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Abstract

Given a connected graph G = (V, E) and a length function ¢ : E — R we let d, ,, denote the shortest
distance between vertex v and vertex w. A t-spanner is a subset £’ C E such that if d, ,, denotes shortest
distances in the subgraph G’ = (V, E') then d;, ,, < td, ,, for all v,w € V. We study the size of spanners
in the following scenario: we consider a random embedding of G, ; into the unit square with Euclidean
edge lengths.

1 Introduction

Given a connected graph G = (V, E) and a length function ¢ : E — R we let d,,,, denote the shortest distance
between vertex v and vertex w. A t-spanner is a subset E C FE such that if d] ,, denotes shortest distances in
the subgraph G’ = (V, E') then d, ,, < td,,, for all v,w € V. In general, the closer t is to one, the larger we
need E’ to be relative to E. Spanners have theoretical and practical applications in various network design
problems. For a recent survey on this topic see Ahmed et al [I]. Work in this area has in the main been
restricted to the analysis of the worst-case properties of spanners. In this note, we assume that edge lengths
are random variables and do a probabilistic analysis.

We consider the case where ¢; ; = | X; — Xj|, where X = {X;, X5,..., X,,} are n randomly chosen points from
[0,1]?. In addition we assume that edges exist between the points in X, independently with probability p.
This model, denoted by the graph X, of a random embedding of G,,, into [0, 1]? has been considered in Frieze
and Pegden [7], Mehrabian and Wormald [II]. The case of p =1 (i.e. randomly chosen points) is discussed
in Section 15.1.2 of Narasimham and Smid [13].

Now d; ; = |X; — Xj| when {7, j} € X, implies that with probability one, a 1-spanner contains ~ (g) p edges.
We prove the following;:

Theorem 1. Suppose that the edges of X, are given their Euclidean length. Let € > 0 be fixred. We describe
the construction of a (1 + €)-spanner E..

(a) If np/logn — oo then E(|E.|) = O(c3(log 1/e)p~'n).
(b) fplogl/p o(log'?n) then |E.| < E(|E.|) + O(n) w.h.p.

(c) If np — oo then w.h.p. any (1 + €)-spanner requires Q(ne~p~1) edges.
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Assuming Q(nlogn) edges we get a much simpler proof. Also, if we only want an O(n) bound on the
expected number of edges in our spanner then we can relax the constraint on p to np/logn — oco. Le. the
extra restrictions are needed to prove the high probability result.

Theorem 2. Suppose that np®/logn — oo. Then w.h.p. there is a (1 + €)-spanner with O(e2p~'nlogn)
edges.

The argument we present for Theorem (I can be easily adapted to deal with random geometric graphs Gx

for sufficiently large radius r. Here we generate X as in Theorem |1|and now we join two vertices/points X, Y
by an edge if |[X — Y| <r. See Penrose [14] for an early book on this model.

Theorem 3. If r? > k’% then w.h.p. there is a (1 + €)-spanner using O(ne=?) edges.

We note finally that Frieze and Pegden [8] have also considered the case where edge lengths are independently
exponential mean one. The results there are much tighter.

2 Proof of Theorem [1

Suppose that 0 < ¢ < 1. Let

~ 100010g'/?1/e W p — (10°logn 1/2 X
< nl/2g3/2p ana fte = szs?’ ' (1)
The constraint on p means that
nR? = n°W,
Let
E,={{A,B}eX,:|A—-B|<r.}.
We have
E(|E1]) < (Z) mr2p < 10°7nlog(1/2)/(2¢%p) (2)
and then we can assert that (10°7 log 1/2)
mlogl/e)n
;] < S g, (3)

using the Chebyshev inequality. Here we can use the fact that the events {|A — B| < R} are pair-wise
independent.

For each A € X we define 7 cones K (i, A),0 < i < 7 with apex A and whose boundary rays make angles ic
and (i 4+ 1)e with the horizontal. We then let Y (i, A) denote the closest point in Euclidean distance to A in
K (i, A) that is adjacent to A in X,,. We put Y (i, A) = L if there is no such Y and let d4; = co. Also, define
i=1d4y by Y € K(i,A). Let

Ey={(AY;4) : Ac X,ic{0,1,...,7 — 1}} so that |Es| = O(n/e). (4)

For A, B € A we let P4 p denote the shortest path between A, B in X, and we let d4 p denote the length of
P, p. The next two lemmas will discuss the case where A, B are sufficiently distant.

