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ABSTRACT

We consider the parallel greedy algorithm of Coppersmith, Raghavan, and Tompa (Proc.
of 28th Annual IEEE Symp. on Foundations of Computer Science, pp. 260-269, 1987) for
finding the lexicographically first maximal independent set of a graph. We prove an
Q(log n) bound on the expected number of iterations for most edge densities. This
complements the O(log n) bound proved in Calkin and Frieze (Random Structures and
Algorithms, Vol. 1, pp. 39-50, 1990).

1. INTRODUCTION

In this note we consider the problem of finding the lexicographically first maximal
independent set (LFMIS) in a random graph. Coppersmith, Raghavan, and
Tompa [3] describe a parallel version of the standard greedy algorithm for this
problem:
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Suppose we are given a graph G=(V, E), V=[n]={1,2,...,n}. For ZCV
we let

I'(Z)={xZZ:xz€E forsome z<x,zEZ},

and

I'(Z)={x&Z:xz€E forsome z>x,zE€Z} .
Note that we have implicitly oriented the edges from low to high.

algorithm PARALLEL GREEDY (G);
begin
GIS «@;
until G has no vertices do
begin
let S={a:T (a)=0};
GIS < GISU S;
remove S UT(S) from G
end
output GIS
end

It is easy to see [3, Lemma 2.1] that GIS is the LFMIS. Cook [2] showed that
the problem of computing the LFMIS of a graph is complete for P and so is not in
NC unless NC=P. PARALLEL-GREEDY can be implemented on a CRCW
PRAM in O(1) time per iteration if one processor is allocated to each edge of G.

Coppersmith, Raghavan, and Tompa showed that if T(n, p) denotes the
expected number of iterations 7=17(G) when G=G,, then T(n, p)=
0( (log n)’

loglog n
occurs independently with probability p = p(n).).

They conjectured that T(n, p) = O(log n) and this was proved in Calkin and

Frieze [1]. They proved:

) (G,,, is the random graph with vertex set [n] where each edge

Theorem 1. (a) ———— _alogn_ =T(n, p orl =p= —1; where 0 < a <1 is constant,
4loglogn n=P=4q

(b) T(n, p) = O(log n). The hidden constant in (b) is independent of p.

Note that our inequalities are only claimed for n large.
The upper bounds and lower bounds in Thtlzorem 1 are slightly different. It
og n
log log n
this article is to shed more light on this problem, and to prove:

leaves open the possibility that T(n, p)= O throughout. The aim of

3logn

(log n)* (1 - a)loglogn for

=-— P , () T(n, p)=Qlogn) fora=p= =3 , Where the hidden constant in
(b) depends on a.

Theorem 2. Assume 0=<a <1, a constant. (@) T(n, p)=
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Proof. (a)Let G=G,2G,D2G;D. .. denote the sequence of graphs produced
by each iteration of the algorithm.

For v €V(G,) and t =1 let a(t, v) = the length of the longest directed path in
G, which ends at v (a path (v, v,,...,v,, is directed if v, <v,<---v,)).

Clearly, if v € V(G,,,) then a(t+1,v)= (s, v) — 2.

Hence

1
7(G) = 3 max{v € V(G): a(1, v)} .
Thus
Pr(7(G, ,) = k) = E(# of directed paths of length 2k)

("), %1
(Zk)p
2k-1
EQ
S”( 2k

ay\ 2k-1
< n( e(log n) ) '
2k

Hence, with ky = = opet ]
T(n, p)= gl Pr(7(G,,,) = k)

chen 3 (opmy

k=ko+1 2k
e(log n)a)Zko—l
<k,+ Zn(—
0 2k,
Aloglogn )2"""
<ty 2 Aloglogn
0 n (Iog n)l—a
where A =¢(1 — a)/4,
=ky+o0(1).
This completes the proof of (a). L]

(b) This is somewhat less trivial.
Let

V,=V(G,)

= {vertices remaining at the start of round ¢}
S,=Set S found in round ¢

= {sources found in round ¢} ,
N,=T(S,)NYV,

= {neighbors of S, deleted in round ¢} .
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Suppose i =2 and A,, B,, 1 =t=<i—1is some disjoint collection of subsets of V.
Then we have S,= A,, N,= B, for 1<t=<i—1 if and only if

(2a) vE A, implies " (v)C U -}1B,and T (v)N B,_,; #P, 1=t=<i—1 (when
t=1, drop the second condition)

(2b) v € B, implies T"(W)N U] A,=0 and T"(v)N A, #0, 1=tr=<i-1
and

i-1
vEC=V-U (A,U B,) implies
=1

(32) T ()N U1 A, =4,
(3b) T~ (v) N (B,_, U C) #8.

Suppose now that we choose sets A,, B,, 1=¢t=i—1 satisfying (2) and
condition on the event

€={S,=A,,N,=B,V,=C:1=t=<i-1}.

It is important to establish the conditional distribution of the sets I';(v) =
rwnv,veV, i=2. ForveV,let R,=[v—-1]N(V,UB,_,) and r, =|R,|.

