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Abstract
We consider Hamilton cycles in the random digraph D, ,, where the orientation
of edges follows a pattern other than the trivial orientation in which the edges are
oriented in the same direction as we traverse the cycle. We show that if the orientation
forms a periodic pattern, other than the trivial pattern, then approximately half the
usual n logn edges are needed to guarantee the existence of such Hamilton cycles a.a.s.

1 Introduction

The existence of Hamilton cycles is one of the key issues in the study of random graphs.
The existence threshold for the random graph process (gn?m)’;fzo‘”/ * was found by Ajtai,
Komlés and Szemerédi [1] and the existence threshold for the directed analogue (Dn,m)ZfZg”
was found by Frieze [5]. (See the next section for definitions of all models mentioned in the
introduction as well as the asymptotic notation used.) There is a large literature on this
subject and the reader is referred to the bibliography by Frieze [6] for more information.

The result in [5] refers to Hamilton cycles in which the edges are oriented in the same
direction round the cycle. Ferber and Long [4] considered Hamilton cycles with prescribed
edge orientations. They proved that if (), is an n-cycle with an arbitrary edge orientation
then if np > (loglogn)logn then D, , contains a copy of C,, a.a.s. (In fact, they proved
more than this, in that they proved the existence of many copies.) They conjectured that, if
np = logn + w(1), then this is sufficient for D,, ,, to contain a copy of C,, a.a.s. Montgomery
[8] has recently announced a proof of this conjecture.

In this paper we consider Hamilton cycles with a periodic pattern of edge orientations
and show that we need approximately half as many random edges to guarantee the existence
of such Hamilton cycles a.a.s.

The paper is structured as follows. In the next section, we introduce all the definitions
and state the main results. Section |3joutlines the proof. Section |4| provides structural results,
and Section [5| uses these results to construct the claimed cycles.
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2 Definitions and Main Results

2.1 Random Digraphs

In this paper we present results obtained for the random directed graph D,, ,. More precisely,
D,,, is a distribution over the class of graphs with vertex set [n] := {1,...,n} in which
every ordered pair ij, i,j € [n] and i # j, appears independently as an arc in D,,, with
probability p. Note that p = p(n) may (and usually does) tend to zero as n tends to infinity.
We say that D,, ,, has some property asymptotically almost surely (or a.a.s.) if the probability
that D, , has this property tends to 1 as n goes to infinity.

As it is done in the theory of (undirected) random graphs, we slightly abuse the notation
and for some natural number m = m(n) € N use D,,,,, to denote a directed graph on n
vertices and precisely m arcs taken uniformly at random from the family of directed graphs
on n vertices and m arcs. Alternatively, D,,,, can be constructed during the random digraph
process. Indeed, one may consider a sequence of digraphs (Dn,m):»f:al) with common vertex
set [n] in which D, is the empty digraph and D, 41 is obtained from D, ,, by adding
a random arc that is not present in D, ,,. The process ends once D, ;(,—1), the complete
digraph, is reached.

2.2 Asymptotic Notation and Convention

Given two nonnegative functions f = f(n) and g = g(n), we will write f = O(g) if there
exists an absolute constant ¢ such that f(n) < cg(n) for all n € N, f = Q(g) if g = O(f),
f =06(g) if f = O(g) and f = Q(g), and we write f = o(g) or f < ¢ if the limit
lim, o f(n)/g(n) = 0. In addition, we write f = w(g) or f > g if g = o(f). We also will
write f ~ g if f = (1+o0(1))g.

Through the paper, all logarithms with no subscript denoting the base will be taken to be
natural. Moreover, as typical in the field of random graphs, for expressions that clearly have
to be an integer, we round up or down but do not specify which, as long as this rounding
does not affect the argument.

2.3 Patterns

Given a cycle C' = (vy,...,v,,v1) of length n > 1 (where C' is a loop for n = 1 and a
double arc for n = 2), we are interested in describing periodic orientations of the edges of
C. A pattern of length k > 1is a k-tuple 7 = (my, ..., m) where m; € {—,<+}. We say that
an orientation of C' follows pattern 7 if k | n and each edge v;v;4; for i € [n] is oriented
as m if m; =— or as 1<)Zv—2+1 otherwise. (Here v, 41 = v;, and the indices of m; should be
taken modulo k.) We identify a pattern 7 with the only oriented cycle C; of length k& which
follows 7, and consider two patterns m and 7’ to be equivalent if their corresponding oriented
cycles C; and C) are isomorphic digraphs. In other words, two patterns are equivalent if
they can be obtained from one another by applying a cyclic rotation of the entries and/or
a reflection (that is, reversing both the order of the entries and the direction of the arrows).
A pattern is primitive if it is not a concatenation of two or more consecutive copies of a
shorter pattern. We call an oriented cycle C' in a digraph D a w-Hamilton cycle (or n-HC



for short) if C' spans D and follows pattern m. Clearly, for two equivalent patterns 7 and 7/,
a digraph D contains a 7-HC if and only if it contains a 7’-HC. Moreover, if 7 is a primitive
pattern of length & and 7’ is the concatenation of ¢ copies of 7, then a digraph on n vertices
has a 7/-HC if and only if it has a 7-HC and ¢k | n. In view of that, we can restrict our
attention to the analysis of primitive patterns w. All patterns of length 1 are equivalent
to (=), which we call the trivial pattern. Likewise, all primitive patterns of length 2 are
equivalent to (—,<). We refer to (—, <) as the alternating pattern, so a (—,<)-HC is
simply called an alternating Hamilton cycle. Primitive patterns of length k£ > 3 are defined
to be non-alternating.