Lemma 4. If |A — B| > R. then with probability 1 — o(n™'"), |A — Y| < ¢e|A — B|, where Y =Y (iap, A).



Proof. We have

P(JA—Y]| >elA— B|) < (1 —en(eR.)?p/2)" " < ¢ 10%logn/(me) — (5, ~100)
The 2 in the middle expression allows half the cone to be outside [0, 1]%. O
Lemma 5. Ifr. <r = |A— B| > R. then with probability 1 — o(n™2?), dap < (1 +4¢)|A — B|.

Proof. Let X1, X5 be points on the line segment AB at distance |A — B|/3,2|A — B|/3 from A respectively.
Let B;,7 = 1,2 be the ball of radius er centred at X;. Let A; be the set of X, neighbors of A in X; and let
A, be the set of X, neighbors of B in X,. &, = 1,2 be the event that |A;| > r?np/10. Then the Chernoff
bounds imply that

P(E, A Ey) > 1 — 2™ /1000 — | _ (p=100),

Let & be the event that there is an X, edge between A; and A,. Then
P(E | ELAE) > 1 — (1—p) W70 Z 1 o(n72),

Finally note that if &,7 = 1,2,3 all occur then dyp < (1 + 4¢)|A — B|. (4 is trivial and avoids any

computation.) O
Let

B.={(A,B): dap>(1+¢)|B—Alandr=|A—-B|>r.} (5)
and

Es= |J E(Pan)
(A,B)eB:

Let
C.={(A,B): dap<(1+¢)|B—Alandr=|A—B|>r.and |[A-Y|>¢|A— B|},

where Y =Y (iap, A). Let

Ei= |J E(Pan).
(A,B)eCe

We show in Lemmas |§| and |12/ that the sets E3, E; have linear size w.h.p. Let E. = U?:o E;.

For X,Y € X we let d: x,y denote the length of the path from X to Y constructed by the following procedure:
Given A, B € X where {A, B} ¢ E we construct a path A = Zy, 7, ..., Z; = B as follows: in the following,
Y} = Y(Z, ZJ) for B € K(Z, Zj),j > 0.

CONSTRUCT:

D1 If {Z;, B} € Ey, use the edge {Z;, B}, otherwise

D2 If |Z; — Y;| > |Z; — B| then use Py, p to complete the path, otherwise

D3 If dy, g > (1 + 5¢)|Y; — B| then use Pz, p to complete the path, otherwise
D4 Zj.1 < V.

Remark 1. We observe that Lemmas and@ imply that with probability 1 — o(n™'%) we do not use Py, p
for|Z; — B| > 2R.. Denote the corresponding event by U.

The next lemma is used to estimate the quality of the path built by cONSTRUCT. (We can obviously replace
5e by € in order to get a (1 + ¢)-spanner.)



Lemma 6. Let A= Zy,7Z1,..., 2y, Zri1 = B be a sequence of points where

(Z) Zj+1 S K<iZj,B7Zj) fO’F all 0 < j < ]{Z,

(iii) dg, 5 < (1+ 5¢)| 2 — B.

Then
k-1

dzen+ Y |Zie1 = Z;] < (1+5¢)|A— Bl. (6)

J=0

Proof. Let dj = |Z; — B| for 0 < j < k. To prove the lemma, it suffices to show for all j that

[ Zj1 — Zj| < (1 + 5e)(dj — djsn). (7)
This implies that
k—1
g5+ Y NZi1 — Z;| < (1+5e)dy, + (1+5e) > (dj — djy1) = (1+ 5e)do.
: po

To this end, define Z;,; to the point on the segment Z;Z; such that |Z; 11 — Zx| = [Zj11 — Zi|. By the
assumption that |Z; — Z;11| < |Z; — Zy|, we have that £Z;1Z,Z;.1 < m/2, and thus that the ratio

|Zi+1 = Zj]
d o d]+1

can be bounded by considering the case where £Z;1 77,1 = 7/2, as it is drawn in Figure

. . d; d; .. .
We have in that case that sine = |ijz+1| and cose = rr—p—, giving d; — d; 11 = (cose —sine)|Z; — Zj4|
which implies . O

Zis1

Zin

dj = dja djy1

Figure 1:

Assuming @ we see immediately that the path built by CONSTRUCT has a length within a 1 + 5¢ factor of
the minimum. We argue next that

Lemma 7. The edges of the paths Py, p used in CONSTRUCT are contained in E3U Ej.



