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Abstract

We consider the following question. We are given a dense digraph D with n vertices and minimum in- and
out-degree at least αn, where α > 1/2 is a constant. The edges E(D) of D are given independent edge costs
C(e), e ∈ E(D), such that (i) C has a density f that satisfies f(x) = a + bx + O(x2), for constants a > 0, b as
x → 0 and such that in general either (ii) P(C ≥ x) ≤ αe−βx for constants α, β > 0, or f(x) = 0 for x > ν for
some constant ν > 0. Let C(i, j), i, j ∈ [n] be the associated n× n cost matrix where C(i, j) =∞ if (i, j) /∈ E. We
show that w.h.p. (a small modification to) the patching algorithm of Karp finds a tour for the asymmetric traveling
salesperson problem that is asymptotically equal to that of the associated assignment problem. The algorithm runs
in polynomial time.

1 Introduction

Let D(α, n) be the set of digraphs with vertex set [n] = {1, 2, . . . , n} and with minimum in- and out-degree at
least αn. The edges E(D) of D are given independent edge costs C(e), e ∈ E(D), such that (i) C has a density
f(x) where f(x) = a + bx + O(x2) as x → 0 and such that in general either (ii) P(C ≥ x) ≤ αe−βx for constants
α, β > 0, or f(x) = 0 for x > ν for some constant ν > 0. We say that such distributions are acceptable. The prime
examples will be the uniform [0, 1] distribution (a = 1, b = 0) and the exponential mean 1 distribution EXP (1)
(a = 1, b = −1, α = β = 1). Let C(i, j), i, j ∈ [n] be the associated n × n cost matrix where C(i, j) = ∞ if
(i, j) /∈ E(D). Here we are interested in using the relationship between the Assignment Problem (AP) and the
Asymmetric Traveling Salesperson Problem (ATSP) associated with the cost matrix C(i, j), i, j ∈ [n] to find a tour
whose cost v̂(ATSP ) satisfies v(AP ) ≤ v(ATSP ) ≤ v̂(ATSP ) ≤ (1 + o(1))v(AP ) w.h.p., where v(•) denotes the
optimal cost. We say that the output of the algorithm is asymptotically optimal i.e. it produces a tour whose cost is
at most (1 + o(1)) times optimal

The problem AP is that of computing the minimum cost perfect matching in the complete bipartite graph Kn,n

when edge (i, j) is given a cost C(i, j). Equivalently, when translated to the complete digraph ~Kn it becomes the
problem of finding the minimum cost collection of vertex disjoint directed cycles that cover all vertices. The problem
ATSP is that of finding a single cycle of minimum cost that covers all vertices. As such it is always the case that
v(ATSP ) ≥ v(AP ). Karp [9] considered the case where D = ~Kn. He showed that if the cost matrix comprised
independent copies of the uniform [0, 1] random variable U then w.h.p. v(ATSP ) = (1 + o(1))v(AP ). He proves this
by the analysis of a patching algorithm. Karp’s result has been refined in [4], [7] and [10].
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Karp’s Patching Algorithm: First solve AP to obtain a minimum cost perfect matching M and let AM =
{C1, C2, . . . , C`} be the associated collection of vertex disjoint cycles covering [n]. Then patch two of the cycles
together, as explained in the next paragraph. Repeat until there is one cycle.

A pair e = (x, y), f = (u, v) of edges in different cycles C1, C2 are said to be a patching pair if the edges e′ = (u, y), f ′ =
(x, v) both exist. In which case we can replace C1, C2 by a single cycle (C1 ∪ C2 ∪ {e′, f ′}) \ {e, f}. The edges e, f
are chosen to minimise the increase in cost of the set of cycles.

Theorem 1. Suppose that D ∈ D(α), n, α = 1/2 + ε where ε is a positive constant. Suppose that each edge e of D
is given an independent cost drawn from an acceptable distribution Then w.h.p. v(ATSP ) = (1 + o(1))v(AP ) and (a
small modification to ) Karp’s patching algorithm finds a tour of the claimed cost in polynomial time.

In an earlier paper Frieze and Michaeli [6] proved a similar result where D = D0 + R and D0 ∈ D(α, n), α > 0 and
R is a set of o(n2) random edges. This being an example of the perturbed model introduced in Bohman, Frieze and
Martin [2]. Our proof strategy follows that of [6] in some places and is significantly different in other places.

For the moment assume that C is distributed as EXP (1) i.e P(X ≥ x) = e−x. We will discuss more general
distributions in Section 5.

Notation Let G denote the bipartite graph with vertex partition A = {a1, a2, . . . , an} , B = {b1, b2, . . . , bn} and an
edge {ai, bj} for every directed edge (i, j) ∈ E(D). A matching M of G induces a collection AM of vertex disjoint
paths and cycles in D and vice-versa. If the matching is perfect, then there are only cycles.