Remark 1. While our main results concern only primitive patterns, in some parts of the
arqument it will be convenient to consider the non-primitive pattern (—, <, —, <) as well.
This pattern will be useful when investigating the existence of alternating Hamilton cycles.
Indeed, when the number of vertices n is divisible by 4, a Hamilton cycle follows (—, <)
if and only if it follows (—, <+, —,<). In view of this, we can avoid some of the technical
difficulties that arise in the analysis of patterns of length 2 by simply redefining the alternating
pattern to be (—, <, —, <) when 4 | n. The case when n =2 mod 4 can be reduced to the
previous case with a slight modification of the argument.

2.4 Results

We are now ready to state our main results.

Theorem 2. Let m1 = (—,<) be the alternating pattern. Consider the random digraph
process (Dn,m)fn(zal) (restricted to evenn). The following property holds a.a.s.: D,, ,, contains

a w-HC the first time all vertices have in-degree at least 2 or out-degree at least 2.

From this result, we immediately and easily establish the sharp threshold for the existence
of the alternating Hamilton cycle, and obtain the limiting probability at the critical window.
In particular, the following corollary holds.

Corollary 3. Ifp = W and n is even, then

Pr(D,,, contains an alternating Hamilton cycle) ~ e /4
We obtain similar results for all primitive patterns of order £ > 3.

Theorem 4. For any fized k > 3, let m = (my,...,7) be a primitive pattern. Consider the
random digraph process (Dnvm)f,fzal) (restricted to integers n that are divisible by k). The
following property holds a.a.s.: D,,,, contains a 7-HC' the first time all vertices have total
degree at least 2.

log n+log log n+c

Corollary 5. Let m = (my, ..., m) be a primitive pattern of length k > 3. Ifp = o

and k | n, then

Pr(D,, has m-HC) ~ e ¢ "
Remark 6. Let us point out that there are different coefficients in the loglogn terms in
Corollaries [J and [, It follows from the fact that having a vertex with both in-degree and
out-degree equal to 1 prevents there being a Hamilton cycle with the alternating pattern, but
it does not prevent any other pattern. See Lemma[I1(] to see how this affects the probability
threshold.



3 Idea of the Proof

We start with a naive description of the argument. Let £ > 1 be any fixed natural number,
and let 7 be any pattern of length k. Suppose that we wish to find a m-Hamilton cycle
in a given random digraph on n vertices, where n is divisible by k. Here is one simple
approach: first partition the n vertices into k bins, By,..., By, so that each bin receives
exactly n/k vertices (this is done arbitrarily, before examining the edges); then build a cycle
(v1,...,vn,v1), where each v; € B; and each v;v; 41 is oriented as m;. (Here the indices of B;
and ; should be interpreted modulo k). This gives us the desired 7-HC. Clearly, for the
above construction to succeed, every vertex v in bin B; should have some neighbours w € B;_;
and w’ € B;;1 such that the edges vw and vw’ are appropriately oriented. Unfortunately,
it is easy to see that for the D, , model the above property fails a.a.s. when k& > 2 and
p ~ logn/(2n) (which is the sharp threshold for the degree constraints given in Theorems
and [4). This is due to the presence of vertices v such that v and all its neighbours belong to
the same bin. To overcome this obstacle, in this section we will analyze a simpler model of
random digraphs for which the above naive construction of a m-HC works. Later in Section 3]
we will show how to modify D,,,, (by moving a few vertices to different bins and contracting
some short paths) so that the resulting random graph can be analyzed by means of this
simpler model.

We consider a model that generalizes the Dgi,tone model of [2] as follows. Let S =
(sij)1<ij<k and T = (t; ;)1<i j<k be two k x k matrices with entries in NU{0}. We construct
the random digraph Dg.in7.ous as follows. We have n vertices placed in k& > 1 bins as
explained above. For each vertex v in bin B;, we add s; ; distinct in-arcs to v (that is, with
head vertex v) and tail vertices chosen uniformly at random (u.a.r.) from B; \ {v}. In other
words, each of the (;‘/ f) choices (or ("é kj_l) choices if i = j) is equally likely. Similarly, for
each vertex v in bin B;, we add t;; distinct out-arcs from v (that is, with tail vertex v)
and head vertices chosen u.a.r. from B; \ {v}. Let us note that Dginr.ou 1S, in general, a
multi-digraph since an arc vw may be generated once as an out-arc from v and once as an
in-arc to w.

We start with the following observation.

Lemma 7. Let S =T = (2) g . Then a.a.s. Dg_iyn1-0ut has one perfect matching directed

from By to By and one directed from By to Bj.

Proof. Walkup [9] (see Theorem 17.6 in [7]) proved that the following model of a random
bipartite graph has a perfect matching a.a.s: given disjoint sets A, B of size m, each vertex
of A chooses 2 random neighbours in B and each vertex of B chooses 2 random neighbours
in A. This is a random graph with 4m edges. The random graph Dg.i, 7-out consists of two
independent copies of Walkup’s graph, with orientations preserved, and so the conclusion
follows immediately. O]

With one additional ingredient, namely, the fact that Dji, oo a.a.s. has a directed
Hamilton cycle, we get the following useful lemma. For technical reasons we disregard the
case k = 2, and restrict our attention to patterns of length k& > 3 (see Remark [J] below).