Proof. First consider the path P = Py, p used in D2. If dz, p > (1+¢)|Z; — B| then E(P) C E3. Otherwise,
E(P) C E,.

Now consider the path P = Pz, g used in D3. If dz; p > (1 +¢)|Z; — B| then E(P) C E3. So assume that
de,B < (1 —|—€)|Zj — B|

If |Z; —Y;| > ¢e|Z; — B| then E(P) C E,. So assume that |Z; — Y;| < ¢|Z; — B|. At this point we have
(1+5¢) [V; = Bl < dy, 5 <12 — Y| + g5 < (142612, — BJ) < (1420 (12, — Y| + |Y; - BI).

This implies that |Z; — Y| > 3¢|Y; — B|/(1 4 2¢). If |Y; — B| > |Z; — B|/2 then we have E(P) C E4. So
assume that |Y; — B| < |Z; — B|/2. But then |Z; -Y}| > |Z;— B|—|Y;— B| > |Z;— B|/2, a contradiction. [

Lemma 8. CONSTRUCT produces a path of length at most (1+ 6¢e)da g and only edges of length at most e R,

contribute to E3, Fj.

Proof. We can assume that |A— B| > R.. Let A= Zy,Zy,...,Zy, Z1+1 = B be the path constructed and let
Zy be the first point within ¢R. of B. Note that this means Zy, Zy.1,..., Z) are all within eR,. of B. This
yields the second claim of the lemma.

Let C/i\g = Zf:é |Zix1 — Z;| be the length of the subpath from A to Z,. It follows from Lemma @ that
de < (1+5¢)|A—Z,|. Because |Z,—y —B| > R. and |Z;—1 — Zy| < €|Zy_1 — B| we see that |Z,— B| > (1—¢)R..
It follows from Lemma [5|that dz, p < (1+44¢)|Z, — B|. The path constructed by SECURE therefore has length

at most
(14+5e)|A—Zy|+ (1+5e)(1 +4e)eR. < (1 +6¢)|A— B|.

The next two lemmas bound the expected number of edges in the sets Ej3, Ej.

21 E(|5))
Lemma 9. E(|E3]) = O(n/e?).

Proof. Fix a pair of points A, B € X and let r = |A — B| where 7. < r < R. (r., R. defined in (f))). Note
next that shortest paths are always induced paths. We let Lk 4 p denote the set of induced paths from A
to B with k£ + 1 > 2 edges in &), of total length at most (1 + (K + 1)e)r.

We let Ly g ap = |Lrrap|. Then we have
o0
Bal< > D>, > Pl laupeexen (8)
A,BEX k,K=1P€ELK 1 A B

This is because if dag > (1 4 ¢)|A — B| then the shortest path from A to B has its length in Jg, =
(14 Ke)r, (1 + (K + 1)e)r], for some K > 1. Next define, for L > 1,

F(L,e) :==V2Le + L%c2.

Claim 1. There exists an absolute constant A such that for K > 1,

E (Lkkan- 1dA732(1+aK)r| |A—B|=r)

<
_ k
AF(Ku E)(l + K&T)T’an(l - p)(k b/2 —cF(K/4,e)(1+Ke/4)r?np (9)
12 (& .



Proof of Claim : Let E4 (L) denote the ellipse with centre the midpoint of AB, foci at A, B so that

one axis is along the line through AB and the other is orthogonal to it. The axis lengths a, b being given by
= (1+Le)rand b=r4/(1+ Le)* — 1 = rF(L,e). Thus F4 (L) is the set of points whose sum of distances

to A, B is at most (1 + Le)r.