2 Proof of Theorem 1

Notation We begin by solving AP. We prove the following:

Lemma 2. W.h.p., the solution to AP contains only edges of cost C(i, j) ≤ γn = log4 n
n .

Lemma 3. W.h.p., after solving AP, the number νC of cycles is at most ν0 = n5/6.

Bounding the number of cycles has been the most difficult task. Karp proves O(log n) w.h.p. for the complete digraph
~Kn and we conjecture this to be true here. Karp’s proof relies on the key insight that if D = ~Kn then the optimal
assignment comes from a uniform random permutation. This is not true in general.

Let L denote the set of edges of cost greater than γn. Given Lemmas 2, 3, for the purposes of proof, we temporarily
replace costs C(e), e ∈ L by infinite costs in order to solve AP. Lemma 2 implies that w.h.p. we get the same optimal
assignment as we would without the cost changes. Having solved AP, the memoryless property of the exponential
distribution, implies that the unused edges in L really have a cost which is distributed as γn + EXP (1).

Let C = C1, C2, . . . , Cρ be a cycle cover and let ci = |Ci| where c1 ≤ c2 ≤ · · · ≤ cρ, ρ ≤ ν0. Different edges in Ci
give rise to disjoint patching pairs. We ignore the saving associated with deleting e, f and only look at the extra cost
C(e′) + C(f ′) incurred.

Case 1: ρ > ν1 = 3ε−1.
We see that if cσ < εn/2 ≤ cσ+1 then the number of possible patching pairs φ(C) satisfies

φ(C) ≥
σ∑
i=1

2 (εn− ci) ci ≥ εn
σ∑
i=1

ci ≥ εnσ ≥ εn(ρ− 2ε−1). (1)

Explanation: Having chosen e = (x, y) in a cycle Ci we let U denote the in-neighbors of y in D that are not
in Ci. Then let U ′ denote the predecessors of U in the cycles C. Let V denote the out-neighbors of x. We have
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|U ′|, |V | ≥ αn− ci and so |U ′ ∩ V | ≥ 2(εn− ci). Given v ∈ U ′ ∩ V we let u ∈ U be its successor in the cycles. This
gives us a pair e′ = (y, u), f ′ = (x, v) that can be used for patching.

Let βρ =
(

12 logn
ερn

)1/2
. Suppose we consider a sequence of patches where we always implement the cheapest patch.

Let Eρ denote the event that the cost of the ρth patch is at least 2(γn + βρ). Each edge of ~Kn will independently
have cost exceeding γn + βρ with probability of at most e−βρ ≤ 1− βρ/2. We have

P(Eρ) ≤ (1− (1− e−βρ)2)εn(ρ−2ε−1) ≤ exp

{
−
εn(ρ− 2ε−1)β2

ρ

4

}
≤ 1

n
.

It follows that

P(∃ν1 ≤ ρ ≤ ν0 : Eρ) ≤
ν0∑
ρ=ν1

P(Eρ | ¬Eρ+1 ∧ · · · ∧ ¬Eν0)

≤
ν0∑
ρ=ν1

P(Eρ)
1−

∑r1
k=ρ+1 P(Ek)

≤
ν0∑
ρ=ν1

n−1

1− ν0n−1
= o(1).

W.h.p. the patches involved in these cases add at most the following to the cost of the assignment:

2

ν0∑
ρ=ν1

(
γn +

(
12 log n

ερn

)1/2
)
≤ 2ν0γn +

(
96ν0 log n

εn

)1/2

= o(1). (2)

Case 2: 2 ≤ ρ ≤ 3ε−1 and |C1| ≤ εn/2.
We can see that φ(C) ≥ εn follows from (1) where we can just use the term i = 1. Let Eρ,2 denote event Eρ when
Case 2 holds.

P(Eρ,2) ≤ (1− (1− e−βρ)2)εn ≤ exp

{
−
εnβ2

ρ

4

}
≤ 1

n
. (3)

and we can proceed as for ρ > 3ε−1.

Case 3: 2 ≤ ρ ≤ 3/ε and |C1| > εn/2.
It is here that we need to deviate from Karp’s strategy. Let p = 1/n1/10 and let R be the set of edges of D of cost at
most γn + p. Each edge of cost more than γn has cost at most γn + p with probability at least p/2. We will create a
tour using the edges C and a bounded number of edges in R.

We begin by deleting two edges from each cycle Ci so that each of the two paths P2i−1, P2i created are within one of
each other in size. Suppose now that path Pi, i = 1, 2, . . . , 2ρ is directed from xi to yi. We add edges fi = (yi, xi+1)
creating a tour T . Of course not all of the edges F = {f1, f2, . . . , fρ} will occur in D or even if they are, they may
not be of low cost. In this case, an edge (i, j) is of low cost if it belongs to R.