Moreover, we do not assume patterns to be primitive so, in particular, the lemma applies to
T =(=,4,—,).

Lemma 8. Let k > 3 be any natural number and let m = (my,...,7) be any pattern. Let
S == (Si,j)lﬁl}jﬁk and T = (ti,j)lgi,jgk be kx k matrices with 5i,i+1 = Si+1,i = ti,i—H == ti+1,i = 2.
Then a.a.s. Dg_in1-our has a Hamilton cycle (vq,...,v,) with v; € Bj when i = j mod k

and with each v;v;11 oriented as ;.

Proof. Using Lemma[7], we find a family of perfect matchings between B; and B, directed
as m; for each i = 1,...,k — 1. This gives a partition of the vertex set into sets that induce
paths of length k — 1. Each of these paths P = (uq,...,u;) has u; € B; and w;u; 41 oriented
as m;. We contract each path into a single vertex. Without loss of generality, we may assume
that m, = —; otherwise, a symmetric argument can be applied. It suffices to find a directed
Hamilton cycle on the contracted paths, so that each edge is oriented from the By end of one
path to the B; end of the next one. In order to do this, given each path P = (uy,...,u),
note there are ¢, 1 = 2 out-arcs from u; to a random vertex in B; and s;; = 2 in-arcs to
u; from a random vertex in Bj. Keeping only those arcs, we get a Dy oot graph on the
vertices associated with the contracted paths. It was shown by Cooper and Frieze [3] that
Dy in2out a.a.s. has a directed Hamilton cycle. Un-contracting the paths gives us the desired
m-Hamilton cycle of the original graph. ]

Remark 9. The proof of the lemma does not work ‘as is’ fork = 2 and m = (—, <), since the
arcs between By and Bo used in the last step to complete a Hamilton cycle may have already
been used in the first perfect matching between these same bins. With some extra work, one

can show that the statement still holds in that scenario if we allow S =T = (2 g) We

chose not to include this case in the statement, since it s not needed in our main argument.

Lemma [§ will be useful in analyzing the random digraph process. However, the argument
will be more delicate and the above proof strategy needs to be amended in order to deal
with vertices of low degree that occur in the original process but not in the Dg iy 7-out OnDE.
These vertices will be “buried” inside paths after contracting them to “fat” vertices.

4 Structural Ingredients

4.1 Bin partition

Throughout this section, 7 is a fixed primitive nontrivial pattern. We consider two different
scenarios: either m = (—, <) (alternating case) or 7 is a primitive pattern (m,..., 7)) of
length & > 3 (non-alternating case). We will analyze several models of random digraphs
with common vertex set [n]. In the non-alternating case, we assume that the length of the
pattern k divides n, and partition the vertices into k bins By, ..., By in an equitable manner
(that is, every bin receives exactly n/k vertices). The alternating case is slightly different.
Here we assume that n is even, but partition the vertices into 4 bins By, ..., By, so that bins
By, By receive [n/4] vertices and bins Bs, By receive |n/4| vertices. By setting k = 4, the
alternating case can be intuitively regarded as if 7 = (—, «—, —, <) instead of (—, <), with



the weaker requirement that n is even but not necessarily divisible by 4 (see Remark . In
either case, the partition of the vertex set into bins is done arbitrarily before examining the
arcs of any of the random digraphs.

4.2 Necessary conditions

We now describe what will turn out to be the main obstruction to the existence of a 7-HC
in D, ,. In the non-alternating case (that is, 7 primitive of length k£ > 3), let A denote the
event that D, , has no vertices of total degree less than 2. In the alternating case, we require
a stronger condition, and define A to be the event that every vertex in D, , has in-degree at
least 2 or out-degree at least 2. Note that in either case A is trivially a necessary condition
for the existence of m-HC.

The following result is a standard exercise in the field of random graphs, so we just sketch
the main steps of the proof.

Lemma 10. Let ¢ € R be any fized constant.

_ log n+2loglog n+c

1. For m = (—,4) and with pa = pay(n) 2n

Pr(D,,,, satisfies A) ~ e /%,

_ logn+loglogn+c
_ 2n ’

2. For a primitive pattern 7 of length k > 3 and with Dpon-ait = Pnon-air(1)

Pr(D satisfies A) ~ e~ "

T;,Pnon-alt

Proof (sketch). Let us first consider the case 1 = (—,+). Let X denote the number of
vertices in D, ,, . with in-degree 1 and out-degree 1. Easy computations show that

nlog*n
4

EX ~ np2 (1 — pai )" ~ exp ( — (logn + 2loglogn + c)> =e /4.
Similarly, the ith factorial moment satisfies E[(X);] ~ (e7¢/4)! for each fixed i € N. As
a result, it follows that X is asymptotically Poisson with mean A := e~¢/4. In particular,

Pr(X = 0) ~ e™*. Moreover, the expected number of vertices of total degree at most 1 is
equal to O(1/logn) = o(1), and so

Pr(A) = Pr(X =0) +o(1) ~ e /4

The non-alternating case is very similar. This time we need to investigate random variable
Y, the number of vertices in D,, with total degree 1. We get that

yPnon-alt

c

EY ~ 1n°(2pnon-ait) (1 = Pron-at) ™ ~ nlogn exp ( — (logn + loglog n + C)) =e

and so
—C

Pr(A) =Pr(Y =0)+o(1) ~e©
The details are left for the reader. O



4.3 In- and out-arcs

For each p = p(n) € [0, 1], we can view D, ,, as the union of two independent copies of D,, ,,
denoted Dj:p, and Dy, where p’ = p/(n) is chosen such that

2 —p* = p.