Given k points Py, ..., Py, the path P = (A = Py, Py, ..., Py, Pr11 = B) is of length at most (1 + (K + 1)e)r

only if all these points lie in F4 g(K +1). Thus the length of P is at most the sum Z; +- - -+ Zj, of independent

random variables where Z; is the distance to the origin of a random point in an ellipse with axes 2a, 2b centred
at the origin. Here we are using the fact that if a point x lies in an ellipse E then E is contained in a copy

of 2F centered at x. Indeed, suppose that (x;,y;),7 = 1,2 are two points in the ellipse £ = {2”—; + ?j]—z < 1}.
Then

2
(71 gza:g)Q L (1 ;292)2 < 2(33%6‘2" x3) n 2(yi +yz _ Z <€2 y_l) < 4. (10)

It follows that (z1,y;) is contained in a copy of 2F centered at (x2,ys).

The following is well-known:

Lemma 10. 7, is distributed as UY*(a® cos?(27V) + b? sin®(27V))Y2 where U,V are independent uniform
[0, 1] random variables.

Proof. m

Now (26 +¢)? < (14 ¢) and so F(K +1,£) < 1+ (K + 1)e. So, Z is dominated by UV2(1 + (K + 1)e)r.
It follows from Lemma [10| that ¢(P) is dominated by (1 + (K + 1)e)r times the sum of k independent copies
of U2, Lemma 9 of Frieze and Tkocz [9] shows that

2k < eZk

P(Zi+Zo+ -+ 2, <1+ (K +1)g)r) < R S R (11)

Thus, given k random points P, ..., P, the probability that A, P;,..., P, is an induced path of length
< (14 (K 4+ 1)e)r is at most

(AF(K +1,e)(1+ (K + 1)e)r’np(1 — p)(k‘—l)/Q)k
k2 :

(In equation (9)), the ratio F(K&}fg)((lf +(II§:)1)5) < 4 has been absorbed into A.)

To get @, we need to also make make use of the term 14, ,>(11cx)r In @

Case 1: Ke < 1: We define two rhombi, R4, Rg. Let M denote the middle of the segment AB. Then
R, has one diagonal AM and another diagonal WaW/, of length (Ke)Y2r/10 that is orthogonal to AM and

bisects it. The rhombus Ry is defined similarly. Finally let R4y = R4 N [0,1]2 and Rz = R N [0,1]% Note
that at R4 has area at least 1/2 of the area of R4 and similarly for Rp. Thus if K > 1 then

(Ke)'/?p? - F(K+1,e)(1+ (K + 1)e)r?

Ra) >
area(Ra) = ——— = 100

(12)

Here we have used Ke <1 to justify the second inequality.

For a pair of points A, B let dj z(X) denote the minimum length of a path @ = (A,S,T, B) in &, where
S e }A‘ZA\X and T € EB\X. We wish to show that

Q) < (14 Ke)r for all choices of S, T. (13)

6



Now fix S and consider the function f(7') = |ST| + |I'B|. This is a convex function and so it is maximised
at an extreme point of Rg \ X. Then for a fixed T" we find that maximising over S, we have that S must be
an extreme point of R4\ X. To verify , it is enough to check the length

i< (+(()'+ (%57 () (45))
(G0 GO = (50

This dominates the other 15 possibilities for a pair .5, 7.

We have that for any X, we have
Ly p>(terr < lay p(x)>(14eK)r

The number of points v4 in R4 \ {P;} that are adjacent to A in A}, is distributed as a binomial with mean
at least caF(K + 1,¢)(1 + (K + 1)e)r*(n — k)p for some absolute constant ¢4 > 0. This follows from (12)).
Because k = o(n), w.h.p., as will be discussed below, see (23, we have that P(va < caF(K + 1,¢)(1 +
(K + 1)e)r?np/2) < e cal(E+La)(+E+De)*m/20 - Similarly, P(vg < cpF (K + 1,€)(1 + (K + 1)e)r?np/2) <

el (K1) (14 (K+D)r*np/20 where g is the number of points in Rp that are adjacent to B in X,. An edge

between R4 and Ry will show that dh g < (14 Ke)r, see (13). We see that there will be at least vavp/2
possible edges. It follows that if K > 1 then

prie=Pldyp>(1+Ke)r||[A=B|l=rP,...,P) <

—cAF(K+1,6)(1+(K+1)e)r3np/20 +e—cBF(K—&-La)(1+(K+1)a)r2np/20 + (1 _ )cAcBF((K+1)7a)2(1+(K+1)8)2r4n2p3/4