Suppose now that f1 is not a low cost edge of D. Let u be a low cost out-neighbor of y1 and let v be the predecessor
of u on the tour T . The Chernoff bounds imply that y1 has Ω(n9/10) low cost out-neighbors. Now there are at least
2εn pairs of vertex w, z such that (i) w is an out-neighbor of v, (ii) z is an in-neighbor of x2 and z is the immediate
predecessor of w on T and w.h.p. at least εnp2 = Ω(n4/5) pairs are such that both of the vertices in the pair are low
cost neighbors. We can examine these edges in some order and w.h.p. we only have to examine at most n1/10 log n
edges before we find a low cost edge. Once we have one, we replace T by T ′ = T +(y1, u)+(v, w)+(z, x2)− (y1, x2)−
(v, u)− (z, w), see Figure 1. This gives a tour (y1, u) +T (u→ z) + (z, x2) +T (x2 → v) + (v, w) +T (w → y1). Having
removed f1, we apply the same procedure and remove f2 and so on. We need to avoid looking at the same edge
twice, but this is not a problem as we only have to remove O(1) edges and thus at any time we have only looked at
O(n1/10 log n) edges and w.h.p. we always have Ω(n4/5) choices.
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Figure 1: Removing (y1, x2)

So w.h.p. this case adds only O(n−1/10) to the cost of the constructed tour. This completes the proof of Theorem 1,
modulo proving Lemmas 2 and 3.

3 Proof of Lemma 2

We show that w.h.p. for any pair of vertices a ∈ A, b ∈ B and any perfect matching between A and B that there is

an M -alternating path from a to b that only uses non-M edges of cost at most log3 n
n . Furthermore this path uses

o(log n) edges. This implies that alternately adding non-M edges and deleting M -edges will find a matching of A

into B that doesn’t use (a, b) and for which the cost of the added non-M edges is o
(

log4 n
n

)
. This implies that M∗

does not contain edges of cost exceeding γn.

The idea of the proof is based on the fact that w.h.p. the sub-digraph induced by edges of low cost is a good expander.
There is therefore a low cost path between every pair of vertices. Such a path can be used to replace an expensive
edge.

Chernoff Bounds: We use the following inequalities associated with the Binomial random variable Bin(N, p).

P(Bin(N, p) ≤ (1− ε)Np) ≤ e−ε2Np/2.

P(Bin(N, p) ≥ (1 + ε)Np) ≤ e−ε2Np/3 for 0 ≤ ε ≤ 1.

P(Bin(N, p) ≥ γNp) ≤
(
e

γ

)γNp
for γ ≥ 1.

Proofs of these inequalities are readily accessible, see for example [5]. We have the same bounds for the Hypergeometric
distribution with mean Np. This follows from Theorem 4 of Hoeffding [8].

We will also use McDiamid’s inequality, which can also be forund in [5]. Let Z = Z(Y1, Y2, . . . , YN ) be a random
variable that depends on independent random variables Y1, Y2, . . . , TN . Suppose that for every i and Ŷi 6= Yi,
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|Z(Y1, Y2, . . . , Y1, . . . , YN )| − Z(Y1, Y2 . . . , Ŷ1, . . . , YN )| ≤ ci. Then, for every t ≥ 0,

P(|E(Z)| ≥ t) ≤ 2 exp

{
− 2t2∑N

i=1 c
2
i

}
. (4)

Let M∗ = {(ai, φ(ai)) : i = 1, 2, . . . , n} denote the optimal solution to AP . Then let

ζ = α− ε

2
; δ = 3(log ζ−1 + 1); µ =

n

log3 n
; β =

1

µ
.

n1 =
µ

10
; n2 =

αn

1000
; n3 = ζn; n4 = n− n

δ log2 n
; n5 = n− log2 n.

We let Eβ = {(ai, bj) ∈ E(D) : C(i, j) ≤ β}. Then for a set S ⊆ A let

N0(S) = {bj ∈ B : ∃ai ∈ S such that (ai, bj) ∈ Eβ} .

Lemma 4. We have with probability 1− e−Ω(log3 n),

|N0(S)| ≥ αn|S|
3µ

for all S ⊆ A, 1 ≤ |S| ≤ n1. (5)

|N0(S)| ≥ αn

40
for all S ⊆ A,n1 < |S| ≤ n2. (6)

|N0(S)| ≥ ζn+ 1 for all S ⊆ A,n2 < |S| ≤ n3. (7)

|N0(S)| ≥ n4 for all S ⊆ A, |S| > n3. (8)

n− |N0(S)| ≤ n− |S|
log n

for all S ⊆ A,n4 ≤ |S| ≤ n5. (9)

Proof. We first observe that for a fixed S ⊆ A, s = |S| ≥ 1 we have that |N0(S)| dominates Bin(αn, q) in distribution,
where q = 1− e−βs.

