1− p)k(k−1)/2

(
e2(1 + ε)2

16k2

)k

(1− πε3r2p)n−k−2 =(
nπr2p(1− p)(k−1)/2

1− πε3r2p

ε(1 + ε)3e2

16k2

)k

(1− πε3r2p)n−2 ≤(
nπr2p(1− p)(k−1)/2 ε(1 + ε)3e2

16k2

)k

(1− πε3r2p)n−2.

Lemma 12. E(|E4|) = O
(

n
ε3p

)
.

Proof. We have

E(|E4|) ≤ 2π

∫ ∞

r=rε

(
n

2

) ∞∑
k=1

k

(
nπr2p(1− p)(k−1)/2 ε(1 + ε)3e2

16k2

)k

(1− πε3r2p)n−2rdr (17)

≤ 2π

(
n

2

) ∞∑
k=1

k

∫ ∞

r=rε

(
πεr2np(1− p)(k−1)/2

k2

)k

e−πε3r2nprdr

≤ n

ε3p

∞∑
k=1

k

∫ ∞

s=A

(
ε(1− p)(k−1)/2s

ε3k2

)k

e−sds, (18)

where A = πε2r2εnp = 106ε−1π log(1/ε)/p. Now,

Ik =

∫ ∞

s=A

ske−s = k!
k∑

ℓ=0

e−AAℓ

ℓ!
≤ 2e−AAk, if k ≤ A/2. (19)

(Use Ik = kAk−1e−A + kIk−1 to obtain the equation.)

Using (19) in (18) we get, for small ε and k0 = 10 logb 1/ε where b = 1/(1− p),

k0∑
k=1

k

∫ ∞

s=A

(
(1− p)(k−1)/2s

ε2k2

)k

e−sds ≤ Ae−A

k0∑
k=1

(
A

ε2k2

)k

≤

Ak0 exp

{
−106(log 1/ε)π

εp
+

(
106(log 1/ε)π

ε2p

)1/2
}
≤ exp

{
−105(log 1/ε)π

εp

}
, (20)

where we have used (C/x2)x ≤ e2C
1/2/e for C > 0.

Finally,

∞∑
k=k0+1

k

∫ ∞

s=A

(
(1− p)(k−1)/2s

ε2k2

)k

e−sds ≤
∫ ∞

s=A

e−s

∞∑
k=k0+1

(
2ε3s

k2

)k

ds ≤
∫ ∞

s=A

e−(1−ε)sds ≤ e−A/2. (21)

Substituting (20), (21) into (18) we see that E(|E4|) = O
(

n
ε3p

)
.

We have argued that construct builds a (1 + ε)-spanner w.h.p. The set of edges in this spanner is that of⋃4
i=0Ei. Part (a) of Theorem 1 now follows from (2), (4), Lemma 9 and Lemma 12.
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2.3 Concentration of measure

Theorem 1 claims a high probability result. We apply McDiarmid’s inequality [12] to prove that |E3|, |E4|
are within range w.h.p. We do not seem to be able to apply the inequality directly and so a little preparation
is necessary. We first let m = ⌊1/Rε⌋ and divide [0, 1]2 into a grid of m2 subsquares C = (C1, C2, . . . , Cm2) of
size 1/m ≥ Rε. The Chernoff bounds imply that with probability 1− o(n−101) each C ∈ C contains at most
ρ0 = 2nR2

ε randomly chosen points of X . Suppose that we generate the points one by one and color a point
blue if it is one of the first ρ0 points in its subsquare. Otherwise, color it red. Let B be the event that all
points of X are blue and we note that

P(B) = 1− o(n−100). (22)

Let

κ1 =
100 log1/2 n

p
. (23)

The significance of κ1 is that the factors (1− p)k(k−1)/2 in equations (15) and (17) imply that

with probability 1− o(n−100), no path contributing to E3 or E4 has more than κ1 edges. (24)

We let Z3 denote the number of edges e = {A,B} that satisfy

(i) A,B are blue.

(ii) rε ≤ |A−B| ≤ 2Rε and |Y (iA,B, A)− A| ≥ ε|A−B|..

(iii) e is on an induced path in Xp that has length at least (1 + ε)|A − B| and at most κ1 edges, each of
length at most Rε.

Similarly, let Z4 denote the number of edges e = {A,B} that satisfy

(i) A,B are blue.

(ii) rε ≤ |A−B| ≤ 2Rε.

(iii) e is on an induced path in Xp that has length at most (1 + ε)|A − B| and at most κ1 edges, each of
length at most Rε.

Let Z ′
i, i = 3, 4 be defined as for Zi, without (i). Note that Lemma’s 9 and 12 estimate |Ei| through |Ei| ≤ Z ′

i

and showing E(Z ′
i) = O(n). Furthermore, Zi = Z ′

i, i = 3, 4 if U ,B (see Remark 1) occur and these two events
occur with probability 1− o(n−100). Thus we have for i = 3, 4,

|Ei| ≤ Zi, w.h.p.

and
E(Zi) ≤ E(Z ′

i | B ∩ U)P(B ∩ U) + n2P(¬B ∨ ¬U) ≤ E(Z ′
i) + n2P(¬B ∨ ¬U) = O(n).