e D

< e—cAF(K+1,a)(1+(K+1)5)r2np/20 + e—cBF(K+1,a)(1+(K+1)a)r2np/20 + (1 . )cAcBF(K+1,a)2(1+(K+1)a)2r2r§n2p3/4

p
e—cF(K—i-l,E)(1+(K+1)a)r2np’ (14)

for some absolute constant ¢ > 0, since r2np? > 10*e~2,

Case 2: Ke > 1: We replace Ry, Rg by two halves Sy, Sp of the rectangle with center M and one side
of length (1 + (K + 1)e/10)r parallel to AB and the other of side Ke/10 orthogonal to AB. Putting
Sa=S54N][0,1]? and Sp = SpN[0,1]* we see that all we need do now is to prove the equivalent of and
(13). Then,

area(S4) > (1 + M) Ke o, F(E+1e)(1+(K+1)e) ,

10 20 — 1000
We have used Ke > 1 to justify the second inequality.
We further have that for all S € S YRS S p that, using the triangle inequality,

((ASTB) < <1+w)r+4(%+w>r<(1+(K+1)5)r.

Thus, the probability pj k. defined above satisfies

_ k
< <AF(K + 17 5)(1 + (K + l)s)rznp(l B p)(k 1)/2) —cF(K+1,e)(1+(K+1)e)rinp
Pr,Ke = 12 ¢ )

and the claim follows by linearity of expectation.
End of proof of Claim



It will be convenient to replace r by (Tp% and write J, =[5, %] and let puin = 7.(np)*/2. Then,

E(] Es3|)
o) oo n—2 k
n AF(K,e)(1+ Ke)r’np(1 — p)k=1/2 . E 2
<(3) X XXk( . (KA K DI A~ B € )

k2 n

00 0o n—2 k
n AF(K,e)(1 4 Ke)r*np(l — p)(k_l)/2 —cF(K41,6)(1+(K+1))r2n 2p+1
(1) = S5 : :

n—2 [e'e) k—1)/2 k 0o
< 27m2 k Z (AF(K’ &)1+ []:25)(1 — p)( i ) Z e—cF(K+175)(1+(K+1)a)p2p2k+1
k=1 K=1 P=Pmin
n—2 0o k
AF(K. )1+ Ke)(1 — p)k=1/2 0
< 27m2k: Z ( (K, e)(1 + k;)( p) ) / o CF(E+Le)(1+(K+1)e)s ok g o
k=1 K=1 5=0
n—2 0 _ k 1
AF(K, &) (1 + Ke)(1 — p)k-1/2 1 +
:27m2k:2( ( ’8>(+;§)< p) ) (FK S ) N
k=1 K=1 cF(K+1,e)(1+ (K + 1))
n—2 k oo
64A(1 — p)(k_l)/Q) ( 1 )
< 2mn k ( (15)
; k Kz:l cF(K+1,e)(1+ (K +1)e)

2.2 E(|E)

Lemma 11. The expected number of (k + 1)-edge induced paths of length at most (1 + &)r from A to B in
X, can be bounded by

1 3,2\
(mrrzp(l — p)(kfl)/Qg( —1_(:]2 € ) (1 — me’rip) 2. (16)

Proof. Let p; denote the probability that k fixed points X1, ..., X} satisfy that:

o A= X, Xq,..., X} is an induced path
e Foralli=1,...,k, X; lies in a copy of the ellipse 2 - F4 p, translated to be centered at X,_;, and

e The total length of the path has total length at most (1 + ¢)r.

By , this is the same as the probability that the the path has total length at most (1 + €)r. Applying
(11]), we have that
e2(1+¢)? ) g

1642
Thus, by linearity of expectation, the number of induced paths A = Xo, ..., X} such that

pr < (2me(1 + 6)7’2p)k(1 —p)k(k_l)/2 (

e the total length of the path is at most (1 + ¢)r, and

e 10 point off the path lies within distance er of A in the cone K (i, A)



1S at most

2(1 2\ k
nk(27T€(1 + €)T2p)k(1 _p)k(k—l)/2 (6(16——]:26)> (1 _ 7T€3T2p)n_k_2 _

(merp(l —p)FD/2 (1 + )32

3.2 \n—2
1 —medr2p 16k2 ) (L= mip)™" <

k
(k—1)/2 8(1 + 8)362

2 3,2 \n—2
<n7rr p(1 —p) e ) (1 —merp)"~=.