If 1 ≤ s ≤ n1 then q ≥ s/2µ. So,

P (¬(5)) ≤
n1∑
s=1

(
n

s

)
P
(
Bin

(
αn,

s

2µ

)
≤ αns

3µ

)
≤

n1∑
s=1

(ne
s

)s
e−αsn/20µ = e−Ω(log3 n).

If n1 < s ≤ n2 then q > 1/20. So,

P (¬(6)) ≤
n2∑
s=n1

(
n

s

)
P
(
Bin

(
αn,

1

20

)
≤ αn

40

)
≤ n

(
αne

n2

)n2

e−αn/80 = e−Ω(n).

If n2 < s ≤ n3 then q ≥ 1− e−αn/1000µ. So,

P (¬(7)) ≤
n3∑
s=n2

(
n

s

)
P(Bin(αn, q) ≤ ζn) ≤ 2n

(
αn

ζn

)
(1− q)(α−ζ)n ≤ 22ne−α(α−ζ)n2/1000µ = e−Ω(n log3 n).

For (8) let T, |T | = t = n
δ log2 n

denote a set of vertices with no N0-neighbours in S. Each member of T has at least

3εn/2 G-neighbors in S. Thus,

P(¬(8)) ≤
n∑

s=n3

(
n

s

)(
n

t

)
e−3βtεn/2 ≤ 2n+o(n)e−Ω(n logn) = e−Ω(n logn).

For (9) let T play the same role as in (8), but with t = |T | = n−s
logn . Each member of T has at least n/2 G-neighbors

in S. Thus,

P(¬(9)) ≤
n5∑
s=n4

(
n

s

)(
n

t

)
e−βtn/2 ≤

n5∑
s=n4

(
ne

n− s
·
(
ne log n

n− s

)1/ logn

· exp

{
− log2 n

2

})n−s
= e−Ω(log4 n).
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We can now proceed to the proof of Lemma 2.

We let ~G denote a digraph with vertex set A ∪ B. The edges of ~G consist of ~M =
{

(bφ(ai), ai) : i ∈ [n]
}

directed

from B to A and edges ~D = {(ai, bj) : (i, j) ∈ E, j 6= φ(i)} directed from A to B. The edge (bφ(ai), ai) of ~M is given

cost −C(i, φ(i)) for i ∈ [n]. The edge (ai, bj) of ~D is given cost C(i, j). Paths in ~G are alternating in the sense that
ignoring orientation, they alternate between being in M and not being in M .

Lemma 5. Then q.s.1 for all a ∈ A, b ∈ B, ~G contains an alternating path from a to b of total cost less than γn.

Proof. Let an alternating path P = (a = x1, y1, . . . , yk−1, xk, yk = b) be acceptable if (i) x1, . . . , xk ∈ A, y1, . . . , yk ∈ B,
(ii) (xi+1, yi) ∈ M∗, i = 1, 2, . . . , k and (iii) C(xi, yi) ≤ β, i = 1, 2, . . . , k. The existence of such a path with
k = o(log n) implies the lemma.

Now consider the sequence of sets S0 = {a1} , S1, S2, . . . , Sk ⊆ A, T1, T2, . . . , Tk ⊆ B defined as follows:

Ti = N0

(⋃
j<i Sj

)
and Si = φ−1(Ti). Let i0 = min

{
i : (α log3 n/3)i ≤ n1

}
. It follows from (5) – (8) that q.s.

|Ti| >
(
α log3 n

3

)i
for 1 ≤ i ≤ i0, |Ti0+1| ≥

αn

40
, |Ti0+2| ≥ ζn+ 1, |Ti0+3| ≥ n−

n

δ log2 n
.

If b ∈ Ti0+3 then we have found an acceptable alternating path. If b /∈ Ti0+3 then using (9), o(log n) times we arrive
at k = o(log n) such that |Tk−1| ≥ n5 = n − log2 n. If b /∈ Tk−1 then we can use the fact that with probability

1 − e−Ω(log3 n), every vertex bj ∈ B has at least (1 − o(1)) log3 n vertices ai ∈ A such that C(i, j) ≤ β to show that
b ∈ Tk. This completes the proof of Lemma 5.

We can now prove Lemma 2 as part of the following lemma.

Lemma 6. The solution to AP contains only edges of cost C(i, j) ≤ γn q.s.