This is a standard, simple but useful, observation called two-round exposure or sprinkling.
The arcs in Dmp, receive label “in”, and we will call them in-arcs. Likewise, the arcs in Dout
are labeled “out”, and will be Called out-arcs. Note that an arc 0t may appear in both Dm
and DO‘“,, which Creates a parallel pair of arcs, one in-arc v and one out-arc . ThlS 1s
useful for the purpose of building a Hamilton cycle, since we may use either copy of v for
the cycle. By forgetting the labels and merging parallel pairs into single arcs, we recover the
usual distribution of D,, ,. Hence, we regard D, , as a simple digraph, where each arc has
label “in”, “out”, or both.

Furthermore, we wish to build the standard random digraph process (D, ,)o<p<1 in & way
that is compatible with the arc labels. To do so, we introduce a sequence (X}j“w, X0 ) v wen] vtw
of i.i.d. random variables uniformly distributed in [0, 1]. Then, for each pair of different ver-
tices v, w, we include arc v in Dy, (or in D) if XY, < p' (or, respectively, X34 < p).
Hence, setting D,, , = Di{tp, U Dglflf, (and merging parallel pairs into single arcs), we obtain
three random processes (an)0<p<1, (D Do<pr<1 and (D ' )o<p<1 with the usual couplings:
Dupy C Dyp,s Di“ D‘“ p, and Dout DO‘” for 0 < p1 < po < 1. Note that, if

.

X, = <ph= X,fj‘ilf, we say that arc m appears in (D, p)o<p<1 at time p; with label “in

and gets a second label “out” at time p,. However, if we choose to ignore labels, then arc
v simple appears in (Dnp)o<p<1 at time py.

In the context of the random digraph process (D, ,)o<p<1, We consider random variable
p. = min{p € [0, 1] : D,,, satisfies A}.
Let w :=logloglogn = o(loglogn) and let

logn + 2loglogn + w
2n
P+ = (1)
1 log 1 +
g™ ¥ 02g BN T otherwise (k > 3).
n

if 7 is the alternating pattern (k = 2),

In particular, by Lemma a.a.8. p— < Py < Py

In the remainder of this section, we will analyze the two random digraph processes
(D )y <p<p, and (Dy')y <p<p,, Where 2p, — P> = p+. These two processes, in turn,
determine the process (D, ,),_<p<p,, as explained above. For each “time” p’ € [p',p/,], we
associate out-arcs (that is, arcs in Dout ) to their tail vertex and in-arcs to their head vertex.
More precisely, if v is an out-arc Wlth tail at v and head at w, then we say that it is wvisible
from v and invisible from w. Similarly, if i is an in-arc, then it is snwvisible from v and
vistble from w. Later in the argument, we will expose the endpoint of each arc from which
the arc is visible and leave the other endpoint random. This trick will be useful to emulate
the Dg.in7-ous model.



4.4 Useful properties

Recall that vertices are equitably partitioned into bins By, ..., By before exposing any ran-
dom arcs. (In the alternating case, k = 4 and |By| = |By| = [n/4] while |Bs| = |By| =
|n/4].) We use this partition to classify vertices into three different types (good, bad, or
dangerous):

o We say a vertex v is good if, for every ¢ € [k], v has at least 4k + 2 visible out-arcs (that
is, out-arcs visible from v) in DZ"‘;,_ whose head vertex is in bin B; and also at least
4k + 2 visible in-arcs in D’ir?,pL whose tail is in B;. (Note that this property is required
for each bin, including the bin vertex v belongs to.)

o We say that v is bad if it is not good, but its total degree in D,,, = Dgfp,_ U Df;f}f,_
(including all arcs that are incident with v, visible and invisible, and ignoring labels)
is at least 4k + 3.

e The remaining vertices, which have total degree at most 4k + 2, are called dangerous.
The above classification of vertices is based solely on the two digraphs Dif’p, and Dgu;, It
remains invariant throughout (D)), <p<p, s (Dpy)y <pr<p,» and hence (Dyp)p <p<p, - In
other words, if a vertex is good/bad/dangerous at time p_ it stays of this type during any
time p € [p_,py].

Given a digraph D, the D-distance between two vertices of D denotes the usual graph
distance in the underlying undirected graph. Let H (for handsome) be the family of all
digraphs D with D,,, €D CD satisfying:

P+

H1: Every vertex in D has fewer than 4k vertices that are not good within D-distance 10k.
H2: Every dangerous vertex in D has only good vertices within D-distance 10k.

H3: Every cycle (with any orientation, any labels on the associated arcs, and including
cycles of length 2) in D of length at most 10k has only good vertices within D-distance
10k.

Note that distances in H1-H3 are measured with respect to digraph D, whereas the defi-
nitions of being good, bad, and dangerous depend only on arcs that are already present in
D,, €D C Dy, . As aresult, H is a monotone decreasing family of digraphs.

We will show now that random directed graphs are typically handsome.
Lemma 11. A.a.s. D,,, € H for allp_ <p <p..

Proof. As mentioned above, H1-H3 are monotone decreasing properties, so it suffices to
show that a.a.s. ‘H holds for p = p,. We will investigate these three events in turn.