[l
Lemma 12. E(|E,|) = O (i>

Proof. We have

o) > 1 3 2\ k
E(|E4]) < 27?/ (n) Z k <n7r7’2p(1 - p)(k_l)ﬂ%) (1 — 7e®r®p)" 2rdr (17)

o0 o0 200(1 — p) =172\ * ,
<27 (Z) E k:/ (WET np 2 p) > eI e
k=1 “T7Te
00 k
n % /(1 — p)E-D/2g .
< e E k/s ( 2 e ‘ds, (18)

where A = er?np = 10% 7 log(1/¢)/p. Now,

00 ko emApL
I = / ste™* = k1> i< 2e4AF if k< AJ2. (19)
s=4 =0

(Use I = kAk¥~Le=* + kI, to obtain the equation.)
Using in we get, for small € and ko = 10log, 1/ where b =1/(1 — p),

ko _ k ko k
oo (1 _p)(k 1)/28 . A A
Zkf/A( 222 € dSSAe Z % S
k=1 V5% k=1
6 6 1/2 5
10°(log 1/e) (10 (log 1/5)7r) } . exp{_lo (log 1/5)7r}7 (20)

Akqexp {— 5
ep e°p Ep

where we have used (C/22)" < e2¢"/¢ for C' > 0.

Finally,
0 00 1 — p)k=1)/2 k 00 0 2235\ * 00
Z k/ <( png S) e *ds < / e’ Z (%) ds < / e~ (178)50s < e=A/2, (21)
k=ko+1 =4 c S=A k=ko+1 s=4
Substituting (20)), into we see that E(|Ey|) = O <£p) O

We have argued that CONSTRUCT builds a (1 + €)-spanner w.h.p. The set of edges in this spanner is that of
U?:o E;. Part (a) of Theorem (1| now follows from (2), (4)), Lemma |§| and Lemma .

9



2.3 Concentration of measure

Theorem (1| claims a high probability result. We apply McDiarmid’s inequality [12] to prove that |Es|, | E4|
are within range w.h.p. We do not seem to be able to apply the inequality directly and so a little preparation
is necessary. We first let m = |1/R.] and divide [0, 1]? into a grid of m? subsquares C = (C1, Cy, ..., Cp2) of
size 1/m > R.. The Chernoff bounds imply that with probability 1 — o(n~'!) each C' € C contains at most
po = 2nR? randomly chosen points of X'. Suppose that we generate the points one by one and color a point
blue if it is one of the first py points in its subsquare. Otherwise, color it red. Let B be the event that all
points of X are blue and we note that

P(B) =1 —o(n™'). (22)
Let 1o
1001
Ky = 100log™ " n- (23)
p

The significance of x; is that the factors (1 — p)**~1/2 in equations and imply that

—100)

with probability 1 — o(n , no path contributing to E3 or E; has more than x; edges. (24)

We let Z3 denote the number of edges e = { A, B} that satisfy

(i) A, B are blue.
(ii) re <|A—B| <2R. and |Y (iap,A) — A| > ¢|A — B]..

(iii) e is on an induced path in A&, that has length at least (1 + ¢)|A — B| and at most x; edges, each of
length at most R..

Similarly, let Z, denote the number of edges e = {A, B} that satisfy

(i) A, B are blue.
(ii) r. <|A— B| <2R..

(iii) e is on an induced path in X, that has length at most (1 4+ ¢)|A — B| and at most ; edges, each of
length at most R..

Let Z/,i = 3,4 be defined as for Z;, without (i). Note that Lemma’s [J] and [12] estimate | E;| through |E;| < Z!
and showing E(Z!) = O(n). Furthermore, Z; = Z/,i = 3,4 if U, B (see Remark [1]) occur and these two events
occur with probability 1 — o(n~1%). Thus we have for i = 3,4,

|Ei| < Zi, whp.

and
E(Z) <E(Z | BONU)P(BNU) +n*P(=BV -U) <E(Z)) +n*P(=BV -U) = O(n).