Claim 1. (i) The sets I';(v), v €V, are stochastically independent, (ii) T';(v) isa
random subset of R, chosen through r, Bernoulli trials conditioned on the
occurrence of at least one sucess, i.e.,

- r, , o ,
4) PP ()= k)= ( k)p"(l -p)" M(1-Q1-p)*), 1<k=r,
and each k-subset is equally likely.

Proof (of Claim). To prove (i) simply observe that condition (3) on v € C only
involves edges directed into v, and that the conditions in (2) only involve edges
directed into V— C.

Now consider (ii). v €V, if and only if I';(v) # 0 and I'; (v) N S, =@ and these
conditions are equivalent to (ii). We can now proceed inductively. Fix v € V,. If
v & S; U N, then we learn (a) I, (v) NV, # @, then (ii) [';(v) N S; =@ and so finally
that

;)N (V- $)=T;@) N R =4,

Thus (4) continues to hold.
End of proof (of claim). =

We now continue with the proof of our Theorem. Choose 8, a <8 <1. Now

(1-a)logn

choose i=71= -l and assume that V,= {x,<x,<---<x,}. Parti-

tion V, into X,, X,, Y where X,={x,,x,,...x,}, a=[logn/p], X,=
{Xa41>Xas2s - - - Xp}, b= [(log n)/p], and Y is the rest of V,. We will show that a
good proportion of Y is likely to remain in V,,,, when V; is large enough so that
the above partition is actually possible.
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Observe first that the proof of Claim 1 implies that if » =|B,_, N [x; — 1]|, then
(5) Pr(x=x,€S)=(1-(1-p))1-p) /(1-(1~-p)™)

=(1-p"

(At least one success is required in the r trials corresponding to B,_, N[x; — 1]
and no further successes.)
So if &, = {S;N(X,UY) =9}, then

_(a-p)y _

(©) Pr() <35, (1 -py ' = S =

Let
B={T"()NX,#,Vy€Y)
It follows from Claim 1(ii) that if y € Y, then

PiT"()NX,=H=(1-p)™*

n—(l—o(l))logn
and so
(7) Pr(@) < n—(l-o(l))logn
i .

Note that (6),(7) can be taken as true even if Y =9.

Let us now consider the size of ;. Let §; =1 if x; € §; and §; = 0 otherwise. It
follows from Claim 1(i) that §,,3d,,..., 8, are independent random variables.
Also

Emm=$h@=n

IA

g( p)~!
1
5

Note that we have Pr(§;=1)=(1- p)! regardless of the history of the
algorithm to this point. It follows that IS, + 1S, + - - - +|S,| is dominated by the
sum of independent random variables each of which is the sum of a large number
of independent 0-1 random variables. It follows from Theorem 1 of Hoeffding [4]
that if

(1- a)log n}

=I5l +Is,+-- 415 < E5)

then
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2ei )(l—a)log nl2p

Pe@)= (= aogn

(Hoeffding proves that if Z,, Z,, . .., Z,, are independent random variables with
0=Z;=<1,j=1,2,...,mand E(Z,+ Z,+ -+ Z,) = mp then

Pr(Z,+Zz+...+Z,,,2m(p,+t))S<( £ )p“( ot )l_u_')m.

n+t 1-p—t
Soif t=(0-1)n
e Omp
Pr(Z,+ Z,+ -+ Z,z0mu)<(0"%" ")y < <5) )
] 1-a)lo
We use this inequality with mu = 2 and Omu = (—%ﬂ .

Note that . C6,_,C -+ C %, and
(8) Pr(%.) = n~(1-Neel3/e)/2e

Consider the size of Y NV, ,. Using Claim 1(ii) we see that, given &, N %;, the
edges joining X, to Y are unconditioned. So, by another use of [4],

) PrViusl= (1= oo 72 IYI0L -2t 1 8, 15))
- Y11 - p)'*
- exp{—- 2(log n)* }

since if y € Y then Pr(y €V,,,|# N B, |S|) =1 - p)**
Now let

@, ={Iv|>(1-

2 )i_l IS | +{S5+ - +]S;
n(l _p) 1 2 l ;-ll} .
(log n)*

Then we have
(10) Pr(D,,,) <Pr(&,N B,N €N D) +Pr(D,, |4, N B,N €N D,).

Now if 6, N 9, occurs, then

i-1
V(1 - p)l¥ = "(1 - ) (1— p)Sil+1sal+-—+lsi

(log n)*

=

2 -t —a)logn
(1_ (logn)z) (1= p)ftmeeenz

= (1 - 0(1))n1+((l—a)/2p)log(l—p)

(log n)° ( 1 )
and |Y|=|V]|-—==~=(1- V).
n I I | l| p logn)Z I lI
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Now,since 4;, 9; refer to the history of the algorithm prior to the construction
of YNV,,, we may again argue as in (9) that

(l - 0(1))nl+((1—a)/2p)|og(1_p)}
2(10g n)‘

Pr(D,,,|4 N B, N6 N @,.)sexp{-

Thus, from (6), (7), (8), (10) and the above
Pr(D,.,) <Pr(2,) + o((log n)™")
and so

Pr(D,,,) < Pr(E’Zl) + o(1)
=0(1),

since 9, = 0.
Thus Pr(9,) = 0(1). Combining this with Pr(€.) =1 — o(1) we see that

Pr(V, =8)=10(1)

and this proves part (b) of the Theorem. n
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