Proof. Suppose that the solution M∗ to AP contains an edge e of cost greater than γn = β log n. Assume w.l.o.g.
that e = (a1, b1). It follows from Lemma 5 that there is an alternating path P = (a1, . . . , b1) of cost at most γn. But
then deleting e and the M∗-edges of P and adding the non-M∗ edges of P to M∗ creates a matching from A to B of
lower cost than M∗, contradiction.

4 Proof of Lemma 3

4.1 Linear programming formulation of AP

We consider the linear program LP for finding M∗. To be precise we let LP be the linear program

Minimise
∑
i,j∈[n]

C(i, j)xi,j subject to
∑
j∈[n]

xi,j = 1, i ∈ [n],
∑
i∈[n]

xi,j = 1, j ∈ [n], xi,j ≥ 0.

The linear program D dual to LP is given by:

Maximise

n∑
i=1

ui +

r∑
j=1

vj subject to ui + vj ≤ C(i, j), i, j ∈ [n].

1A sequence of events A holds quite surely (q.s.) if P(¬A) = o(r−K) as r → ∞ for any constant K > 0
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4.2 Trees and bases

An optimal basis of LP can be represented by a spanning tree T ∗ of G that contains the perfect matching M∗, see
for example Ahuja, Magnanti and Orlin [1], Chapter 11. We have that for every optimal basis T ∗,

C(i, j) = ui + vj for (ai, bj) ∈ E(T ∗) (10)

and
C(i, j) ≥ ui + vj for (ai, bj) /∈ E(T ∗). (11)

Note that if λ is arbitrary then replacing ui by ûi = ui − λ, i = 1, 2, . . . , n and vi by v̂i = vi + λ, i = 1, 2, . . . , n has
no afffect on whether or not these constraints are satisfied. We say that u,v and û, v̂ are equivalent. So, we can for
example, assume when convenient, that u1 = 0.

The next goal is to show that w.h.p. we can choose optimal dual variables of absolute value at most 2γn. Let E be
the event that given us = 0, we have |ui| ≤ γn, |vj | ≤ 2γn for all i, j.

Lemma 7. E occurs q.s.

Proof. Let E0 be the event implied by Lemma 5. Fix ai, bj and let P = (ai1 , bj1 , . . . , aik , bjk) be the alternating path
from ai to bj promised by E0. Then, using (10) and (11), we have

γn ≥ C(P ) =
k∑
l=1

C(il, jl)−
k−1∑
l=1

C(il+1, jl) ≥
k∑
l=1

(uil + vjl)−
k−1∑
l=1

(uil+1
, vil) = ui + vj . (12)

Fix us = 0 for some s. For each i ∈ [n] there is some j ∈ [n] such that ui + vj = C(i, j). This is because of the fact
that ai meets at least one edge of T and we assume that (10) holds. We also know that because (12) occurs that
ui′ + vj ≤ γn for all i′ 6= i. It follows that ui − ui′ ≥ C(i, j)− γn ≥ −γn for all i′ 6= i. Since i is arbitrary, we deduce
that |ui − ui′ | ≤ γn for all i, i′ ∈ [n]. Since us = 0, this implies that |ui| ≤ γn for i ∈ [n]. We deduce by a similar
argument that |vj − vj′ | ≤ γn for all j, j′ ∈ [n]. Now because for the optimal matching edges (i, φ(i)), i ∈ [n] we have
ui + vφ(i) = C(i, φ(i)), we see that |vj | ≤ 2γn for j ∈ [n].

Lemma 6 bounds the cost of the edges in M∗. The next lemma proves the same bound for the costs of the other
edges in T ∗.

Lemma 8. C(e) ≤ γn q.s. for all e ∈ T ∗.

Proof. We condition on the values u,v. Suppose there is an edge e = (ai, bj) ∈ T ∗ \M∗ such that C(i, j) > γn.
Suppose we replace C(e) by γn and resolve AP. Lemma 6 implies that the matching will be unchanged. The optimal
tree might change to T̂ . Now the values u,v are obtained from u1 by taking the paths in T ∗, T̂ and alternately
adding and subtracting the edges in paths. Because the costs (and maybe the tree) have changed there will be a
non-trivial sum of positive and negative costs that sum to zero or a one that sums to γn. Both of these possibilities
have probability 0 and so C(i, j) ≤ γn with conditional probability 1.

Fix u,v and let G+ = G+(u,v) be the subgraph of G induced by the edges (ai, bj) for which ui + vj ≥ 0. Let f(u,v)
be the joint density of u,v.

Lemma 9. Given u,v, M∗ is a uniform random perfect matching of G+.