Hi:

H2:

H3:

Let M = 40k?. Then,

Pr(3 a vertex of D,,,,, not satisfying H1)

n,p+

Z( ) (¢ + 1) (2p, ( ) (2k§( /H) p)W“M”>4k

M /
ne\* (2({+1)logn
< - e
<nd (4 (A
=4k
L oy /) (log /) exp (1 + o(1)) 27 ) )
4]{; n Ogn n eXp 0] 2n ]{j
M
Z 10logn)" log4kJrl ’1/(2k)+0(1))4k = pi=2tel) — (1),
=4k

Indeed, there are n choices for a vertex v and then there will be an additional ¢ vertices
that make up the paths, where 4k < ¢ < M = (4k) x (10k). We choose these vertices
in at most (’z) ways and then choose a spanning tree that is contained in the union of
the paths in at most (¢ + 1)*~! ways, the number of labelled trees on ¢ + 1 vertices.
The factor (2p, )¢ bounds the probability the arcs of the tree exist, ignoring orientation
gives us the 2. We then choose 4k vertices that are not good and multiply by an upper
bound for the probability that these vertices have few D,,, in- or out-neighbours in

some of the k£ bins outside of the set of ¢ +1 < M + 1 vertices chosen so far.

The probability that there is a dangerous vertex v and a not good vertex w such that
dist(v, w) = ¢ < 10k can be bounded from above by

n%n‘@p (21{;% ( n/lﬂ) p_)tn/kJ_e_l_i)
) <4k2+1 (?) (2p-)(1 —2p- +p2_)”2j>

=0
10k
< nz ( )) log n>e /@R ro(1) y=14o(1) — p=1/@R)+o(1) — 4(1),

Indeed, there are n choices for a dangerous vertex v and then at most n‘ choices for
additional vertices that form a path of length ¢ reaching a vertex w that is not good.
The next term is an upper bound for the probability that w is not good. The last term
is an upper bound for the probability that v is dangerous. Note that v already has one
neighbour on the path that is already identified; hence, 7 < 4k + 1, not 4k + 2.

If there is a cycle not satisfying H3, then there is a set of 2 < ¢ < M = 10k+ 10k = 20k
vertices containing at least ¢ arcs and at least one not good vertex. The probability of



this event occurring in D,, ,, can be bounded from above by

o e

=2 i=0
M 2 N\ ¢ ¢
5 ne\’ ( (e 21081\ " i /ok)to(1) _ . —1/@k)4o(1) _
(=2
The proof of the lemma is finished. O]

Given a digraph D,, C D C D, ,, and a vertex v of D, the neighbourhood Np(v) =
N(v) of v is the set of all vertices w that are joined to v by an arc (in- or out-arc, visible or
invisible from v). We now give some useful deterministic consequences of properties H1-H3.

Lemma 12. Let D be any digraph in H, and let Py be a pairwise vertex-disjoint collection of
paths, where each path P € &y has length at most 6k + 2 and contains exactly one non-good
vertex (that is, bad or dangerous). Then

H4 For every dangerous vertex v, all the vertices in N(v) are good and none of them is
contained in a path in P.

H5 For every vertex v, all but at most 4k vertices in N(v) are good and are not contained
n a path in ZPy.

Proof. Pick any vertex v. H3 implies that no path P € &, intersects more than one vertex
in N(v), since otherwise we would create a cycle of length at most 10k with at least one
non-good vertex within distance 10k. Then, by H1, we immediately get H5. Moreover, if v
is dangerous, then H2 implies H4. O

5 Cycle Construction

In this section we will prove Theorems [2] and [ by showing that a.a.s. D,,,, contains a 7-
Hamilton cycle, where 7 is either the alternating pattern (—,<—) or a primitive pattern
(m1,...,m) of length k& > 3. For notational convenience, in the alternating case we set
k = 4 and redefine 7 to be (—, -, —, <), even though n is only assumed to be even but not
necessarily divisible by 4 (see Remark. In the non-alternating case, we always require that
k| n. Asin Section[4] the vertex set [n] is equitably partitioned into k& > 3 bins By, ..., By, of
size | B;| = n/k (in the non-alternating case) or |By| = |By| = [n/4] and |Bs| = |B4| = |n/4]
(in the alternating case). Recall that this partition is done before exposing any random arcs.

We will analyze the random processes (D)), <w<ply> (Doy)p <p<pt, and (Drp)p_ <p<p,
introduced in Section {4 where D,, , = D‘n U DO‘lt for 20 —p* = p (merging parallel arcs
into single arcs) and where p_, p, are deﬁned as in ( . In view of Lemmas|10]and |11} we will
assume that p_ < p, < py and that event H holds in D, , for all p_ < p < p,. Otherw1se

our construction will simply fail, but this occurs with probability o(1). Note that we do not

10



condition on these events, since this would destroy the probability space. Instead, we will
expose some partial information about (D,, ), <p<p, and assume it does not contradict our
assumptions above, while we leave all the unexposed information random.

Step 1 — digraph D,: We first consider digraphs Djlan and DZ“;, (or equivalently digraph

D,,, at time p_). Recall that an in-arc v of Dilnp, is visible from w, while an out-arc o

of Dfl“pt/ is visible from v. For every vertex v and for every bin B;, we expose the number

d; (v) of in-arcs in D, with head at v and tail at some vertex in B; and similarly the

number d; (v) of out-arcs in Dy, with tail at v and head at some vertex in B;. (In other

words, we reveal the number of arcs between v and B; in each orientation and which are
visible from v.) This allows us to identify which vertices are good without exposing actual
locations of arcs. Indeed, given d; (v) and d; (v), the unexposed endvertices of the d; (v)
out-arcs and d; (v) in-arcs visible from v are two subsets of B; \ {v} of sizes d; (v) and d; (v)
chosen independently and u.a.r. (and also independently of the arcs that are visible from
other vertices).