We will therefore bound the probability that either Z3 or Z4 exceeds its mean by n. We let W = Z3+Z4. To
apply McDiarmid’s Inequality we have to establish a Liptschitz bound for W . Our probability space consists
of "m2

i=1Ωi × "Cj∼Ck
Ωj,k where Ωi is a set of at most ρ0 random points in subsquare Ci together with a list of

all of the edges inside Ci. We say that Cj ∼ Ck if there boundaries share a common point. Thus for a fixed
Cj there are usually 8 subsquares Ck such that Cj ∼ Ck. The set Ωj,k determines the edges between points
in Cj and Ck. It can be represented by a ρ0 × ρ0 {0, 1}-matrix in which each entry appears independently
with probability p. All in all there are n1−o(1) components of this probability space.
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A point X ∈ X is in at most ν0 = (9ρ0)
κ1 = no(1) of the paths counted by W . So, changing an Ωi or an Ωi,j

can only change W by at most ν1 = 2ρ0ν0κ1 = no(1) and so the random variable W is ν1-Liptschitz..

It then follows from McDiarmid’s inequality that

P(W ≥ E(W ) + n) ≤ exp

{
− n2

2n1−o(1)ν2
1

}
= e−n1−o(1)

.

This verifies the existence of the claimed (1 + ε)-spanner and now we argue that w.h.p. we need Ω(n(εp)−1)
edges. We say that an edge {A,B} is lonely if its length is r and there are no Xp-adjacent points in the ellipse
C with foci A,B defined by |X −A|+ |X −B| ≤ (1+ ε)r. Any (1+ ε)-spanner must contain all lonely edges.
Now the volume of C is πε(1 + ε)r2/2. By concentrating on points that are at least 0.1 from the boundary
∂D of D = [0, 1]2, we see that the expected number of lonely edges is at least

(0.64− o(1))

(
n

2

)
p

∫ 0.8
√
2

r=0

(
1− πε(1 + ε)pr2

2

)n

2πrdr ≥ π

(
n

2

)
· 1

πε(1 + ε)p

∫ εp

s=0

(1− s)nds ≈ n

2ε(1 + ε)p
.

This completes the proof of Theorem 1.

3 Proof of Theorem 2

Let K(i,X), Y (i,X) be as in Section 2 and let M = 4/ε2 and

E5 =

{
X, Y ∈ E : |X − Y | ≤

(
M log n

np

)1/2
}
.

The Chebyshev inequality implies that w.h.p. |E5| = O((ε2p)−1n log n). Let E1, E2 be as in Section 2.

Suppose first that X is at least
(

M logn
np

)1/2
from the boundary.

P

(
̸ ∃Y (i,X) or |X − Y (i,X)| ≥

(
M log n

np

)1/2
)
≤
(
1− πεM log n

2np

)n−1

= o(n−2). (25)

If X is closer to the boundary, then (25) may not be true for some i. This could be the case where X, Y are
both close to ∂D and {X, Y } /∈ E1. In these cases we merge K(i,X) with K(i+ 1, X) or K(i− 1, X), which
ever is appropriate. The net effect is to replace ε by 2ε for this particular cone. This has negligible effect.

Assume that |A−B| ≥
(

M logn
np

)1/2
. It follows that w.h.p. we can go A→ Y (i, B)→ Y (i, Y (i, B))→ · · · , at

least until we are at Z within
(

M logn
np

)1/2
of B. Then with probability at least 1 −

(
1− πM logn

4n

)n−2
we can

find a path ZXB from Z to B using only edges from E1, of total length at most 2
(

M logn
np

)1/2
. The length

of the path from A to B is then at most(
1 +

ε

2

)
|A−B|+ 2

(
M log n

np

)1/2

= |A−B|
(
1 +

ε

2
+

2

M

)
≤ (1 + ε)dA,B.

The validity of the first term
(
1 + ε

2

)
|A−B| follows from Lemma 6.
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4 Proof of Theorem 3

For this we only have to observe that w.h.p. K(X, i) exists for all X, i. This follows from the Chernoff bounds
and the fact that the expected number of vertices in K(X, i) grows faster than log n. We can therefore use
Lemma 6 to prove the existence of the required spanner.

5 Summary and open questions

We have considered a Euclidean version, asking for a (1+ε)-spanner and random geometric graphs. We could
perhaps extend the results of Theorems 1, 2,3 to [0, 1]d, d ≥ 3. This does not seem impossible. There is a
slight problem in that the cones K(i,X) intersect in sets of positive volume. The intersection volumes are
relatively small and so the problems should be minor. We do not claim to have done this.

There are a number of related questions one can tackle:

1. We could replace edge lengths by Es
2 where s < 1. This would allow us to generalise edge lengths to

distributions with a density f for which f(x) ≈ x1/s as x→ 0. This is a more difficult case than s = 1
and it was considered by Bahmidi and van der Hofstadt [3]. They prove that w.h.p. d1,2 grows like

ns

Γ(1+1/s)s
where Γ denotes Euler’s Gamma function. The analysis is more complex than that of [10] and

it is not clear that our proof ideas can be generalised to handle this situation.

2. Can we reduce the reliance on ε in the upper bound to ε−1?
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