Proof. M is an optimal matching iff

ui + vj = C(i, j), ∀(i, j) ∈M. (13)
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ui + vj ≤ C(i, j), ∀(i, j) /∈M. (14)

Equation (13) is complimentary slackness and equation (14) is dual feasibility. Also,

P((13), (14) | u,v)f(u,v) =
∏
i,j

e−(u1+vj)
+
, (15)

which is independent of M . Now for costs C,

P(∃M1 6= M2 satisfying (13)) = 0.

This is because otherwise there will be a cycle where the total cost of the even edges equals the total cost of the odd
edges.

We need the following simple graph theoretic lemma:

Lemma 10. Let v be a vertex of degree d in a graph G. Let T be a spanning tree of G maximum degree ∆ and let
ρ � d be a postive integer. Then T contains at least

⌊
d/∆ρ+1

⌋
edge disjoint paths P = (v1, . . . , vρ) such that (i)

{v, vρ} ∈ E(G) and (ii) P constitutes the last ρ edges in the path from v to vρ. We refer to these paths as useful
paths.

Proof. We prove this by induction on d, with d = ∆ρ+1 as the base case. If d > ∆ρ+1 then we iteratively remove
leaves of T that are not adjacent to v in G. We then choose a leaf w at maximal distance from v. Let the path
from v to w be v = x0, x1, . . . , xk = w. Deleting the edges of the tree rooted at xk−ρ−1 after removing the edge
{xk−ρ−1, xk−ρ} yields a tree with at least d−∆ρ+1 vertices and at least d/∆ρ+1 − 1 paths of length ρ.

We need to know that w.h.p. the minimum in- and out-degree in G+ is high. We fix a tree T and condition on
T ∗ = T . For i = 1, 2, . . . , n let Li,+ = {j : (i, j) ∈ E(G+)} and let Lj,− = {i : (i, j) ∈ E(G+)}. Then for i = 1, 2, . . . , n
let Ai,+ be the event that |Li,+| ≤ n/ log25 n and let Aj,− be the event that |Lj,−| ≤ n/ log25 n.

Lemma 11. Fix a spanning tree T of G. Let E be the event of of Lemma 7.

P((Ai,+ ∨ Ai,−) ∧ E | T ∗ = T ) = O(n−anyconstant) for i = 1, 2, . . . , r.

Proof. We assume that C(i, j) ≤ γn for (ai, bj) ∈ T . The justification for this is Lemma 8. The number of edges in
G of cost at most γn incident with a fixed vertex is dominated by Bin(n, γn) and so q.s. the maximum degree in G
can be bounded 2 log4 n. This degree bound applies to the trees we consider.

Let Y = {C(i, j) : (ai, bj) ∈ E(T )} and let δ1(Y ) be the indicator for As,+ ∧ E . Let B be the event that (11) holds.
Now Y determines u,v and B determines that T is an optimal basis tree. We fix us = 0 and write,

P(As,+ ∧ E | B) =

∫
δ1(Y )P(B | Y )dY∫

P(B | Y )dY
(16)

Then we note that since (ai, bj) /∈ E(T ) satisfies the condition (11),

P(B | Y ) =
∏

(ai,bj)

(P(C(i, j) ≥ (ui(Y ) + vj(Y ))+))

= e−W , (17)

where W = W (Y ) =
∑

(ai,bj)
(ui(Y ) + vj(Y ))+.

We first observe that McDiarmid’s inequality 4 implies that

P(|W − E(W )| ≥ t) ≤ 2 exp

{
− t2

4n3γ2
n

}
. (18)
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To see this, we view the random variable W as a function of 2n− 1 random variables, each independently distributed
as EXP (1) conditioned on being at most γn. (The variables are the costs of the tree edges.) If we change the
value of one variable then we change W by at most 2nγn. To see this, suppose that in this change the cost of edge
e = {ai1 , bj1} goes from C(e) to C(e) + ξ, |ξ| ≤ γn. The effect on u,v, under the assumption that ui1 does not change
is as follows: (i) vj ← vj + ξ for all j ∈ [n] and (ii) ui ← ui− ξ for all i ∈ [n] \ {i1}. So, ui + vj changes only for i = i1.

We have, using Holder’s inequality with p = n3/4, that∫
Y
δ1(Y )P(B | Y ) dY =

∫
Y
e−W δ1(Y ) dY

≤
(∫

Y
e−pW/(p−1) dY

)(p−1)/p(∫
Y
δ1(Y )p dY

)1/p

= e−E(W )

(∫
Y
e−p(W−E(W ))/(p−1) dY

)(p−1)/p(∫
Y
δ1(Y )p dY

)1/p

. (19)

We also have ∫
Y
P(B | Y )dY = e−E(W )

∫
Y
e−(W−E(W ))dY (20)

Putting t = n2/3 in (18), we see that if Ω1 =
{
Y : |W − E(W )| ≤ n2/3

}
then Y ∈ Ω1 q.s. Conditioning on Y ∈ Ω1 we

have that since p = n3/4, ∫
Y ∈Ω1

e−p(W−E(W ))/(p−1) dY ∼
∫
Y ∈Ω1

e−(W−E(W )) dY.