For every vertex v that is not good, we expose all arcs in D,,,, = Djpr U Dout

n,pl
and out-arcs, visible and invisible) that are incident with v, and label these arcs discovered.
This information determines whether v is bad or dangerous. Hence, all vertices are classified
into the good, bad and dangerous types defined in Section dl We also label every vertex
that is not good as discovered. (Good vertices remain undiscovered for now, but this will

change later on, as we reveal more information about D,,, and label some good vertices

(in-

as discovered.) For each i € [k], let B; denote the set of undiscovered vertices in bin B;.
Note that some of the arcs that are visible from undiscovered (i.e. good) vertices may be
discovered, but these are few as we shall see. For each undiscovered vertex v and each bin
By, let uf (v) be the number of undiscovered out-arcs visible from v and whose other end is in
B;, and let U;"(v) be the set of unexposed endvertices of these out-arcs. Similarly, let u; (v)
be the number of undiscovered in-arcs visible from v and whose other end is in B;, and let
U; (v) be the set of unexposed endvertices of these in-arcs. Property H1 of H guarantees

(2

the following:

U1: For any bins B;, B; (possibly with ¢ = j) and any undiscovered vertex v € B,

uf (v) > df (v) — 4k > 2, u; (v) > d; (v) — 4k > 2.

Moreover, since the unexposed endpoint of each undiscovered arc remains random, we get:

U2: U (v) and U; (v) are two subsets of B; \ {v} of sizes u; (v) and u; (v) chosen inde-

pendently and u.a.r. (and also independently of the arcs that are visible from other
vertices).

Note that U1-U2 are desired properties in light of Lemma[§] We shall see that they remain
valid after we expose additional arcs and slightly modify our digraph.

Unfortunately, the arcs in D, , do not suffice to build a 7-HC, since the necessary
conditions of event A do not hold at time p_ (in view of our assumption that p_ < p,). To
that effect, we expose all the arcs in D,,,, that are incident with a dangerous vertex and
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label them discovered, as well. Since p, is a random time, here is a more careful description
of this operation. Let us first expose the number r of arcs (but not their locations) in
Dyp, \ Dpp_, and list them as eq,. .., e, in the order they appear in the process. For each
1 < i < r, we determine whether or not e; is incident with a dangerous vertex, and if it
is then we fully disclose the two endvertices of e; and label e; discovered. Otherwise, the
endpoints of e; remain unknown (such e; will not play any role in our construction of the
m-HC). Let r, be the smallest ¢ € {0,1,...,r} such that D,, U {es,..., e;} satisfies the
conditions in event A. From our assumption that p_ < p, < py, we have 1 < r, <r —1
and D, ,, = D,, U{er,...,e..}. Let D, = Dy, U{e; : ¢ is discovered, 1 < i < r,}.
By construction D, satisfies A and H (since D, C D,,, < D,, . and H is monotone
decreasing). Moreover, the additional newly discovered arcs in {ey,...,e, } are disjoint
with the undiscovered arcs of D,,, , since the latter are only incident with good vertices.
Hence, the joint distribution of the sets U:*(v) of unexposed endpoints of undiscovered arcs
is unaffected by the additional information revealed, and in particular properties U1-U2 are
still valid. Our goal is to build a 7-HC in D, (or just a (—, <-)-HC when 7 = (—, <, —, <)
and n =2 mod 4). In the sequel, we will expose some additional information about D, and
make slight modifications to it (such as moving some vertices from one bin to another). By
abusing slightly the notation, we will still use D, to denote the probability distribution of
the modified random digraph given all the exposed information.

Step 2 — short path collection: Our next step is to build a pairwise vertex-disjoint
collection & of short paths, each of which contains exactly one vertex that is not good.
To make this more precise, we first consider the case where k | n (i.e. either 7 is non-
alternating or m = (—, +—, —, <) with 4 | n). For each non-good vertex w (that is, w is bad
or dangerous), we will build a path P(w) = vjvy - - - vgpy1 of length 6k with the following
properties: w is an internal vertex of P(w); all the vertices in P(w) are good except for w (so
in particular w — P(w) is a bijection between non-good vertices and paths in &?); each arc
v;v;41 is oriented as m; for ¢ = 1,...,6k; and each v; € B; fori =1,...,6k 4+ 1. (Recall that
modular arithmetic is used for both bins and pattern positions so, for instance, vgr1 € By.)
Note that in order to achieve this last property, we may have to move some vertices from one
bin to another, but this will be done while keeping the bin sizes unchanged. Moreover, only
internal vertices of paths in & may be moved to a different bin. When 7 = (—, <, —, <)
with n = 2 mod 4, we define the collection of paths &2 as above with the only proviso that
exactly one of the paths in & must have length 6k + 2 instead of 6k. In this longer path
P = vjvg - - - vgys3, each vertex v; € B; for ¢ = 1,...,6k + 2 but Bgri3 € By (so the path
cycles 6 times through bins By, Bs, Bs, By, and then visits By, B, and again Bj), and arcs
are oriented in an alternating fashion with v;v;, oriented as m; for i = 1,...,6k + 2.