We will therefore bound the probability that either Z3 or Z, exceeds its mean by n. We let W = Z3+ Z4. To
apply McDiarmid’s Inequality we have to establish a Liptschitz bound for W. Our probability space consists
of X;’lel- X Xoj~c, Sk where €); is a set of at most py random points in subsquare C; together with a list of
all of the edges inside C;. We say that C; ~ Cj, if there boundaries share a common point. Thus for a fixed
C; there are usually 8 subsquares Cj, such that C; ~ Cj. The set (), determines the edges between points
in C; and Cj. It can be represented by a py X po {0, 1}-matrix in which each entry appears independently
with probability p. All in all there are n'~°(") components of this probability space.
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A point X € X is in at most vy = (9pp)™ = n°Y of the paths counted by W. So, changing an ©; or an €);
can only change W by at most vy = 2porpk; = n°Y) and so the random variable W is v;-Liptschitz..

It then follows from McDiarmid’s inequality that

B 2nl-o(l)y2

2
P(W > E(W)+n) <exp { n—} — e,

This verifies the existence of the claimed (1 + ¢)-spanner and now we argue that w.h.p. we need Q(n(ep)™!)
edges. We say that an edge {A, B} is lonely if its length is r and there are no X,-adjacent points in the ellipse
C with foci A, B defined by | X — A|+|X — B| < (1+¢)r. Any (1 + ¢)-spanner must contain all lonely edges.
Now the volume of C'is we(1 + ¢)r?/2. By concentrating on points that are at least 0.1 from the boundary
D of D =[0,1]%, we see that the expected number of lonely edges is at least

(OM_OGDCD?Arﬂ(1_Zik;ﬁf3n%W”2WCD'FJSFQQLz“_g%wwéaf%EB

This completes the proof of Theorem [}

3 Proof of Theorem 2

Let K(i,X),Y (i, X) be as in Section 2 and let M = 4/e? and

Ml 1/2
E5:{X,Y€E:|X—Y|§( Og”> }

np
The Chebyshev inequality implies that w.h.p. |E5| = O((¢?p)~'nlogn). Let E1, B be as in Section [2]

1/2
Suppose first that X is at least (m) from the boundary.

np

1/2 - n—1
P (EY(@',X) or | X — Y (i, X)| > (M;g”> ) < (1 _ %) — o(n"2). (25)

If X is closer to the boundary, then (25) may not be true for some i. This could be the case where X, Y are
both close to D and {X,Y} ¢ E;. In these cases we merge K (i, X) with K (i + 1, X) or K(i — 1, X)), which
ever is appropriate. The net effect is to replace € by 2¢ for this particular cone. This has negligible effect.

1/2
Assume that |A — B| > (losn . It follows that w.h.p. we cango A - Y (i, B) — Y (i,Y (i,B)) — ---, at
np
an

1/2 n—
least until we are at Z within <%}g”> of B. Then with probability at least 1 — (1 — M) ? we can

1/2
find a path ZX B from Z to B using only edges from FEy, of total length at most 2 (%pg") . The length
of the path from A to B is then at most

€ M logn 1/2 e 2
1 —)A—B 9 —A-Bl(1+5+2) <1 .
(+2 | | + ( -~ ) | | +2+M < (1+¢e)dag

The validity of the first term (1 + £) |A — B| follows from Lemma |§|
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4 Proof of Theorem [3

For this we only have to observe that w.h.p. K (X, 1) exists for all X, 4. This follows from the Chernoff bounds
and the fact that the expected number of vertices in K (X, i) grows faster than logn. We can therefore use
Lemma [6] to prove the existence of the required spanner.

5 Summary and open questions

We have considered a Euclidean version, asking for a (14 ¢)-spanner and random geometric graphs. We could
perhaps extend the results of Theorems to [0,1]¢,d > 3. This does not seem impossible. There is a
slight problem in that the cones K (i, X) intersect in sets of positive volume. The intersection volumes are
relatively small and so the problems should be minor. We do not claim to have done this.

There are a number of related questions one can tackle:

1. We could replace edge lengths by E5 where s < 1. This would allow us to generalise edge lengths to
distributions with a density f for which f(x) ~ z'/* as  — 0. This is a more difficult case than s = 1
and it was considered by Bahmidi and van der Hofstadt [3]. They prove that w.h.p. d;» grows like
F(pfﬁ where I'' denotes Euler’s Gamma function. The analysis is more complex than that of [I0] and
it is not clear that our proof ideas can be generalised to handle this situation.

2. Can we reduce the reliance on ¢ in the upper bound to e~1?
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