Combining this with (16), (19) and (20) we see that

P(As,+ ∧ E | B) . P(As,+ ∧ E)1/p ∼ P(As,+ | E)1/p. (21)

For the remainder of the lemma we assume that the C(i, j) for (ai, bj) ∈ T satisfy C ≤ γn and that E holds.
Denote this conditioning by F . Note that if B occurs and (10) holds then T ∗ = T . Let bj be a neighbor of as in
G+ and let Pj = (i1 = s, j1, i2, j2, . . . , ik, jk = j) define the path from as to bj in T . Then it follows from (10) that
vjl = vjl−1

−C(il, jl−1)+C(il, jl)). Thus vj is the final value Sk of a random walk St = X0+X1+· · ·+Xt, t = 0, 1, . . . , k,
where X0 ≥ 0 and each Xt, t ≥ 1 is the difference between two independent copies of EXP (1) that are conditionally
bounded above by γn. Assume for the moment that k ≥ 5 and let x = uik−4

∈ [−γn, γn]. Given x we see that there
is some positive probability p0 = p0(x) = P(x+Xk−1 + C(ik, jk) > 0 | F). Let η = min {x ≥ −2γn : p0(x)} > 0.

The number of edges in G+ of cost at most γn incident with a fixed vertex is dominated by Bin(n, γn) and so w.h.p.
the maximum degree of the trees we consider can be bounded by 2 log4 n. So the number of vertices in T at distance
at most 5 from as in T is O(log20 n). This will justify assuming k ≥ 5 above. Lemma 10 with ρ = 5 and d = αn
implies that there are n/(64 log24 n) choices of bj giving rise to edge disjoint useful paths. We know that each such
j belongs to Li,+ with probability at least η, conditional on E , but conditionally independent of the other useful j’s.
We see from the Chernoff bounds that

P(As,+ ∧ E | B) . P(Bin(n/(64 log24 n), η) ≤ n/ log25 n)1/p ≤ e−Ω(n1−o(1)/p).

Taking the union bound over choices of s ≤ r and +,− proves the lemma.

We will need a another similar lemma. Let M(i, j) = {k : (i, k), (k, j) ∈ E(G+)} and let M(i, j) be the event that
|M(i, j)| ≤ n

log30 n
.

Lemma 12.
P (M(i, j) ∧ E | T ∗ = T ) = O(n−anyconstant) for i = 1, 2, . . . , r.
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Proof. We first note that for all i, j there are at least 2εn indices k such that G contains (ai, bk) and (ak, bj) as
edges. It follows from the proof of Lemma 10 with v = ai, ρ = 5, d = 2εn that we can find m = 2εn/(64 log24 n)
useful disjoint paths P1, P2, . . . , Pm of length 5. Suppose that Pk begins at apk and ends at bqk for k ∈ [m]. Next let
Q1, Q2, . . . , Qm be the paths in T from bj to aqk and let Rk, k ∈ [m] denote the last 5 edges of Qk. Suppose that
Rk begins at brk and ends at aqk for k ∈ [m]. We must have Pk ∩ Rk 6= ∅ for at most one value of k, else T has a
cycle. A vertex can be on at most 10 log4 n distinct Rk. So we can find at least m1 = (m − 1)/(10 log4 n) indices
k1, k2, . . . , km1 corresponding to disjoint Rk’s. We apply the argument of the previous lemma to finish the proof. We
get to the equivalent of (21) by replacing Ai,+ with M(i, j). We fix ui and vj . Then for each ` ∈ [m1] in turn we
condition on the value x` = up` and y` = vr` and then argue that there is a positive probability that ui + vk` ≥ 0 and
uk` + vj ≥ 0. Concentration of the number of ` where this happens follows from the Chernoff bounds as before. This
completes the proof of the lemma.

4.3 Analysis of a Markov chain

In order to understand the number of cycles associated with a perfect matching of G+, we study a Markov chain
introduced by Broder [3]. The state space Ω of this chain is the set of perfect and near-perfect matchings of G+.
(Here a matching is near-perfect if it contains n− 1 edges.) If M is only near-perfect, we let eM = {aM , bM} where
a ∈ A, b ∈ B are the unique pair of vertices notcovered by an edge of M . If M is perfect then we let M = {(a, φM (a))}
for bijection φM . If M is near perfect, φM will only be defined for vertices of A covered by M .