We will show that we can build a such a collection of paths &2. Assume inductively that
we have already created a sub-collection &2y, C £ of such paths (possibly &y = () is the
trivial sub-collection) and let ws be a non-good vertex not contained in any path in .
Our goal is to build a new path P(ws) with all the desired properties and add it to &?,. We
will first suppose that k | n (that includes the case when m = (—, <—, —, =) with 4 | n), and
then show how to modify the construction if 7 = (—, <, —, ) and n = 2 mod 4.
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Step 2a — starting path P(w): Recall that N(wy) = Np, (ws) is the set of neighbours of
wy (that is, those vertices that are joined to wy by arcs in D, with any label and orientation).
This set has already been exposed since w, is not good. We claim that we can pick two
different neighbours wy,ws € N(ws,) that are good and are not contained in any path in
Zy. Moreover, for the alternating pattern, we can pick wy, w3 so that arcs wiws and wzwsy
are either both oriented out of wy or both into ws. Indeed, if wy is bad, then |N(wy)| >
|Np,,, (ws2)| > 4k+3 by the definition of being bad. Then N (w,) contains at least three good
vertices not contained in any path in &2, by property H5 of Lemma [12] By the pigeonhole
principle, we can pick two such vertices w; and ws that are joined to ws by arcs with the
same orientation. On the other hand, if wy is dangerous, all its neighbours are good and do
not intersect any path in &, by property H4. In that case, event A guarantees the existence
of appropriate vertices wy, w3 (with arcs wjwy and wswy both oriented out of wy or both
into wy, in the alternating case). Note that this is the only point in the construction of path
P(wsy) that we may use arcs in D, that are not in D,,,, .

Step 2b — growing path P(w;): We first show that we can pick a position j € [k]
in the pattern such that wyw, and wews are oriented as m; and m;;,. First suppose that
arcs wywe and wzwsg are both oriented out of wy or both into ws (note that these are the
only two possible cases in the alternating case, from our choice of w; and ws). Clearly for
T = (—, 4, —, <) and also for any primitive pattern 7 of length k& > 3, there must be some
J € [k] such that 7; =< and 7,41 =— (and similarly some j" € [k] such that 7, =— and
741 =4). In either case, we can pick a position j with wywy and wyws oriented as 7; and
Tjt1, as claimed. For k > 3, there is an additional case to be considered. Suppose that
exactly one of the arcs wyws and wsws is oriented out of wy, and the other one is into ws.
Since 7 is not the alternating pattern, there must be some j € [k] such that 7; = 71,41 =—
or m; = 741 =<. Hence (switching vertices w; and ws if needed), we can conclude that
wiwy and wews are oriented as m; and 74y, also for this case. Let B,,, By,, Ba, (possibly
a; = as = az) be the bins containing vertices wy, we, w3, respectively. We will find a path
P(wg) = w_g_jio - Wowiwaws - - - Ws—j1o of length 6k in D, with the following properties:
P(ws) does not intersect any path in Z; all vertices w_j_;4o, ..., wsx_j+2 (of course, except
for w,) are good; each arc w;w;; is oriented as m;;_q for i = —k —j+2,...,5k — j + 1;
and each w; € By fori = —k —j+2,...,5k — j + 2, except for

wy € By, Wa, +2k—j+1 € B
wy € By, and Way+3k—j+1 € Bijt1 (2)
w3 € By, Wag+ak—j+1 € Bjya.

The bins of vertices w; and we, 4 (i+1)k—;+1 Will be swapped for ¢ = 1,2, 3 (unless a; = i+j—1,
in which case both w; and wg,1(i11)k—j+1 Will be placed correctly in the same bin B,, =
Bitj_1). Note that since j, a1, a2, a3 € [k] and k > 3,

—k—74+2<1<2<3<y+2k—j+1<ar+3k—j+1<az+4k—j7+1<>dk—j+2,

so in particular all six vertices wi, wa, W3, Wa,+2k—j+1, Wag+3k—j+1; Waz+4k—j+1 must be distinct
and internal vertices of the path. For each i = —k — 57+ 2,...,5k — 7+ 2, let B,, be the

13



bin where we wish to find vertex w;. Then «; = ¢ 4+ 7 — 1, with the possible exceptions
described in . We will grow our path P(ws) by adding vertices to each end of wywsws,
one vertex at a time. We can achieve this as follows. For each i = 3,...,5k — 7 + 1, expose
all in- and out-arcs of D, incident with w; (visible and invisible from w;). We label all these
exposed arcs as discovered and vertex w; is labelled discovered as well. Since w; is good, it
has at least 4k + 2 neighbours w in bin B,,,, with w;w oriented as m; ;1. By property H5,
at least 2 of these vertices are good and not in any path P € % U {wjwyws - --w;}. Pick
one of them and call it w; ;. By an analogous argument, we also grow the path from the
other end, by adding a suitable vertex w; 1 for each ¢ = 1,0,—1,...,—k — j + 3, and thus
complete our path P(wy). This path has all the required properties, except for the fact that
vertices listed in may be placed in the wrong bin (depending on the values of ay, as, as).
Hence, we swap the bins of the vertices in the path that were misplaced: that is, w; is
moved to bin B;y;_1 and W, (i+1)k—j+1 i moved to B, for i = 1,2,3. Note that the sizes
of the bins remain unchanged and thus balanced. Moreover, writing P(ws) = v1vs -+ - Ugg 11
with v; = w;_j_j41, we have that every vertex v; (i = 1,...,6k + 1) belongs to bin B;, and
each arc v;v;11 (i = 1,...,6k) is oriented as m;, as required. Then, we can extend & to
Py U {P(wy)} and inductively obtain our desired collection of paths &.

When 7 = (—,4,—,4) and n = 2 mod 4, we just need to extend one of the paths
P = vjvg - vgry1 in & two more steps. When doing so, we must make sure that the two
additional vertices vgria2, Vgrrs belong to the right bins and the edges vgk1V6r12, VskioVsk13
have the appropriate orientations. This can be achieved by the exact same argument as
above, and thus we omit the details. Note that we have tacitly assumed that & contains at
least one path, which would not be true if all the vertices of D, were good'} In that case,
we could still create one path by applying Step 2a to a good vertex ws, and extending this
path as in Step 2b.

Step 3 — path contraction: A crucial property in the above construction of & is that
we have only exposed (and labelled discovered) those arcs that are incident with discovered
vertices, which are precisely the internal vertices of the paths in 2. All the other vertices
remain undiscovered (and are good). Note that some arcs incident with undiscovered edges
may be discovered. However, in view of H5 (applying Lemma |12| with &, = &), we infer
that each undiscovered vertex v is incident with at most 4% discovered arcs. Hence, property
Ul remains valid for any undiscovered vertex v € B; and bins B;, B, with the updated
values of B;, UF(v) and u(v). Moreover, since we did not reveal any information about
undiscovered arcs, the unexposed endpoints of the undiscovered arcs visible from v remain
random, and therefore property U2 also holds. Now we contract each path in &2 into a
vertex. Vertices obtained from a contracted path are called fat and are placed in bin By,
while other vertices are called ordinary. We declare fat vertices to be undiscovered, so all
vertices in the contracted graph are undiscovered. Let n’ be the number of vertices (ordinary
or fat) that remain in the digraph after the path contractions. Clearly n/(7k) < n’ < n,
since each path has fewer than 7k vertices. In particular, n’ — oo. We claim that k | n’/
and moreover, after contracting the paths, every bin contains exactly n’/k vertices. Indeed,
when k | n, each path in & has 6 vertices in each bin B; (i = 2,...,k) and 7 vertices in

Tt is easy to show that a.a.s. this does not happen, but we do not make use of this fact.
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bin Bj, so path contractions maintain the bin sizes balanced. On the other hand, when
T = (—,4,—,) and n = 2 mod 4, two additional vertices—one in bin B; and one in
By—are contracted (as a result of the longer path), so bins By, By, Bs, By become balanced
as well in this case.

Step 4 — end of the proof: At this final stage, we will only need arcs between vertices in
consecutive bins B; and B;,1, for each i € [k], so we delete all the remaining arcs. Moreover,
for each fat vertex v obtained by contracting a path P = vy - - - vgry1, we delete all arcs (in-
and out-arcs, visible and invisible) that are incident with v; except for those whose other
end is in bin By, which remain unexposed. Similarly, we delete all arcs that are incident
with vggi1 except for those whose other end is in bin B,. In other words, fat vertex v plays
the role of vertex v; (respectively, vgry1) when concerned with arcs between bins B; and
By, (respectively, By and Bs). Let us call the resulting digraph D,.. (Recall that D,, has
n’ — oo vertices with & | n/, and each bin contains exactly n’/k vertices.) We claim that,
after all these edge deletions, properties U1-U2 remain valid for any vertex v € B; and
bin B; withi € {j — 1,7 + 1}E] This is clearly true if v is a fat vertex corresponding to a
path P = vy -+ - vgpy1, since v inherits the arcs visible from v; with opposite end in B and
the arcs visible from wgg,1 with opposite end in By. On the other hand, for any ordinary
vertex v € B; and bin B; (1 € {j — 1,5 + 1}), the only arcs visible from v that may have
been deleted are those incident with a fat vertex (and thus with some vertex of a path in
Z?). Hence, by property H5 as before, we conclude that Ul remains valid. Property U2
also follows from the fact that we have not exposed any additional information about the
surviving arcs and thus they remain uniformly distributed. Finally, Ul and U2 imply that
the contracted digraph D, contains a copy of Dg.inr.out (0n n' vertices with n’ — co) with
Siit1s Sii—1,tii—1,tii—1 > 2. So we can apply Lemma and find a 7-HC in D,, a.a.s. Finally,
when 7 is primitive of length k£ > 3, un-contracting the paths yields the desired 7-HC in
D. CD,,p,.. When m = (=, ¢, —, <), we simply get a (—, <—)-HC. This finishes the proof
of Theorem [2] Corollaries [3] and [f] follow immediately as a consequence of Lemma [10]

6 Final Comments

We have proved a hitting time result for the existence of a Hamilton cycle with edges oriented
according to a periodic pattern. We have shown that in some cases this typically requires
asymptotically one half of that needed for a consistently oriented Hamilton cycle. It would
be of some interest to discover how many such cycles there are typically and as to whether
there are all such cycles, up to a bound on the length of the pattern 7. As already mentioned,
Ferber and Long [4] have shown that Hamilton cycles with arbitrary orientations occur a.a.s.
at m = nlogn. It would be of interest to understand which class of patterns occur a.a.s. for
m < cnlogn where 0 < ¢ < 1 is a constant.

2The proof of this claim makes use of the fact that & > 3 and hence arcs between bins B; and B, are
different from those between B; and Bj. This justifies our choice to use the pattern (—, «+, —, <) in the
analysis of the alternating case. Other approaches are also possible, but we believe this is the simplest one.
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