Broder Chain

begin
Choose e = (x, y) uniformly from E(G+);
Choose M0 uniformly from Ω; t← 0;
repeat t← t+ 1 forever
begin

If Mt−1 is near-perfect then
begin

If x = aMt−1 and y = bMt−1 then Mt ←Mt−1 ∪ {e};
If x = aMt−1 and y 6= bMt−1 then Mt ← (Mt−1 ∪ {e}) \

{
(x, φMt−1(x))

}
;

If x 6= aMt−1 and y = bMt−1 then Mt ← (Mt−1 ∪ {e}) \
{

(φ−1
Mt−1

(y), y)
}

;

Otherwise Mt ←Mt−1;
end
If Mt−1 is perfect then
begin

If e ∈Mt−1 then Mt ←Mt−1 \ {e};
Otherwise Mt ←Mt−1;

end
end

It is not difficult to see that for t ≥ 0, Mt is uniformly chosen from Ω. For most of the time, Mt is near-perfect and is
distributed as a random perfect matching less a randomly chosen edge. In which case the number of cycles νC(Mt) in
D associated with Mt is distributed as one less than the number of cycles associated with a random perfect matching
of G+.

Let a cycle C be small if |C| ≤ `1 = n4/5 and let σt denote the number of vertices on small cycles. Let δt be the
increase in the number of small cycles when going from Mt−1 to Mt. We must of course have E(δt) = 0. Suppose now
that Mt is near-perfect. It follows from Lemma 11 that E(δt) ≤ `1 log25 n/n. This is because Mt−1 induces a path
P , from i to j say, plus a set of vertex disjoint cycles covering [n]. In iteration t, there is a random choice of at least
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n/ log25 n neighbors bk of ai such that ui + vk ≥ 0. Of these choices, at most `1 lead to the creation of a new small
cycle. On the other hand, Lemma 12 implies that

0 = E(δt + δt+1) ≤ 2`1 log25 n

n
− E(σt) ·

n

log30 n
· 1

n2
.

It follows that E(σt) ≤ 2n4/5 log55 n. The Markov inequality implies that σt ≤ 1
2n

5/6 w.h.p.

We can now complete the proof of Lemma 3. W.h.p. there are at most n1/6 large and at most 1
2n

5/6 small cycles.

5 More general distributions

Replacing C(i, j) by aC(i, j) yields an acceptable distribution where a = 1. We assume then that a = 1.

Suppose first that the cost density function can be re-expressed as f(x) = e−bx+O(x2) as x → 0, where b 6= 0. We
let F (x) = P(C ≥ x) = b−1e−bx+O(x2) as x → 0. In this case we run Karp’s algorithm with the given costs. Let
E+ = {(i, j) : ui + vj ≥ 0}. Equation (15) becomes

P((13), (14) | u,v)f(u,v0 =
∏

(ai,bj)∈E+\M

F (ui + vj)
∏

(ai,bj)∈M

f(ui + vj).

So, for matchings M1,M2 we have where ,

P(M∗ = M1 | u,v)

P(M∗ = M2 | u,v)
=

∏
(ai,bj)∈M1\M2

f(ui + vj)

F (ui + vj)

∏
(ai,bj)∈M2\M1

F (ui + vj)

f(ui + vj)

=
∏

(ai,bj)∈M1\M2

beO(γ2n)
∏

(ai,bj)∈M2\M1

b−1eO(γ2n)

= eO(nγ2n) = o(1).

So, we replace uniformity by asymptotic uniformity and this is enough for the proof to go through.

When b = 0, such as when C is uniform [0, 1] then we proceed as follows: In the analysis above we have assumed
that f(x) = e−x i.e. that the costs are distributed as exponential mean 1, EXP (1). We extend the analysis to costs
C with density function f(x) = 1 + O(x2) as x → 0 as follows: Given C(e) = x, we define Ĉ(e) = y = y(x) where
Ĉ(e) is exponential mean 1 and P(Ĉ(e) ≤ y) = P(C(e) ≤ x) i.e. 1− e−y = P(C(e) ≤ x) = x+O(x2), for small x. We
then find that y +O(y2) = x+O(x2) and so x = y +O(y2).

We run the algorithm with C replaced by y(C). We have shown that w.h.p. the tour found by the heuristic has cost∑n
i=1 Ûi where Ûi ≤ γn for all i and so the corresponding C costs Ui satisfy Ui = Ûi + O(Û2

i ). Consequently, the

increase in cost of using C over Ĉ is O(nγ2
n) = o(1). Of course it would be more satisfying to apply the algorithm

directly to C and we conjecture that the proof can be modified to verify this.

6 Final Remarks

We have extended the proof of the validity of Karp’s patching algorithm to dense graphs with minimum in- and
out-degree at least αn, α > 1/2 and independent edge weights C. The case α = 1/2 looks very challenging.
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